home *** CD-ROM | disk | FTP | other *** search
- # Copyright (C) 1996,1998 A. Scottedward Hodel
- #
- # This file is part of Octave.
- #
- # Octave is free software; you can redistribute it and/or modify it
- # under the terms of the GNU General Public License as published by the
- # Free Software Foundation; either version 2, or (at your option) any
- # later version.
- #
- # Octave is distributed in the hope that it will be useful, but WITHOUT
- # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- # for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with Octave; see the file COPYING. If not, write to the Free
- # Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-
- function x = zgscal(a,b,c,d,z,n,m,p)
- # x = zgscal(f,z,n,m,p) generalized conjugate gradient iteration to
- # solve zero-computation generalized eigenvalue problem balancing equation
- # fx=z
- # called by zgepbal
- #
- # References:
- # ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA
- # Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989
-
- # A. S. Hodel July 24 1992
- # Conversion to Octave R. Bruce Tenison July 3, 1994
-
-
- #**************************************************************************
- #initialize parameters:
- # Givens rotations, diagonalized 2x2 block of F, gcg vector initialization
- #**************************************************************************
- nmp = n+m+p;
-
- #x_0 = x_{-1} = 0, r_0 = z
- x = zeros(nmp,1);
- xk1 = x;
- xk2 = x;
- rk1 = z;
- k = 0;
-
- # construct balancing least squares problem
- F = eye(nmp);
- for kk=1:nmp
- F(1:nmp,kk) = zgfmul(a,b,c,d,F(:,kk));
- endfor
-
- [U,H,k1] = krylov(F,z,nmp,1e-12);
- if(!is_square(H))
- if(columns(H) != k1)
- error("zgscal(tzero): k1=%d, columns(H)=%d",k1,columns(H));
- elseif(rows(H) != k1+1)
- error("zgscal: k1=%d, rows(H) = %d",k1,rows(H));
- elseif ( norm(H(k1+1,:)) > 1e-12*norm(H,"inf") )
- zgscal_last_row_of_H = H(k1+1,:)
- error("zgscal: last row of H nonzero (norm(H)=%e)",norm(H,"inf"))
- endif
- H = H(1:k1,1:k1);
- U = U(:,1:k1);
- endif
-
- # tridiagonal H can still be rank deficient, so do permuted qr
- # factorization
- [qq,rr,pp] = qr(H); # H = qq*rr*pp'
- nn = rank(rr);
- qq = qq(:,1:nn);
- rr = rr(1:nn,:); # rr may not be square, but "\" does least
- xx = U*pp*(rr\qq'*(U'*z)); # squares solution, so this works
- #xx1 = pinv(F)*z;
- #zgscal_x_xx1_err = [xx,xx1,xx-xx1]
- return;
-
- # the rest of this is left from the original zgscal;
- # I've had some numerical problems with the GCG algorithm,
- # so for now I'm solving it with the krylov routine.
-
- #initialize residual error norm
- rnorm = norm(rk1,1);
-
- xnorm = 0;
- fnorm = 1e-12 * norm([a,b;c,d],1);
-
- # dummy defines for MATHTOOLS compiler
- gamk2 = 0; omega1 = 0; ztmz2 = 0;
-
- #do until small changes to x
- len_x = length(x);
- while ((k < 2*len_x) & (xnorm> 0.5) & (rnorm>fnorm))|(k == 0)
- k = k+1;
-
- # solve F_d z_{k-1} = r_{k-1}
- zk1= zgfslv(n,m,p,rk1);
-
- # Generalized CG iteration
- # gamk1 = (zk1'*F_d*zk1)/(zk1'*F*zk1);
- ztMz1 = zk1'*rk1;
- gamk1 = ztMz1/(zk1'*zgfmul(a,b,c,d,zk1));
-
- if(rem(k,len_x) == 1) omega = 1;
- else omega = 1/(1-gamk1*ztMz1/(gamk2*omega1*ztmz2));
- endif
-
- # store x in xk2 to save space
- xk2 = xk2 + omega*(gamk1*zk1 + xk1 - xk2);
-
- # compute new residual error: rk = z - F xk, check end conditions
- rk1 = z - zgfmul(a,b,c,d,xk2);
- rnorm = norm(rk1);
- xnorm = max(abs(xk1 - xk2));
-
- #printf("zgscal: k=%d, gamk1=%e, gamk2=%e, \nztMz1=%e ztmz2=%e\n", ...
- # k,gamk1, gamk2, ztMz1, ztmz2);
- # xk2_1_zk1 = [xk2 xk1 zk1]
- # ABCD = [a,b;c,d]
- # prompt
-
- # get ready for next iteration
- gamk2 = gamk1;
- omega1 = omega;
- ztmz2 = ztMz1;
- [xk1,xk2] = swap(xk1,xk2);
- endwhile
- x = xk2;
-
- # check convergence
- if (xnorm> 0.5 & rnorm>fnorm)
- warning("zgscal(tzero): GCG iteration failed; solving with pinv");
-
- # perform brute force least squares; construct F
- Am = eye(nmp);
- for ii=1:nmp
- Am(:,ii) = zgfmul(a,b,c,d,Am(:,ii));
- endfor
-
- # now solve with qr factorization
- x = pinv(Am)*z;
- endif
- endfunction
-