home *** CD-ROM | disk | FTP | other *** search
-
- ΓòÉΓòÉΓòÉ 1. Title page ΓòÉΓòÉΓòÉ
-
- Octave C++ Classes
-
- Edition 1.0 for Octave version 2.1.14
-
- September 1993
-
- John W. Eaton
-
- Copyright (C) 1996, 1997 John W. Eaton.
-
- This is the first edition of the documentation for Octave's C++ classes, and is
- consistent with version 2.1.14 of Octave.
-
- Permission is granted to make and distribute verbatim copies of this manual
- provided the copyright notice and this permission notice are preserved on all
- copies.
-
- Permission is granted to copy and distribute modified versions of this manual
- under the conditions for verbatim copying, provided that the entire resulting
- derived work is distributed under the terms of a permission notice identical to
- this one.
-
- Permission is granted to copy and distribute translations of this manual into
- another language, under the same conditions as for modified versions.
-
-
- ΓòÉΓòÉΓòÉ 2. Top ΓòÉΓòÉΓòÉ
-
- This manual documents how to use, install and port Octave's C++ class library,
- and how to report bugs. It corresponds to Octave version 2.1.14.
-
- Acknowledgements
- Copying
- Introduction
- Arrays
- Matrix and Vector Operations
- Matrix Factorizations
- Ranges
- Nonlinear Functions
- Nonlinear Equations
- Optimization
- Quadrature
- Ordinary Differential Equations
- Differential Algebraic Equations
- Error Handling
- Installation
- Bugs
- Concept Index
- Function Index
-
- --- The Detailed Node Listing ---
-
- Acknowledgements
-
- Contributors People who contributed to developing
- of Octave.
-
- Arrays
-
- Constructors and Assignment
-
- Optimization
-
- Objective Functions
- Bounds
- Linear Constraints
- Nonlinear Constraints
- Quadratic Programming
- Nonlinear Programming
-
- Quadrature
-
- Collocation Weights
-
-
- ΓòÉΓòÉΓòÉ 3. Acknowledgements ΓòÉΓòÉΓòÉ
-
- Contributors People who contributed to developing
- of Octave.
-
-
- ΓòÉΓòÉΓòÉ 3.1. Contributors to Octave ΓòÉΓòÉΓòÉ
-
- In addition to John W. Eaton, several people have written parts of liboctave.
- (This has been removed because it is the same as what is in the Octave manual.)
-
-
- ΓòÉΓòÉΓòÉ 4. GNU GENERAL PUBLIC LICENSE ΓòÉΓòÉΓòÉ
-
- Version 2, June 1991
-
- Copyright (C) 1989, 1991 Free Software Foundation, Inc.
- 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-
- ΓòÉΓòÉΓòÉ 4.1. Preamble ΓòÉΓòÉΓòÉ
-
- The licenses for most software are designed to take away your freedom to share
- and change it. By contrast, the GNU General Public License is intended to
- guarantee your freedom to share and change free software---to make sure the
- software is free for all its users. This General Public License applies to
- most of the Free Software Foundation's software and to any other program whose
- authors commit to using it. (Some other Free Software Foundation software is
- covered by the GNU Library General Public License instead.) You can apply it
- to your programs, too.
-
- When we speak of free software, we are referring to freedom, not price. Our
- General Public Licenses are designed to make sure that you have the freedom to
- distribute copies of free software (and charge for this service if you wish),
- that you receive source code or can get it if you want it, that you can change
- the software or use pieces of it in new free programs; and that you know you
- can do these things.
-
- To protect your rights, we need to make restrictions that forbid anyone to
- deny you these rights or to ask you to surrender the rights. These restrictions
- translate to certain responsibilities for you if you distribute copies of the
- software, or if you modify it.
-
- For example, if you distribute copies of such a program, whether gratis or for
- a fee, you must give the recipients all the rights that you have. You must
- make sure that they, too, receive or can get the source code. And you must
- show them these terms so they know their rights.
-
- We protect your rights with two steps: (1) copyright the software, and (2)
- offer you this license which gives you legal permission to copy, distribute
- and/or modify the software.
-
- Also, for each author's protection and ours, we want to make certain that
- everyone understands that there is no warranty for this free software. If the
- software is modified by someone else and passed on, we want its recipients to
- know that what they have is not the original, so that any problems introduced
- by others will not reflect on the original authors' reputations.
-
- Finally, any free program is threatened constantly by software patents. We
- wish to avoid the danger that redistributors of a free program will
- individually obtain patent licenses, in effect making the program proprietary.
- To prevent this, we have made it clear that any patent must be licensed for
- everyone's free use or not licensed at all.
-
- The precise terms and conditions for copying, distribution and modification
- follow.
-
- TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
-
- 1. This License applies to any program or other work which contains a notice
- placed by the copyright holder saying it may be distributed under the
- terms of this General Public License. The ``Program'', below, refers to
- any such program or work, and a ``work based on the Program'' means
- either the Program or any derivative work under copyright law: that is to
- say, a work containing the Program or a portion of it, either verbatim or
- with modifications and/or translated into another language.
- (Hereinafter, translation is included without limitation in the term
- ``modification''.) Each licensee is addressed as ``you''.
-
- Activities other than copying, distribution and modification are not
- covered by this License; they are outside its scope. The act of running
- the Program is not restricted, and the output from the Program is covered
- only if its contents constitute a work based on the Program (independent
- of having been made by running the Program). Whether that is true depends
- on what the Program does.
-
- 2. You may copy and distribute verbatim copies of the Program's source code
- as you receive it, in any medium, provided that you conspicuously and
- appropriately publish on each copy an appropriate copyright notice and
- disclaimer of warranty; keep intact all the notices that refer to this
- License and to the absence of any warranty; and give any other recipients
- of the Program a copy of this License along with the Program.
-
- You may charge a fee for the physical act of transferring a copy, and you
- may at your option offer warranty protection in exchange for a fee.
-
- 3. You may modify your copy or copies of the Program or any portion of it,
- thus forming a work based on the Program, and copy and distribute such
- modifications or work under the terms of Section 1 above, provided that
- you also meet all of these conditions:
-
- a. You must cause the modified files to carry prominent notices stating
- that you changed the files and the date of any change.
-
- b. You must cause any work that you distribute or publish, that in
- whole or in part contains or is derived from the Program or any part
- thereof, to be licensed as a whole at no charge to all third parties
- under the terms of this License.
-
- c. If the modified program normally reads commands interactively when
- run, you must cause it, when started running for such interactive
- use in the most ordinary way, to print or display an announcement
- including an appropriate copyright notice and a notice that there is
- no warranty (or else, saying that you provide a warranty) and that
- users may redistribute the program under these conditions, and
- telling the user how to view a copy of this License. (Exception: if
- the Program itself is interactive but does not normally print such
- an announcement, your work based on the Program is not required to
- print an announcement.)
-
- These requirements apply to the modified work as a whole. If
- identifiable sections of that work are not derived from the Program, and
- can be reasonably considered independent and separate works in
- themselves, then this License, and its terms, do not apply to those
- sections when you distribute them as separate works. But when you
- distribute the same sections as part of a whole which is a work based on
- the Program, the distribution of the whole must be on the terms of this
- License, whose permissions for other licensees extend to the entire
- whole, and thus to each and every part regardless of who wrote it.
-
- Thus, it is not the intent of this section to claim rights or contest
- your rights to work written entirely by you; rather, the intent is to
- exercise the right to control the distribution of derivative or
- collective works based on the Program.
-
- In addition, mere aggregation of another work not based on the Program
- with the Program (or with a work based on the Program) on a volume of a
- storage or distribution medium does not bring the other work under the
- scope of this License.
-
- 4. You may copy and distribute the Program (or a work based on it, under
- Section 2) in object code or executable form under the terms of Sections
- 1 and 2 above provided that you also do one of the following:
-
- a. Accompany it with the complete corresponding machine-readable source
- code, which must be distributed under the terms of Sections 1 and 2
- above on a medium customarily used for software interchange; or,
-
- b. Accompany it with a written offer, valid for at least three years,
- to give any third party, for a charge no more than your cost of
- physically performing source distribution, a complete
- machine-readable copy of the corresponding source code, to be
- distributed under the terms of Sections 1 and 2 above on a medium
- customarily used for software interchange; or,
-
- c. Accompany it with the information you received as to the offer to
- distribute corresponding source code. (This alternative is allowed
- only for noncommercial distribution and only if you received the
- program in object code or executable form with such an offer, in
- accord with Subsection b above.)
-
- The source code for a work means the preferred form of the work for
- making modifications to it. For an executable work, complete source code
- means all the source code for all modules it contains, plus any
- associated interface definition files, plus the scripts used to control
- compilation and installation of the executable. However, as a special
- exception, the source code distributed need not include anything that is
- normally distributed (in either source or binary form) with the major
- components (compiler, kernel, and so on) of the operating system on which
- the executable runs, unless that component itself accompanies the
- executable.
-
- If distribution of executable or object code is made by offering access
- to copy from a designated place, then offering equivalent access to copy
- the source code from the same place counts as distribution of the source
- code, even though third parties are not compelled to copy the source
- along with the object code.
-
- 5. You may not copy, modify, sublicense, or distribute the Program except as
- expressly provided under this License. Any attempt otherwise to copy,
- modify, sublicense or distribute the Program is void, and will
- automatically terminate your rights under this License. However, parties
- who have received copies, or rights, from you under this License will not
- have their licenses terminated so long as such parties remain in full
- compliance.
-
- 6. You are not required to accept this License, since you have not signed
- it. However, nothing else grants you permission to modify or distribute
- the Program or its derivative works. These actions are prohibited by law
- if you do not accept this License. Therefore, by modifying or
- distributing the Program (or any work based on the Program), you indicate
- your acceptance of this License to do so, and all its terms and
- conditions for copying, distributing or modifying the Program or works
- based on it.
-
- 7. Each time you redistribute the Program (or any work based on the
- Program), the recipient automatically receives a license from the
- original licensor to copy, distribute or modify the Program subject to
- these terms and conditions. You may not impose any further restrictions
- on the recipients' exercise of the rights granted herein. You are not
- responsible for enforcing compliance by third parties to this License.
-
- 8. If, as a consequence of a court judgment or allegation of patent
- infringement or for any other reason (not limited to patent issues),
- conditions are imposed on you (whether by court order, agreement or
- otherwise) that contradict the conditions of this License, they do not
- excuse you from the conditions of this License. If you cannot distribute
- so as to satisfy simultaneously your obligations under this License and
- any other pertinent obligations, then as a consequence you may not
- distribute the Program at all. For example, if a patent license would
- not permit royalty-free redistribution of the Program by all those who
- receive copies directly or indirectly through you, then the only way you
- could satisfy both it and this License would be to refrain entirely from
- distribution of the Program.
-
- If any portion of this section is held invalid or unenforceable under any
- particular circumstance, the balance of the section is intended to apply
- and the section as a whole is intended to apply in other circumstances.
-
- It is not the purpose of this section to induce you to infringe any
- patents or other property right claims or to contest validity of any such
- claims; this section has the sole purpose of protecting the integrity of
- the free software distribution system, which is implemented by public
- license practices. Many people have made generous contributions to the
- wide range of software distributed through that system in reliance on
- consistent application of that system; it is up to the author/donor to
- decide if he or she is willing to distribute software through any other
- system and a licensee cannot impose that choice.
-
- This section is intended to make thoroughly clear what is believed to be
- a consequence of the rest of this License.
-
- 9. If the distribution and/or use of the Program is restricted in certain
- countries either by patents or by copyrighted interfaces, the original
- copyright holder who places the Program under this License may add an
- explicit geographical distribution limitation excluding those countries,
- so that distribution is permitted only in or among countries not thus
- excluded. In such case, this License incorporates the limitation as if
- written in the body of this License.
-
- 10. The Free Software Foundation may publish revised and/or new versions of
- the General Public License from time to time. Such new versions will be
- similar in spirit to the present version, but may differ in detail to
- address new problems or concerns.
-
- Each version is given a distinguishing version number. If the Program
- specifies a version number of this License which applies to it and ``any
- later version'', you have the option of following the terms and
- conditions either of that version or of any later version published by
- the Free Software Foundation. If the Program does not specify a version
- number of this License, you may choose any version ever published by the
- Free Software Foundation.
-
- 11. If you wish to incorporate parts of the Program into other free programs
- whose distribution conditions are different, write to the author to ask
- for permission. For software which is copyrighted by the Free Software
- Foundation, write to the Free Software Foundation; we sometimes make
- exceptions for this. Our decision will be guided by the two goals of
- preserving the free status of all derivatives of our free software and of
- promoting the sharing and reuse of software generally.
-
- NO WARRANTY
-
- 12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
- THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
- OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
- PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER
- EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
- ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
- SERVICING, REPAIR OR CORRECTION.
-
- 13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
- WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
- REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
- DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
- DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
- BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
- LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
- OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
- BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
-
- END OF TERMS AND CONDITIONS
-
-
- ΓòÉΓòÉΓòÉ 4.2. Appendix: How to Apply These Terms to Your New Programs ΓòÉΓòÉΓòÉ
-
- If you develop a new program, and you want it to be of the greatest possible
- use to the public, the best way to achieve this is to make it free software
- which everyone can redistribute and change under these terms.
-
- To do so, attach the following notices to the program. It is safest to attach
- them to the start of each source file to most effectively convey the exclusion
- of warranty; and each file should have at least the ``copyright'' line and a
- pointer to where the full notice is found.
-
- one line to give the program's name and a brief idea of what it does.
- Copyright (C) 19yy name of author
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- Also add information on how to contact you by electronic and paper mail.
-
- If the program is interactive, make it output a short notice like this when it
- starts in an interactive mode:
-
- Gnomovision version 69, Copyright (C) 19yy name of author
- Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
- The hypothetical commands `show w' and `show c' should show the appropriate
- parts of the General Public License. Of course, the commands you use may be
- called something other than `show w' and `show c'; they could even be
- mouse-clicks or menu items---whatever suits your program.
-
- You should also get your employer (if you work as a programmer) or your school,
- if any, to sign a ``copyright disclaimer'' for the program, if necessary. Here
- is a sample; alter the names:
-
- Yoyodyne, Inc., hereby disclaims all copyright interest in the program
- `Gnomovision' (which makes passes at compilers) written by James Hacker.
-
- signature of Ty Coon, 1 April 1989
- Ty Coon, President of Vice
-
- This General Public License does not permit incorporating your program into
- proprietary programs. If your program is a subroutine library, you may
- consider it more useful to permit linking proprietary applications with the
- library. If this is what you want to do, use the GNU Library General Public
- License instead of this License.
-
-
- ΓòÉΓòÉΓòÉ 5. A Brief Introduction to Octave ΓòÉΓòÉΓòÉ
-
- This manual documents how to run, install and port Octave's C++ classes, and
- how to report bugs.
-
-
- ΓòÉΓòÉΓòÉ 6. Arrays ΓòÉΓòÉΓòÉ
-
- Constructors and Assignment
-
-
- ΓòÉΓòÉΓòÉ 6.1. Constructors and Assignment ΓòÉΓòÉΓòÉ
-
- Constructor: Array<T>::Array (void)
- Create an array with no elements.
-
- Constructor: Array<T>::Array (int n [, const T &val])
- Create an array with n elements. If the optional argument val is supplied, the
- elements are initialized to val; otherwise, they are left uninitialized. If n
- is less than zero, the current error handler is invoked (see Error Handling).
-
- Constructor: Array<T>::Array (const Array<T> &a)
- Create a copy of the Array<T> object a. Memory for the Array<T> class is
- managed using a reference counting scheme, so the cost of this operation is
- independent of the size of the array.
-
- Operator: Array<T>& Array<T>::operator = (const Array<T> &a)
- Assignment operator. Memory for the Array<T> class is managed using a
- reference counting scheme, so the cost of this operation is independent of the
- size of the array.
-
- Method: int Array<T>::capacity (void) const
-
- Method: int Array<T>::length (void) const
- Return the length of the array.
-
- Method: T& Array<T>::elem (int n)
-
- Method: T& Array<T>::checkelem (int n)
-
- Method: T& Array<T>::operator () (int n)
- If n is within the bounds of the array, return a reference to the element
- indexed by n; otherwise, the current error handler is invoked (see Error
- Handling).
-
- Method: T Array<T>::elem (int n) const
-
- Method: T Array<T>::checkelem (int n) const
-
- Method: T Array<T>::operator () (int n) const
- If n is within the bounds of the array, return the value indexed by n;
- otherwise, call the current error handler. See Error Handling.
-
- Method: T& Array<T>::xelem (int n)
-
- Method: T Array<T>::xelem (int n) const
- Return a reference to, or the value of, the element indexed by n. These methods
- never perform bounds checking.
-
- Method: void Array<T>::resize (int n [, const T &val])
- Change the size of the array to be n elements. All elements are unchanged,
- except that if n is greater than the current size and the optional argument val
- is provided, the additional elements are initialized to val; otherwise, any
- additional elements are left uninitialized. In the current implementation, if
- n is less than the current size, the length is updated but no memory is
- released.
-
- Method: const T* Array<T>::data (void) const
-
- : Array2 (void)
-
- : Array2 (int n, int m)
-
- : Array2 (int n, int m, const T &val)
-
- : Array2 (const Array2<T> &a)
-
- : Array2 (const DiagArray<T> &a)
-
- : Array2<T>& operator = (const Array2<T> &a)
-
- : int dim1 (void) const
-
- : int rows (void) const
-
- : int dim2 (void) const
-
- : int cols (void) const
-
- : int columns (void) const
-
- : T& elem (int i, int j)
-
- : T& checkelem (int i, int j)
-
- : T& operator () (int i, int j)
-
- : void resize (int n, int m)
-
- : void resize (int n, int m, const T &val)
-
- : Array3 (void)
-
- : Array3 (int n, int m, int k)
-
- : Array3 (int n, int m, int k, const T &val)
-
- : Array3 (const Array3<T> &a)
-
- : Array3<T>& operator = (const Array3<T> &a)
-
- : int dim1 (void) const
-
- : int dim2 (void) const
-
- : int dim3 (void) const
-
- : T& elem (int i, int j, int k)
-
- : T& checkelem (int i, int j, int k)
-
- : T& operator () (int i, int j, int k)
-
- : void resize (int n, int m, int k)
-
- : void resize (int n, int m, int k, const T &val)
-
- : DiagArray (void)
-
- : DiagArray (int n)
-
- : DiagArray (int n, const T &val)
-
- : DiagArray (int r, int c)
-
- : DiagArray (int r, int c, const T &val)
-
- : DiagArray (const Array<T> &a)
-
- : DiagArray (const DiagArray<T> &a)
-
- : DiagArray<T>& operator = (const DiagArray<T> &a)
-
- : int dim1 (void) const
-
- : int rows (void) const
-
- : int dim2 (void) const
-
- : int cols (void) const
-
- : int columns (void) const
-
- : T& elem (int r, int c)
-
- : T& checkelem (int r, int c)
-
- : T& operator () (int r, int c)
-
- : void resize (int n, int m)
-
- : void resize (int n, int m, const T &val)
- The real and complex ColumnVector and RowVector classes all have the following
- functions. These will eventually be part of an MArray<T> class, derived from
- the Array<T> class. Then the ColumnVector and RowVector classes will be
- derived from the MArray<T> class.
-
- Element by element vector by scalar ops.
-
- : RowVector operator + (const RowVector &a, const double &s)
-
- : RowVector operator - (const RowVector &a, const double &s)
-
- : RowVector operator * (const RowVector &a, const double &s)
-
- : RowVector operator / (const RowVector &a, const double &s)
-
- Element by element scalar by vector ops.
-
- : RowVector operator + (const double &s, const RowVector &a)
-
- : RowVector operator - (const double &s, const RowVector &a)
-
- : RowVector operator * (const double &s, const RowVector &a)
-
- : RowVector operator / (const double &s, const RowVector &a)
-
- Element by element vector by vector ops.
-
- : RowVector operator + (const RowVector &a, const RowVector &b)
-
- : RowVector operator - (const RowVector &a, const RowVector &b)
-
- : RowVector product (const RowVector &a, const RowVector &b)
-
- : RowVector quotient (const RowVector &a, const RowVector &b)
-
- Unary MArray ops.
-
- : RowVector operator - (const RowVector &a)
-
- The Matrix classes share the following functions. These will eventually be
- part of an MArray2<T> class, derived from the Array2<T> class. Then the Matrix
- class will be derived from the MArray<T> class.
-
- Element by element matrix by scalar ops.
-
- : Matrix operator + (const Matrix &a, const double &s)
-
- : Matrix operator - (const Matrix &a, const double &s)
-
- : Matrix operator * (const Matrix &a, const double &s)
-
- : Matrix operator / (const Matrix &a, const double &s)
-
- Element by element scalar by matrix ops.
-
- : Matrix operator + (const double &s, const Matrix &a)
-
- : Matrix operator - (const double &s, const Matrix &a)
-
- : Matrix operator * (const double &s, const Matrix &a)
-
- : Matrix operator / (const double &s, const Matrix &a)
-
- Element by element matrix by matrix ops.
-
- : Matrix operator + (const Matrix &a, const Matrix &b)
-
- : Matrix operator - (const Matrix &a, const Matrix &b)
-
- : Matrix product (const Matrix &a, const Matrix &b)
-
- : Matrix quotient (const Matrix &a, const Matrix &b)
-
- Unary matrix ops.
-
- : Matrix operator - (const Matrix &a)
-
- The DiagMatrix classes share the following functions. These will eventually be
- part of an MDiagArray<T> class, derived from the DiagArray<T> class. Then the
- DiagMatrix class will be derived from the MDiagArray<T> class.
-
- Element by element MDiagArray by scalar ops.
-
- : DiagMatrix operator * (const DiagMatrix &a, const double &s)
-
- : DiagMatrix operator / (const DiagMatrix &a, const double &s)
-
- Element by element scalar by MDiagArray ops.
-
- : DiagMatrix operator * (const double &s, const DiagMatrix &a)
-
- Element by element MDiagArray by MDiagArray ops.
-
- : DiagMatrix operator + (const DiagMatrix &a, const DiagMatrix &b)
-
- : DiagMatrix operator - (const DiagMatrix &a, const DiagMatrix &b)
-
- : DiagMatrix product (const DiagMatrix &a, const DiagMatrix &b)
-
- Unary MDiagArray ops.
-
- : DiagMatrix operator - (const DiagMatrix &a)
-
-
- ΓòÉΓòÉΓòÉ 7. Matrix and Vector Operations ΓòÉΓòÉΓòÉ
-
- : Matrix (void)
-
- : Matrix (int r, int c)
-
- : Matrix (int r, int c, double val)
-
- : Matrix (const Array2<double> &a)
-
- : Matrix (const Matrix &a)
-
- : Matrix (const DiagArray<double> &a)
-
- : Matrix (const DiagMatrix &a)
-
- : Matrix& operator = (const Matrix &a)
-
- : int operator == (const Matrix &a) const
-
- : int operator != (const Matrix &a) const
-
- : Matrix& insert (const Matrix &a, int r, int c)
-
- : Matrix& insert (const RowVector &a, int r, int c)
-
- : Matrix& insert (const ColumnVector &a, int r, int c)
-
- : Matrix& insert (const DiagMatrix &a, int r, int c)
-
- : Matrix& fill (double val)
-
- : Matrix& fill (double val, int r1, int c1, int r2, int c2)
-
- : Matrix append (const Matrix &a) const
-
- : Matrix append (const RowVector &a) const
-
- : Matrix append (const ColumnVector &a) const
-
- : Matrix append (const DiagMatrix &a) const
-
- : Matrix stack (const Matrix &a) const
-
- : Matrix stack (const RowVector &a) const
-
- : Matrix stack (const ColumnVector &a) const
-
- : Matrix stack (const DiagMatrix &a) const
-
- : Matrix transpose (void) const
-
- : Matrix extract (int r1, int c1, int r2, int c2) const
-
- : RowVector row (int i) const
-
- : RowVector row (char *s) const
-
- : ColumnVector column (int i) const
-
- : ColumnVector column (char *s) const
-
- : Matrix inverse (void) const
-
- : Matrix inverse (int &info) const
-
- : Matrix inverse (int &info, double &rcond) const
-
- : ComplexMatrix fourier (void) const
-
- : ComplexMatrix ifourier (void) const
-
- : DET determinant (void) const
-
- : DET determinant (int &info) const
-
- : DET determinant (int &info, double &rcond) const
-
- : Matrix solve (const Matrix &b) const
-
- : Matrix solve (const Matrix &b, int &info) const
-
- : Matrix solve (const Matrix &b, int &info, double &rcond) const
-
- : ComplexMatrix solve (const ComplexMatrix &b) const
-
- : ComplexMatrix solve (const ComplexMatrix &b, int &info) const
-
- : ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond) const
-
- : ColumnVector solve (const ColumnVector &b) const
-
- : ColumnVector solve (const ColumnVector &b, int &info) const
-
- : ColumnVector solve (const ColumnVector &b, int &info, double &rcond) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b, int &info) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b, int &info, double
- &rcond) const
-
- : Matrix lssolve (const Matrix &b) const
-
- : Matrix lssolve (const Matrix &b, int &info) const
-
- : Matrix lssolve (const Matrix &b, int &info, int &rank) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank) const
-
- : ColumnVector lssolve (const ColumnVector &b) const
-
- : ColumnVector lssolve (const ColumnVector &b, int &info) const
-
- : ColumnVector lssolve (const ColumnVector &b, int &info, int &rank) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info, int
- &rank) const
-
- : Matrix& operator += (const Matrix &a)
-
- : Matrix& operator -= (const Matrix &a)
-
- : Matrix& operator += (const DiagMatrix &a)
-
- : Matrix& operator -= (const DiagMatrix &a)
-
- : Matrix operator ! (void) const
-
- : ComplexMatrix operator + (const Matrix &a, const Complex &s)
-
- : ComplexMatrix operator - (const Matrix &a, const Complex &s)
-
- : ComplexMatrix operator * (const Matrix &a, const Complex &s)
-
- : ComplexMatrix operator / (const Matrix &a, const Complex &s)
-
- : ComplexMatrix operator + (const Complex &s, const Matrix &a)
-
- : ComplexMatrix operator - (const Complex &s, const Matrix &a)
-
- : ComplexMatrix operator * (const Complex &s, const Matrix &a)
-
- : ComplexMatrix operator / (const Complex &s, const Matrix &a)
-
- : ColumnVector operator * (const Matrix &a, const ColumnVector &b)
-
- : ComplexColumnVector operator * (const Matrix &a, const ComplexColumnVector
- &b)
-
- : Matrix operator + (const Matrix &a, const DiagMatrix &b)
-
- : Matrix operator - (const Matrix &a, const DiagMatrix &b)
-
- : Matrix operator * (const Matrix &a, const DiagMatrix &b)
-
- : ComplexMatrix operator + (const Matrix &a, const ComplexDiagMatrix &b)
-
- : ComplexMatrix operator - (const Matrix &a, const ComplexDiagMatrix &b)
-
- : ComplexMatrix operator * (const Matrix &a, const ComplexDiagMatrix &b)
-
- : Matrix operator * (const Matrix &a, const Matrix &b)
-
- : ComplexMatrix operator * (const Matrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator + (const Matrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator - (const Matrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix product (const Matrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix quotient (const Matrix &a, const ComplexMatrix &b)
-
- : Matrix map (d_d_Mapper f, const Matrix &a)
-
- : void map (d_d_Mapper f)
-
- : Matrix all (void) const
-
- : Matrix any (void) const
-
- : Matrix cumprod (void) const
-
- : Matrix cumsum (void) const
-
- : Matrix prod (void) const
-
- : Matrix sum (void) const
-
- : Matrix sumsq (void) const
-
- : ColumnVector diag (void) const
-
- : ColumnVector diag (int k) const
-
- : ColumnVector row_min (void) const
-
- : ColumnVector row_min_loc (void) const
-
- : ColumnVector row_max (void) const
-
- : ColumnVector row_max_loc (void) const
-
- : RowVector column_min (void) const
-
- : RowVector column_min_loc (void) const
-
- : RowVector column_max (void) const
-
- : RowVector column_max_loc (void) const
-
- : ostream& operator << (ostream &os, const Matrix &a)
-
- : istream& operator >> (istream &is, Matrix &a)
-
- : ColumnVector (void)
-
- : ColumnVector (int n)
-
- : ColumnVector (int n, double val)
-
- : ColumnVector (const Array<double> &a)
-
- : ColumnVector (const ColumnVector &a)
-
- : ColumnVector& operator = (const ColumnVector &a)
-
- : int operator == (const ColumnVector &a) const
-
- : int operator != (const ColumnVector &a) const
-
- : ColumnVector& insert (const ColumnVector &a, int r)
-
- : ColumnVector& fill (double val)
-
- : ColumnVector& fill (double val, int r1, int r2)
-
- : ColumnVector stack (const ColumnVector &a) const
-
- : RowVector transpose (void) const
-
- : ColumnVector extract (int r1, int r2) const
-
- : ColumnVector& operator += (const ColumnVector &a)
-
- : ColumnVector& operator -= (const ColumnVector &a)
-
- : ComplexColumnVector operator + (const ColumnVector &a, const Complex &s)
-
- : ComplexColumnVector operator - (const ColumnVector &a, const Complex &s)
-
- : ComplexColumnVector operator * (const ColumnVector &a, const Complex &s)
-
- : ComplexColumnVector operator / (const ColumnVector &a, const Complex &s)
-
- : ComplexColumnVector operator + (const Complex &s, const ColumnVector &a)
-
- : ComplexColumnVector operator - (const Complex &s, const ColumnVector &a)
-
- : ComplexColumnVector operator * (const Complex &s, const ColumnVector &a)
-
- : ComplexColumnVector operator / (const Complex &s, const ColumnVector &a)
-
- : Matrix operator * (const ColumnVector &a, const RowVector &a)
-
- : ComplexMatrix operator * (const ColumnVector &a, const ComplexRowVector &b)
-
- : ComplexColumnVector operator + (const ComplexColumnVector &a, const
- ComplexColumnVector &b)
-
- : ComplexColumnVector operator - (const ComplexColumnVector &a, const
- ComplexColumnVector &b)
-
- : ComplexColumnVector product (const ComplexColumnVector &a, const
- ComplexColumnVector &b)
-
- : ComplexColumnVector quotient (const ComplexColumnVector &a, const
- ComplexColumnVector &b)
-
- : ColumnVector map (d_d_Mapper f, const ColumnVector &a)
-
- : void map (d_d_Mapper f)
-
- : double min (void) const
-
- : double max (void) const
-
- : ostream& operator << (ostream &os, const ColumnVector &a)
-
- : RowVector (void)
-
- : RowVector (int n)
-
- : RowVector (int n, double val)
-
- : RowVector (const Array<double> &a)
-
- : RowVector (const RowVector &a)
-
- : RowVector& operator = (const RowVector &a)
-
- : int operator == (const RowVector &a) const
-
- : int operator != (const RowVector &a) const
-
- : RowVector& insert (const RowVector &a, int c)
-
- : RowVector& fill (double val)
-
- : RowVector& fill (double val, int c1, int c2)
-
- : RowVector append (const RowVector &a) const
-
- : ColumnVector transpose (void) const
-
- : RowVector extract (int c1, int c2) const
-
- : RowVector& operator += (const RowVector &a)
-
- : RowVector& operator -= (const RowVector &a)
-
- : ComplexRowVector operator + (const RowVector &a, const Complex &s)
-
- : ComplexRowVector operator - (const RowVector &a, const Complex &s)
-
- : ComplexRowVector operator * (const RowVector &a, const Complex &s)
-
- : ComplexRowVector operator / (const RowVector &a, const Complex &s)
-
- : ComplexRowVector operator + (const Complex &s, const RowVector &a)
-
- : ComplexRowVector operator - (const Complex &s, const RowVector &a)
-
- : ComplexRowVector operator * (const Complex &s, const RowVector &a)
-
- : ComplexRowVector operator / (const Complex &s, const RowVector &a)
-
- : double operator * (const RowVector &a, ColumnVector &b)
-
- : Complex operator * (const RowVector &a, const ComplexColumnVector &b)
-
- : RowVector operator * (const RowVector &a, const Matrix &b)
-
- : ComplexRowVector operator * (const RowVector &a, const ComplexMatrix &b)
-
- : ComplexRowVector operator + (const RowVector &a, const ComplexRowVector &b)
-
- : ComplexRowVector operator - (const RowVector &a, const ComplexRowVector &b)
-
- : ComplexRowVector product (const RowVector &a, const ComplexRowVector &b)
-
- : ComplexRowVector quotient (const RowVector &a, const ComplexRowVector &b)
-
- : RowVector map (d_d_Mapper f, const RowVector &a)
-
- : void map (d_d_Mapper f)
-
- : double min (void) const
-
- : double max (void) const
-
- : ostream& operator << (ostream &os, const RowVector &a)
-
- : DiagMatrix (void)
-
- : DiagMatrix (int n)
-
- : DiagMatrix (int n, double val)
-
- : DiagMatrix (int r, int c)
-
- : DiagMatrix (int r, int c, double val)
-
- : DiagMatrix (const RowVector &a)
-
- : DiagMatrix (const ColumnVector &a)
-
- : DiagMatrix (const DiagArray<double> &a)
-
- : DiagMatrix (const DiagMatrix &a)
-
- : DiagMatrix& operator = (const DiagMatrix &a)
-
- : int operator == (const DiagMatrix &a) const
-
- : int operator != (const DiagMatrix &a) const
-
- : DiagMatrix& fill (double val)
-
- : DiagMatrix& fill (double val, int beg, int end)
-
- : DiagMatrix& fill (const ColumnVector &a)
-
- : DiagMatrix& fill (const RowVector &a)
-
- : DiagMatrix& fill (const ColumnVector &a, int beg)
-
- : DiagMatrix& fill (const RowVector &a, int beg)
-
- : DiagMatrix transpose (void) const
-
- : Matrix extract (int r1, int c1, int r2, int c2) const
-
- : RowVector row (int i) const
-
- : RowVector row (char *s) const
-
- : ColumnVector column (int i) const
-
- : ColumnVector column (char *s) const
-
- : DiagMatrix inverse (void) const
-
- : DiagMatrix inverse (int &info) const
-
- : DiagMatrix& operator += (const DiagMatrix &a)
-
- : DiagMatrix& operator -= (const DiagMatrix &a)
-
- : Matrix operator + (const DiagMatrix &a, double s)
-
- : Matrix operator - (const DiagMatrix &a, double s)
-
- : ComplexMatrix operator + (const DiagMatrix &a, const Complex &s)
-
- : ComplexMatrix operator - (const DiagMatrix &a, const Complex &s)
-
- : ComplexDiagMatrix operator * (const DiagMatrix &a, const Complex &s)
-
- : ComplexDiagMatrix operator / (const DiagMatrix &a, const Complex &s)
-
- : Matrix operator + (double s, const DiagMatrix &a)
-
- : Matrix operator - (double s, const DiagMatrix &a)
-
- : ComplexMatrix operator + (const Complex &s, const DiagMatrix &a)
-
- : ComplexMatrix operator - (const Complex &s, const DiagMatrix &a)
-
- : ComplexDiagMatrix operator * (const Complex &s, const DiagMatrix &a)
-
- : ColumnVector operator * (const DiagMatrix &a, const ColumnVector &b)
-
- : ComplexColumnVector operator * (const DiagMatrix &a, const
- ComplexColumnVector &b)
-
- : ComplexDiagMatrix operator + (const DiagMatrix &a, const ComplexDiagMatrix
- &b)
-
- : ComplexDiagMatrix operator - (const DiagMatrix &a, const ComplexDiagMatrix
- &b)
-
- : ComplexDiagMatrix product (const DiagMatrix &a, const ComplexDiagMatrix &b)
-
- : Matrix operator + (const DiagMatrix &a, const Matrix &b)
-
- : Matrix operator - (const DiagMatrix &a, const Matrix &b)
-
- : Matrix operator * (const DiagMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator + (const DiagMatrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator - (const DiagMatrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator * (const DiagMatrix &a, const ComplexMatrix &b)
-
- : ColumnVector diag (void) const
-
- : ColumnVector diag (int k) const
-
- : ostream& operator << (ostream &os, const DiagMatrix &a)
-
- : ComplexMatrix (void)
-
- : ComplexMatrix (int r, int c)
-
- : ComplexMatrix (int r, int c, const Complex &val)
-
- : ComplexMatrix (const Matrix &a)
-
- : ComplexMatrix (const Array2<Complex> &a)
-
- : ComplexMatrix (const ComplexMatrix &a)
-
- : ComplexMatrix (const DiagMatrix &a)
-
- : ComplexMatrix (const DiagArray<Complex> &a)
-
- : ComplexMatrix (const ComplexDiagMatrix &a)
-
- : ComplexMatrix& operator = (const ComplexMatrix &a)
-
- : int operator == (const ComplexMatrix &a) const
-
- : int operator != (const ComplexMatrix &a) const
-
- : ComplexMatrix& insert (const Matrix &a, int r, int c)
-
- : ComplexMatrix& insert (const RowVector &a, int r, int c)
-
- : ComplexMatrix& insert (const ColumnVector &a, int r, int c)
-
- : ComplexMatrix& insert (const DiagMatrix &a, int r, int c)
-
- : ComplexMatrix& insert (const ComplexMatrix &a, int r, int c)
-
- : ComplexMatrix& insert (const ComplexRowVector &a, int r, int c)
-
- : ComplexMatrix& insert (const ComplexColumnVector &a, int r, int c)
-
- : ComplexMatrix& insert (const ComplexDiagMatrix &a, int r, int c)
-
- : ComplexMatrix& fill (double val)
-
- : ComplexMatrix& fill (const Complex &val)
-
- : ComplexMatrix& fill (double val, int r1, int c1, int r2, int c2)
-
- : ComplexMatrix& fill (const Complex &val, int r1, int c1, int r2, int c2)
-
- : ComplexMatrix append (const Matrix &a) const
-
- : ComplexMatrix append (const RowVector &a) const
-
- : ComplexMatrix append (const ColumnVector &a) const
-
- : ComplexMatrix append (const DiagMatrix &a) const
-
- : ComplexMatrix append (const ComplexMatrix &a) const
-
- : ComplexMatrix append (const ComplexRowVector &a) const
-
- : ComplexMatrix append (const ComplexColumnVector &a) const
-
- : ComplexMatrix append (const ComplexDiagMatrix &a) const
-
- : ComplexMatrix stack (const Matrix &a) const
-
- : ComplexMatrix stack (const RowVector &a) const
-
- : ComplexMatrix stack (const ColumnVector &a) const
-
- : ComplexMatrix stack (const DiagMatrix &a) const
-
- : ComplexMatrix stack (const ComplexMatrix &a) const
-
- : ComplexMatrix stack (const ComplexRowVector &a) const
-
- : ComplexMatrix stack (const ComplexColumnVector &a) const
-
- : ComplexMatrix stack (const ComplexDiagMatrix &a) const
-
- : ComplexMatrix transpose (void) const
-
- : Matrix real (const ComplexMatrix &a)
-
- : Matrix imag (const ComplexMatrix &a)
-
- : ComplexMatrix conj (const ComplexMatrix &a)
-
- : ComplexMatrix extract (int r1, int c1, int r2, int c2) const
-
- : ComplexRowVector row (int i) const
-
- : ComplexRowVector row (char *s) const
-
- : ComplexColumnVector column (int i) const
-
- : ComplexColumnVector column (char *s) const
-
- : ComplexMatrix inverse (void) const
-
- : ComplexMatrix inverse (int &info) const
-
- : ComplexMatrix inverse (int &info, double &rcond) const
-
- : ComplexMatrix fourier (void) const
-
- : ComplexMatrix ifourier (void) const
-
- : ComplexDET determinant (void) const
-
- : ComplexDET determinant (int &info) const
-
- : ComplexDET determinant (int &info, double &rcond) const
-
- : ComplexMatrix solve (const Matrix &b) const
-
- : ComplexMatrix solve (const Matrix &b, int &info) const
-
- : ComplexMatrix solve (const Matrix &b, int &info, double &rcond) const
-
- : ComplexMatrix solve (const ComplexMatrix &b) const
-
- : ComplexMatrix solve (const ComplexMatrix &b, int &info) const
-
- : ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b, int &info) const
-
- : ComplexColumnVector solve (const ComplexColumnVector &b, int &info, double
- &rcond) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const
-
- : ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info) const
-
- : ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info, int
- &rank) const
-
- : ComplexMatrix& operator += (const DiagMatrix &a)
-
- : ComplexMatrix& operator -= (const DiagMatrix &a)
-
- : ComplexMatrix& operator += (const ComplexDiagMatrix &a)
-
- : ComplexMatrix& operator -= (const ComplexDiagMatrix &a)
-
- : ComplexMatrix& operator += (const Matrix &a)
-
- : ComplexMatrix& operator -= (const Matrix &a)
-
- : ComplexMatrix& operator += (const ComplexMatrix &a)
-
- : ComplexMatrix& operator -= (const ComplexMatrix &a)
-
- : Matrix operator ! (void) const
-
- : ComplexMatrix operator + (const ComplexMatrix &a, double s)
-
- : ComplexMatrix operator - (const ComplexMatrix &a, double s)
-
- : ComplexMatrix operator * (const ComplexMatrix &a, double s)
-
- : ComplexMatrix operator / (const ComplexMatrix &a, double s)
-
- : ComplexMatrix operator + (double s, const ComplexMatrix &a)
-
- : ComplexMatrix operator - (double s, const ComplexMatrix &a)
-
- : ComplexMatrix operator * (double s, const ComplexMatrix &a)
-
- : ComplexMatrix operator / (double s, const ComplexMatrix &a)
-
- : ComplexColumnVector operator * (const ComplexMatrix &a, const ColumnVector
- &b)
-
- : ComplexColumnVector operator * (const ComplexMatrix &a, const
- ComplexColumnVector &b)
-
- : ComplexMatrix operator + (const ComplexMatrix &a, const DiagMatrix &b)
-
- : ComplexMatrix operator - (const ComplexMatrix &a, const DiagMatrix &b)
-
- : ComplexMatrix operator * (const ComplexMatrix &a, const DiagMatrix &b)
-
- : ComplexMatrix operator + (const ComplexMatrix &a, const ComplexDiagMatrix &b)
-
- : ComplexMatrix operator - (const ComplexMatrix &a, const ComplexDiagMatrix &b)
-
- : ComplexMatrix operator * (const ComplexMatrix &a, const ComplexDiagMatrix &b)
-
- : ComplexMatrix operator + (const ComplexMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator - (const ComplexMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator * (const ComplexMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator * (const ComplexMatrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix product (const ComplexMatrix &a, const Matrix &b)
-
- : ComplexMatrix quotient (const ComplexMatrix &a, const Matrix &b)
-
- : ComplexMatrix map (c_c_Mapper f, const ComplexMatrix &a)
-
- : Matrix map (d_c_Mapper f, const ComplexMatrix &a)
-
- : void map (c_c_Mapper f)
-
- : Matrix all (void) const
-
- : Matrix any (void) const
-
- : ComplexMatrix cumprod (void) const
-
- : ComplexMatrix cumsum (void) const
-
- : ComplexMatrix prod (void) const
-
- : ComplexMatrix sum (void) const
-
- : ComplexMatrix sumsq (void) const
-
- : ComplexColumnVector diag (void) const
-
- : ComplexColumnVector diag (int k) const
-
- : ComplexColumnVector row_min (void) const
-
- : ComplexColumnVector row_min_loc (void) const
-
- : ComplexColumnVector row_max (void) const
-
- : ComplexColumnVector row_max_loc (void) const
-
- : ComplexRowVector column_min (void) const
-
- : ComplexRowVector column_min_loc (void) const
-
- : ComplexRowVector column_max (void) const
-
- : ComplexRowVector column_max_loc (void) const
-
- : ostream& operator << (ostream &os, const ComplexMatrix &a)
-
- : istream& operator >> (istream &is, ComplexMatrix &a)
-
- : ComplexColumnVector (void)
-
- : ComplexColumnVector (int n)
-
- : ComplexColumnVector (int n, const Complex &val)
-
- : ComplexColumnVector (const ColumnVector &a)
-
- : ComplexColumnVector (const Array<Complex> &a)
-
- : ComplexColumnVector (const ComplexColumnVector &a)
-
- : ComplexColumnVector& operator = (const ComplexColumnVector &a)
-
- : int operator == (const ComplexColumnVector &a) const
-
- : int operator != (const ComplexColumnVector &a) const
-
- : ComplexColumnVector& insert (const ColumnVector &a, int r)
-
- : ComplexColumnVector& insert (const ComplexColumnVector &a, int r)
-
- : ComplexColumnVector& fill (double val)
-
- : ComplexColumnVector& fill (const Complex &val)
-
- : ComplexColumnVector& fill (double val, int r1, int r2)
-
- : ComplexColumnVector& fill (const Complex &val, int r1, int r2)
-
- : ComplexColumnVector stack (const ColumnVector &a) const
-
- : ComplexColumnVector stack (const ComplexColumnVector &a) const
-
- : ComplexRowVector transpose (void) const
-
- : ColumnVector real (const ComplexColumnVector &a)
-
- : ColumnVector imag (const ComplexColumnVector &a)
-
- : ComplexColumnVector conj (const ComplexColumnVector &a)
-
- : ComplexColumnVector extract (int r1, int r2) const
-
- : ComplexColumnVector& operator += (const ColumnVector &a)
-
- : ComplexColumnVector& operator -= (const ColumnVector &a)
-
- : ComplexColumnVector& operator += (const ComplexColumnVector &a)
-
- : ComplexColumnVector& operator -= (const ComplexColumnVector &a)
-
- : ComplexColumnVector operator + (const ComplexColumnVector &a, double s)
-
- : ComplexColumnVector operator - (const ComplexColumnVector &a, double s)
-
- : ComplexColumnVector operator * (const ComplexColumnVector &a, double s)
-
- : ComplexColumnVector operator / (const ComplexColumnVector &a, double s)
-
- : ComplexColumnVector operator + (double s, const ComplexColumnVector &a)
-
- : ComplexColumnVector operator - (double s, const ComplexColumnVector &a)
-
- : ComplexColumnVector operator * (double s, const ComplexColumnVector &a)
-
- : ComplexColumnVector operator / (double s, const ComplexColumnVector &a)
-
- : ComplexMatrix operator * (const ComplexColumnVector &a, const
- ComplexRowVector &b)
-
- : ComplexColumnVector operator + (const ComplexColumnVector &a, const
- ColumnVector &b)
-
- : ComplexColumnVector operator - (const ComplexColumnVector &a, const
- ColumnVector &b)
-
- : ComplexColumnVector product (const ComplexColumnVector &a, const ColumnVector
- &b)
-
- : ComplexColumnVector quotient (const ComplexColumnVector &a, const
- ColumnVector &b)
-
- : ComplexColumnVector map (c_c_Mapper f, const ComplexColumnVector &a)
-
- : ColumnVector map (d_c_Mapper f, const ComplexColumnVector &a)
-
- : void map (c_c_Mapper f)
-
- : Complex min (void) const
-
- : Complex max (void) const
-
- : ostream& operator << (ostream &os, const ComplexColumnVector &a)
-
- : ComplexRowVector (void)
-
- : ComplexRowVector (int n)
-
- : ComplexRowVector (int n, const Complex &val)
-
- : ComplexRowVector (const RowVector &a)
-
- : ComplexRowVector (const Array<Complex> &a)
-
- : ComplexRowVector (const ComplexRowVector &a)
-
- : ComplexRowVector& operator = (const ComplexRowVector &a)
-
- : int operator == (const ComplexRowVector &a) const
-
- : int operator != (const ComplexRowVector &a) const
-
- : ComplexRowVector& insert (const RowVector &a, int c)
-
- : ComplexRowVector& insert (const ComplexRowVector &a, int c)
-
- : ComplexRowVector& fill (double val)
-
- : ComplexRowVector& fill (const Complex &val)
-
- : ComplexRowVector& fill (double val, int c1, int c2)
-
- : ComplexRowVector& fill (const Complex &val, int c1, int c2)
-
- : ComplexRowVector append (const RowVector &a) const
-
- : ComplexRowVector append (const ComplexRowVector &a) const
-
- : ComplexColumnVector transpose (void) const
-
- : RowVector real (const ComplexRowVector &a)
-
- : RowVector imag (const ComplexRowVector &a)
-
- : ComplexRowVector conj (const ComplexRowVector &a)
-
- : ComplexRowVector extract (int c1, int c2) const
-
- : ComplexRowVector& operator += (const RowVector &a)
-
- : ComplexRowVector& operator -= (const RowVector &a)
-
- : ComplexRowVector& operator += (const ComplexRowVector &a)
-
- : ComplexRowVector& operator -= (const ComplexRowVector &a)
-
- : ComplexRowVector operator + (const ComplexRowVector &a, double s)
-
- : ComplexRowVector operator - (const ComplexRowVector &a, double s)
-
- : ComplexRowVector operator * (const ComplexRowVector &a, double s)
-
- : ComplexRowVector operator / (const ComplexRowVector &a, double s)
-
- : ComplexRowVector operator + (double s, const ComplexRowVector &a)
-
- : ComplexRowVector operator - (double s, const ComplexRowVector &a)
-
- : ComplexRowVector operator * (double s, const ComplexRowVector &a)
-
- : ComplexRowVector operator / (double s, const ComplexRowVector &a)
-
- : Complex operator * (const ComplexRowVector &a, const ColumnVector &b)
-
- : Complex operator * (const ComplexRowVector &a, const ComplexColumnVector &b)
-
- : ComplexRowVector operator * (const ComplexRowVector &a, const ComplexMatrix
- &b)
-
- : ComplexRowVector operator + (const ComplexRowVector &a, const RowVector &b)
-
- : ComplexRowVector operator - (const ComplexRowVector &a, const RowVector &b)
-
- : ComplexRowVector product (const ComplexRowVector &a, const RowVector &b)
-
- : ComplexRowVector quotient (const ComplexRowVector &a, const RowVector &b)
-
- : ComplexRowVector map (c_c_Mapper f, const ComplexRowVector &a)
-
- : RowVector map (d_c_Mapper f, const ComplexRowVector &a)
-
- : void map (c_c_Mapper f)
-
- : Complex min (void) const
-
- : Complex max (void) const
-
- : ostream& operator << (ostream &os, const ComplexRowVector &a)
-
- : ComplexDiagMatrix (void)
-
- : ComplexDiagMatrix (int n)
-
- : ComplexDiagMatrix (int n, const Complex &val)
-
- : ComplexDiagMatrix (int r, int c)
-
- : ComplexDiagMatrix (int r, int c, const Complex &val)
-
- : ComplexDiagMatrix (const RowVector &a)
-
- : ComplexDiagMatrix (const ComplexRowVector &a)
-
- : ComplexDiagMatrix (const ColumnVector &a)
-
- : ComplexDiagMatrix (const ComplexColumnVector &a)
-
- : ComplexDiagMatrix (const DiagMatrix &a)
-
- : ComplexDiagMatrix (const DiagArray<Complex> &a)
-
- : ComplexDiagMatrix (const ComplexDiagMatrix &a)
-
- : ComplexDiagMatrix& operator = (const ComplexDiagMatrix &a)
-
- : int operator == (const ComplexDiagMatrix &a) const
-
- : int operator != (const ComplexDiagMatrix &a) const
-
- : ComplexDiagMatrix& fill (double val)
-
- : ComplexDiagMatrix& fill (const Complex &val)
-
- : ComplexDiagMatrix& fill (double val, int beg, int end)
-
- : ComplexDiagMatrix& fill (const Complex &val, int beg, int end)
-
- : ComplexDiagMatrix& fill (const ColumnVector &a)
-
- : ComplexDiagMatrix& fill (const ComplexColumnVector &a)
-
- : ComplexDiagMatrix& fill (const RowVector &a)
-
- : ComplexDiagMatrix& fill (const ComplexRowVector &a)
-
- : ComplexDiagMatrix& fill (const ColumnVector &a, int beg)
-
- : ComplexDiagMatrix& fill (const ComplexColumnVector &a, int beg)
-
- : ComplexDiagMatrix& fill (const RowVector &a, int beg)
-
- : ComplexDiagMatrix& fill (const ComplexRowVector &a, int beg)
-
- : ComplexDiagMatrix transpose (void) const
-
- : DiagMatrix real (const ComplexDiagMatrix &a)
-
- : DiagMatrix imag (const ComplexDiagMatrix &a)
-
- : ComplexDiagMatrix conj (const ComplexDiagMatrix &a)
-
- : ComplexMatrix extract (int r1, int c1, int r2, int c2) const
-
- : ComplexRowVector row (int i) const
-
- : ComplexRowVector row (char *s) const
-
- : ComplexColumnVector column (int i) const
-
- : ComplexColumnVector column (char *s) const
-
- : ComplexDiagMatrix inverse (int &info) const
-
- : ComplexDiagMatrix inverse (void) const
-
- : ComplexDiagMatrix& operator += (const DiagMatrix &a)
-
- : ComplexDiagMatrix& operator -= (const DiagMatrix &a)
-
- : ComplexDiagMatrix& operator += (const ComplexDiagMatrix &a)
-
- : ComplexDiagMatrix& operator -= (const ComplexDiagMatrix &a)
-
- : ComplexMatrix operator + (const ComplexDiagMatrix &a, double s)
-
- : ComplexMatrix operator - (const ComplexDiagMatrix &a, double s)
-
- : ComplexMatrix operator + (const ComplexDiagMatrix &a, const Complex &s)
-
- : ComplexMatrix operator - (const ComplexDiagMatrix &a, const Complex &s)
-
- : ComplexDiagMatrix operator * (const ComplexDiagMatrix &a, double s)
-
- : ComplexDiagMatrix operator / (const ComplexDiagMatrix &a, double s)
-
- : ComplexMatrix operator + (double s, const ComplexDiagMatrix &a)
-
- : ComplexMatrix operator - (double s, const ComplexDiagMatrix &a)
-
- : ComplexMatrix operator + (const Complex &s, const ComplexDiagMatrix &a)
-
- : ComplexMatrix operator - (const Complex &s, const ComplexDiagMatrix &a)
-
- : ComplexDiagMatrix operator * (double s, const ComplexDiagMatrix &a)
-
- : ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
- ColumnVector &b)
-
- : ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
- ComplexColumnVector &b)
-
- : ComplexDiagMatrix operator + (const ComplexDiagMatrix &a, const DiagMatrix
- &b)
-
- : ComplexDiagMatrix operator - (const ComplexDiagMatrix &a, const DiagMatrix
- &b)
-
- : ComplexDiagMatrix product (const ComplexDiagMatrix &a, const DiagMatrix &b)
-
- : ComplexMatrix operator + (const ComplexDiagMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator - (const ComplexDiagMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator * (const ComplexDiagMatrix &a, const Matrix &b)
-
- : ComplexMatrix operator + (const ComplexDiagMatrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator - (const ComplexDiagMatrix &a, const ComplexMatrix &b)
-
- : ComplexMatrix operator * (const ComplexDiagMatrix &a, const ComplexMatrix &b)
-
- : ComplexColumnVector diag (void) const
-
- : ComplexColumnVector diag (int k) const
-
- : ostream& operator << (ostream &os, const ComplexDiagMatrix &a)
-
-
- ΓòÉΓòÉΓòÉ 8. Matrix Factorizations ΓòÉΓòÉΓòÉ
-
- : AEPBALANCE (void)
-
- : AEPBALANCE (const Matrix &a, const char *balance_job)
-
- : AEPBALANCE (const AEPBALANCE &a)
-
- : AEPBALANCE& operator = (const AEPBALANCE &a)
-
- : Matrix balanced_matrix (void) const
-
- : Matrix balancing_matrix (void) const
-
- : ostream& operator << (ostream &os, const AEPBALANCE &a)
-
- : ComplexAEPBALANCE (void)
-
- : ComplexAEPBALANCE (const ComplexMatrix &a, const char *balance_job)
-
- : ComplexAEPBALANCE (const ComplexAEPBALANCE &a)
-
- : ComplexAEPBALANCE& operator = (const ComplexAEPBALANCE &a)
-
- : ComplexMatrix balanced_matrix (void) const
-
- : ComplexMatrix balancing_matrix (void) const
-
- : ostream& operator << (ostream &os, const ComplexAEPBALANCE &a)
-
- : DET (void)
-
- : DET (const DET &a)
-
- : DET& operator = (const DET &a)
-
- : int value_will_overflow (void) const
-
- : int value_will_underflow (void) const
-
- : double coefficient (void) const
-
- : int exponent (void) const
-
- : double value (void) const
-
- : ostream& operator << (ostream &os, const DET &a)
-
- : ComplexDET (void)
-
- : ComplexDET (const ComplexDET &a)
-
- : ComplexDET& operator = (const ComplexDET &a)
-
- : int value_will_overflow (void) const
-
- : int value_will_underflow (void) const
-
- : Complex coefficient (void) const
-
- : int exponent (void) const
-
- : Complex value (void) const
-
- : ostream& operator << (ostream &os, const ComplexDET &a)
-
- : GEPBALANCE (void)
-
- : GEPBALANCE (const Matrix &a, const Matrix &, const char *balance_job)
-
- : GEPBALANCE (const GEPBALANCE &a)
-
- : GEPBALANCE& operator = (const GEPBALANCE &a)
-
- : Matrix balanced_a_matrix (void) const
-
- : Matrix balanced_b_matrix (void) const
-
- : Matrix left_balancing_matrix (void) const
-
- : Matrix right_balancing_matrix (void) const
-
- : ostream& operator << (ostream &os, const GEPBALANCE &a)
-
- : CHOL (void)
-
- : CHOL (const Matrix &a)
-
- : CHOL (const Matrix &a, int &info)
-
- : CHOL (const CHOL &a)
-
- : CHOL& operator = (const CHOL &a)
-
- : Matrix chol_matrix (void) const
-
- : ostream& operator << (ostream &os, const CHOL &a)
-
- : ComplexCHOL (void)
-
- : ComplexCHOL (const ComplexMatrix &a)
-
- : ComplexCHOL (const ComplexMatrix &a, int &info)
-
- : ComplexCHOL (const ComplexCHOL &a)
-
- : ComplexCHOL& operator = (const ComplexCHOL &a)
-
- : ComplexMatrix chol_matrix (void) const
-
- : ostream& operator << (ostream &os, const ComplexCHOL &a)
-
- : HESS (void)
-
- : HESS (const Matrix &a)
-
- : HESS (const Matrix&a, int &info)
-
- : HESS (const HESS &a)
-
- : HESS& operator = (const HESS &a)
-
- : Matrix hess_matrix (void) const
-
- : Matrix unitary_hess_matrix (void) const
-
- : ostream& operator << (ostream &os, const HESS &a)
-
- : ComplexHESS (void)
-
- : ComplexHESS (const ComplexMatrix &a)
-
- : ComplexHESS (const ComplexMatrix &a, int &info)
-
- : ComplexHESS (const ComplexHESS &a)
-
- : ComplexHESS& operator = (const ComplexHESS &a)
-
- : ComplexMatrix hess_matrix (void) const
-
- : ComplexMatrix unitary_hess_matrix (void) const
-
- : ostream& operator << (ostream &os, const ComplexHESS &a)
-
- : SCHUR (void)
-
- : SCHUR (const Matrix &a, const char *ord)
-
- : SCHUR (const Matrix &a, const char *ord, int &info)
-
- : SCHUR (const SCHUR &a, const char *ord)
-
- : SCHUR& operator = (const SCHUR &a)
-
- : Matrix schur_matrix (void) const
-
- : Matrix unitary_matrix (void) const
-
- : ostream& operator << (ostream &os, const SCHUR &a)
-
- : ComplexSCHUR (void)
-
- : ComplexSCHUR (const ComplexMatrix &a, const char *ord)
-
- : ComplexSCHUR (const ComplexMatrix &a, const char *ord, int &info)
-
- : ComplexSCHUR (const ComplexSCHUR &a, const char *ord)
-
- : ComplexSCHUR& operator = (const ComplexSCHUR &a)
-
- : ComplexMatrix schur_matrix (void) const
-
- : ComplexMatrix unitary_matrix (void) const
-
- : ostream& operator << (ostream &os, const ComplexSCHUR &a)
-
- : SVD (void)
-
- : SVD (const Matrix &a)
-
- : SVD (const Matrix &a, int &info)
-
- : SVD (const SVD &a)
-
- : SVD& operator = (const SVD &a)
-
- : DiagMatrix singular_values (void) const
-
- : Matrix left_singular_matrix (void) const
-
- : Matrix right_singular_matrix (void) const
-
- : ostream& operator << (ostream &os, const SVD &a)
-
- : ComplexSVD (void)
-
- : ComplexSVD (const ComplexMatrix &a)
-
- : ComplexSVD (const ComplexMatrix &a, int &info)
-
- : ComplexSVD (const ComplexSVD &a)
-
- : ComplexSVD& operator = (const ComplexSVD &a)
-
- : DiagMatrix singular_values (void) const
-
- : ComplexMatrix left_singular_matrix (void) const
-
- : ComplexMatrix right_singular_matrix (void) const
-
- : ostream& operator << (ostream &os, const ComplexSVD &a)
-
- : EIG (void)
-
- : EIG (const Matrix &a)
-
- : EIG (const Matrix &a, int &info)
-
- : EIG (const ComplexMatrix &a)
-
- : EIG (const ComplexMatrix &a, int &info)
-
- : EIG (const EIG &a)
-
- : EIG& operator = (const EIG &a)
-
- : ComplexColumnVector eigenvalues (void) const
-
- : ComplexMatrix eigenvectors (void) const
-
- : ostream& operator << (ostream &os, const EIG &a)
-
- : LU (void)
-
- : LU (const Matrix &a)
-
- : LU (const LU &a)
-
- : LU& operator = (const LU &a)
-
- : Matrix L (void) const
-
- : Matrix U (void) const
-
- : Matrix P (void) const
-
- : ostream& operator << (ostream &os, const LU &a)
-
- : ComplexLU (void)
-
- : ComplexLU (const ComplexMatrix &a)
-
- : ComplexLU (const ComplexLU &a)
-
- : ComplexLU& operator = (const ComplexLU &a)
-
- : ComplexMatrix L (void) const
-
- : ComplexMatrix U (void) const
-
- : Matrix P (void) const
-
- : ostream& operator << (ostream &os, const ComplexLU &a)
-
- : QR (void)
-
- : QR (const Matrix &A)
-
- : QR (const QR &a)
-
- : QR& operator = (const QR &a)
-
- : Matrix Q (void) const
-
- : Matrix R (void) const
-
- : ostream& operator << (ostream &os, const QR &a)
-
- : ComplexQR (void)
-
- : ComplexQR (const ComplexMatrix &A)
-
- : ComplexQR (const ComplexQR &a)
-
- : ComplexQR& operator = (const ComplexQR &a)
-
- : ComplexMatrix Q (void) const
-
- : ComplexMatrix R (void) const
-
- : ostream& operator << (ostream &os, const ComplexQR &a)
-
-
- ΓòÉΓòÉΓòÉ 9. Ranges ΓòÉΓòÉΓòÉ
-
- : Range (void)
-
- : Range (const Range &r)
-
- : Range (double b, double l)
-
- : Range (double b, double l, double i)
-
- : double base (void) const
-
- : double limit (void) const
-
- : double inc (void) const
-
- : void set_base (double b)
-
- : void set_limit (double l)
-
- : void set_inc (double i)
-
- : int nelem (void) const
-
- : double min (void) const
-
- : double max (void) const
-
- : void sort (void)
-
- : ostream& operator << (ostream &os, const Range &r)
-
- : istream& operator >> (istream &is, Range &r)
-
- : void print_range (void)
-
-
- ΓòÉΓòÉΓòÉ 10. Nonlinear Functions ΓòÉΓòÉΓòÉ
-
- : NLFunc (void)
-
- : NLFunc (const nonlinear_fcn)
-
- : NLFunc (const nonlinear_fcn, const jacobian_fcn)
-
- : NLFunc (const NLFunc &a)
-
- : NLFunc& operator = (const NLFunc &a)
-
- : nonlinear_fcn function (void) const;
-
- : NLFunc& set_function (const nonlinear_fcn f)
-
- : jacobian_fcn jacobian_function (void) const;
-
- : NLFunc& set_jacobian_function (const jacobian_fcn j)
-
-
- ΓòÉΓòÉΓòÉ 11. Nonlinear Equations ΓòÉΓòÉΓòÉ
-
- : NLEqn_options (void)
-
- : NLEqn_options (const NLEqn_options &opt)
-
- : NLEqn_options& operator = (const NLEqn_options &opt)
-
- : void init (void)
-
- : void copy (const NLEqn_options &opt)
-
- : void set_default_options (void)
-
- : void set_tolerance (double val)
-
- : double tolerance (void)
-
- : NLEqn (void)
-
- : NLEqn (const ColumnVector&, const NLFunc)
-
- : NLEqn (const NLEqn &a)
-
- : NLEqn& operator = (const NLEqn &a)
-
- : void resize (int n)
-
- : void set_states (const ColumnVector &x)
-
- : ColumnVector states (void) const
-
- : int size (void) const
-
- : ColumnVector solve (void)
-
- : ColumnVector solve (const ColumnVector &x)
-
- : ColumnVector solve (int &info)
-
- : ColumnVector solve (const ColumnVector &x, int &info)
-
-
- ΓòÉΓòÉΓòÉ 12. Optimization ΓòÉΓòÉΓòÉ
-
- Objective Functions
- Bounds
- Linear Constraints
- Nonlinear Constraints
- Quadratic Programming
- Nonlinear Programming
-
-
- ΓòÉΓòÉΓòÉ 12.1. Objective Functions ΓòÉΓòÉΓòÉ
-
- : Objective (void)
-
- : Objective (const objective_fcn)
-
- : Objective (const objective_fcn, const gradient_fcn)
-
- : Objective (const Objective &a)
-
- : Objective& operator = (const Objective &a)
-
- : objective_fcn objective_function (void) const;
-
- : Objective& set_objective_function (const objective_fcn)
-
- : gradient_fcn gradient_function (void) const;
-
- : Objective& set_gradient_function (const gradient_fcn)
-
-
- ΓòÉΓòÉΓòÉ 12.2. Bounds ΓòÉΓòÉΓòÉ
-
- : Bounds (void)
-
- : Bounds (int n)
-
- : Bounds (const ColumnVector lb, const ColumnVector ub)
-
- : Bounds (const Bounds &a)
-
- : Bounds& operator = (const Bounds &a)
-
- : Bounds& resize (int n)
-
- : double lower_bound (int index) const;
-
- : double upper_bound (int index) const;
-
- : ColumnVector lower_bounds (void) const;
-
- : ColumnVector upper_bounds (void) const;
-
- : int size (void) const;
-
- : Bounds& set_bound (int index, double low, double high)
-
- : Bounds& set_bounds (double low, double high)
-
- : Bounds& set_bounds (const ColumnVector lb, const ColumnVector ub)
-
- : Bounds& set_lower_bound (int index, double low)
-
- : Bounds& set_upper_bound (int index, double high)
-
- : Bounds& set_lower_bounds (double low)
-
- : Bounds& set_upper_bounds (double high)
-
- : Bounds& set_lower_bounds (const ColumnVector lb)
-
- : Bounds& set_upper_bounds (const ColumnVector ub)
-
- : ostream& operator << (ostream &os, const Bounds &b)
-
-
- ΓòÉΓòÉΓòÉ 12.3. Linear Constraints ΓòÉΓòÉΓòÉ
-
- : LinConst (void)
-
- : LinConst (int nclin, int nx)
-
- : LinConst (int nclin_eq, int nclin_ineq, int nx)
-
- : LinConst (const ColumnVector &lb, const Matrix &A, const ColumnVector &ub)
-
- : LinConst (const Matrix &A_eq, const ColumnVector &b_eq, const Matrix &A_ineq,
- const ColumnVector &b_ineq)
-
- : LinConst (const LinConst &a)
-
- : LinConst& operator = (const LinConst &a)
-
- : LinConst& resize (int nclin, int n)
-
- : Matrix constraint_matrix (void) const;
-
- : LinConst& set_constraint_matrix (const Matrix &A)
-
- : Matrix eq_constraint_matrix (void) const;
-
- : Matrix ineq_constraint_matrix (void) const;
-
- : ColumnVector eq_constraint_vector (void) const;
-
- : ColumnVector ineq_constraint_vector (void) const;
-
- : ostream& operator << (ostream &os, const LinConst &b)
-
-
- ΓòÉΓòÉΓòÉ 12.4. Nonlinear Constraints ΓòÉΓòÉΓòÉ
-
- : NLConst (void)
-
- : NLConst (int n)
-
- : NLConst (const ColumnVector lb, const NLFunc f, const ColumnVector ub)
-
- : NLConst (const NLConst &a)
-
- : NLConst& operator = (const NLConst &a)
-
-
- ΓòÉΓòÉΓòÉ 12.5. Quadratic Programming ΓòÉΓòÉΓòÉ
-
- : QP (void)
-
- : QP (const ColumnVector &x, const Matrix &H)
-
- : QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c)
-
- : QP (const ColumnVector &x, const Matrix &H, const Bounds &b)
-
- : QP (const ColumnVector &x, const Matrix &H, const LinConst &lc)
-
- : QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
- Bounds &b)
-
- : QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
- LinConst &lc)
-
- : QP (const ColumnVector &x, const Matrix &H, const Bounds &b, const LinConst
- &lc)
-
- : QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
- Bounds &b, const LinConst &lc)
-
- : virtual ColumnVector minimize (void)
-
- : virtual ColumnVector minimize (double &objf)
-
- : virtual ColumnVector minimize (double &objf, int &inform)
-
- : virtual ColumnVector minimize (double &objf, int &inform, ColumnVector
- &lambda) = 0;
-
- : virtual ColumnVector minimize (const ColumnVector &x)
-
- : virtual ColumnVector minimize (const ColumnVector &x, double &objf)
-
- : virtual ColumnVector minimize (const ColumnVector &x, double &objf, int
- &inform)
-
- : virtual ColumnVector minimize (const ColumnVector &x, double &objf, int
- &inform, ColumnVector &lambda)
-
- : ColumnVector minimize (double &objf, int &inform, ColumnVector &lambda)
-
-
- ΓòÉΓòÉΓòÉ 12.6. Nonlinear Programming ΓòÉΓòÉΓòÉ
-
- : NLP (void)
-
- : NLP (const ColumnVector &x, const Objective &phi)
-
- : NLP (const ColumnVector &x, const Objective &phi, const Bounds &b)
-
- : NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
- LinConst &lc)
-
- : NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
- LinConst &lc, const NLConst &nlc)
-
- : NLP (const ColumnVector &x, const Objective &phi, const LinConst &lc)
-
- : NLP (const ColumnVector &x, const Objective &phi, const LinConst &lc, const
- NLConst &nlc)
-
- : NLP (const ColumnVector &x, const Objective &phi, const NLConst &nlc)
-
- : NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
- NLConst &nlc)
-
- : NLP& operator = (const NLP &a)
-
- : int size (void) const
-
- : ColumnVector minimize (void)
-
- : ColumnVector minimize (double &objf)
-
- : ColumnVector minimize (double &objf, int &inform)
-
- : ColumnVector minimize (double &objf, int &inform, ColumnVector &lambda)
-
- : ColumnVector minimize (const ColumnVector &x)
-
- : ColumnVector minimize (const ColumnVector &x, double &objf)
-
- : ColumnVector minimize (const ColumnVector &x, double &objf, int &inform)
-
- : ColumnVector minimize (const ColumnVector &x, double &objf, int &inform,
- ColumnVector &lambda)
-
-
- ΓòÉΓòÉΓòÉ 13. Quadrature ΓòÉΓòÉΓòÉ
-
- : Quad (integrand_fcn fcn)
-
- : Quad (integrand_fcn fcn, double abs, double rel)
-
- : virtual double integrate (void)
-
- : virtual double integrate (int &ier)
-
- : virtual double integrate (int &ier, int &neval)
-
- : virtual double integrate (int &ier, int &neval, double &abserr) = 0
-
- : Quad_options (void)
-
- : Quad_options (const Quad_options &opt)
-
- : Quad_options& operator = (const Quad_options &opt)
-
- : void init (void)
-
- : void copy (const Quad_options &opt)
-
- : void set_default_options (void)
-
- : void set_absolute_tolerance (double val)
-
- : void set_relative_tolerance (double val)
-
- : double absolute_tolerance (void)
-
- : double relative_tolerance (void)
-
- : DefQuad (integrand_fcn fcn)
-
- : DefQuad (integrand_fcn fcn, double ll, double ul)
-
- : DefQuad (integrand_fcn fcn, double ll, double ul, double abs, double rel)
-
- : DefQuad (integrand_fcn fcn, double ll, double ul, const ColumnVector &sing)
-
- : DefQuad (integrand_fcn fcn, const ColumnVector &sing, double abs, double rel)
-
- : DefQuad (integrand_fcn fcn, const ColumnVector &sing)
-
- : DefQuad (integrand_fcn fcn, double ll, double ul, const ColumnVector &sing,
- double abs, double rel)
-
- : IndefQuad (integrand_fcn fcn)
-
- : IndefQuad (integrand_fcn fcn, double b, IntegralType t)
-
- : IndefQuad (integrand_fcn fcn, double b, IntegralType t, double abs, double
- rel)
-
- : IndefQuad (integrand_fcn fcn, double abs, double rel)
-
- Collocation Weights
-
-
- ΓòÉΓòÉΓòÉ 13.1. Collocation Weights ΓòÉΓòÉΓòÉ
-
- : CollocWt (void)
-
- : CollocWt (int n, int inc_l, int inc_r)
-
- : CollocWt (int n, int inc_l, int inc_r, double l, double r)
-
- : CollocWt (int n, double a, double b, int inc_l, int inc_r)
-
- : CollocWt (int n, int inc_l, int inc_r, double l, double r)
-
- : CollocWt (const CollocWt&)
-
- : CollocWt& operator = (const CollocWt&)
-
- : CollocWt& resize (int ncol)
-
- : CollocWt& add_left (void)
-
- : CollocWt& add_right (void)
-
- : CollocWt& delete_left (void)
-
- : CollocWt& delete_right (void)
-
- : CollocWt& set_left (double val)
-
- : CollocWt& set_right (double val)
-
- : CollocWt& set_alpha (double val)
-
- : CollocWt& set_beta (double val)
-
- : int ncol (void) const
-
- : int left_included (void) const
-
- : int right_included (void) const
-
- : double left (void) const
-
- : double right (void) const
-
- : double width (void) const
-
- : double alpha (void) const
-
- : double beta (void) const
-
- : ColumnVector roots (void)
-
- : ColumnVector quad (void)
-
- : ColumnVector quad_weights (void)
-
- : Matrix first (void)
-
- : Matrix second (void)
-
- : ostream& operator << (ostream &os, const CollocWt &c)
-
-
- ΓòÉΓòÉΓòÉ 14. Ordinary Differential Equations ΓòÉΓòÉΓòÉ
-
- : ODE_options (void)
-
- : ODE_options (const ODE_options &opt)
-
- : ODE_options& operator = (const ODE_options &opt)
-
- : void init (void)
-
- : void copy (const ODE_options &opt)
-
- : void set_default_options (void)
-
- : void set_absolute_tolerance (double val)
-
- : void set_initial_step_size (double val)
-
- : void set_maximum_step_size (double val)
-
- : void set_minimum_step_size (double val)
-
- : void set_relative_tolerance (double val)
-
- : double absolute_tolerance (void)
-
- : double initial_step_size (void)
-
- : double maximum_step_size (void)
-
- : double minimum_step_size (void)
-
- : double relative_tolerance (void)
-
- : ODE (void)
-
- : ODE (int n)
-
- : ODE (const ColumnVector &state, double time, const ODEFunc &f)
-
- : virtual int size (void) const
-
- : virtual ColumnVector state (void) const
-
- : virtual double time (void) const
-
- : virtual void force_restart (void)
-
- : virtual void initialize (const ColumnVector &x, double t)
-
- : virtual void set_stop_time (double t)
-
- : virtual void clear_stop_time (void)
-
- : virtual ColumnVector integrate (double t)
-
- : void integrate (int nsteps, double tstep, ostream &s)
-
- : Matrix integrate (const ColumnVector &tout)
-
- : Matrix integrate (const ColumnVector &tout, const ColumnVector &tcrit)
-
-
- ΓòÉΓòÉΓòÉ 15. Differential Algebraic Equations ΓòÉΓòÉΓòÉ
-
- : DAE (void)
-
- : DAE (int n)
-
- : DAE (const ColumnVector &x, double time, DAEFunc &f)
-
- : DAE (const ColumnVector &x, ColumnVector &xdot, double time, DAEFunc &f)
-
- : ColumnVector deriv (void)
-
- : virtual void initialize (const ColumnVector &x, double t)
-
- : virtual void initialize (const ColumnVector &x, ColumnVector &xdot, double t)
-
- : ColumnVector integrate (double t)
-
- : Matrix integrate (const ColumnVector &tout, Matrix &xdot_out)
-
- : Matrix integrate (const ColumnVector &tout, Matrix &xdot_out, const
- ColumnVector &tcrit)
-
-
- ΓòÉΓòÉΓòÉ 16. Error Handling ΓòÉΓòÉΓòÉ
-
-
- ΓòÉΓòÉΓòÉ 17. Installation ΓòÉΓòÉΓòÉ
-
-
- ΓòÉΓòÉΓòÉ 18. Bugs ΓòÉΓòÉΓòÉ
-
-
- ΓòÉΓòÉΓòÉ 19. Concept Index ΓòÉΓòÉΓòÉ
-
- Sorry, no cp index
-
-
- ΓòÉΓòÉΓòÉ 20. Function Index ΓòÉΓòÉΓòÉ
-
- Sorry, no fn index