home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21eb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
rlocus.m
< prev
next >
Wrap
Text File
|
1999-04-29
|
7KB
|
199 lines
# Copyright (C) 1996 A. Scottedward Hodel
#
# This file is part of Octave.
#
# Octave is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Octave is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with Octave; see the file COPYING. If not, write to the Free
# Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
function [rldata,k_break,rlpol,gvec,real_ax_pts] = rlocus(sys,increment,min_k,max_k)
# [rldata,k_break,rlpol,gvec,real_ax_pts] = rlocus(sys,increment,min_k,max_k)
# Displays root locus plot of the specified SISO system.
#
# ----- --- --------
# --->| + |---|k|---->| SISO |----------->
# ----- --- -------- |
# - ^ |
# |_____________________________|
#
#inputs: sys = system data structure
# min_k, max_k,increment: minimum, maximum values of k and
# the increment used in computing gain values
# outputs: plots the root locus to the screen.
# rldata: Data points plotted column 1: real values, column 2: imaginary
# values)
# k_break: gains for real axis break points.
# rlpol: complex vector: column ii of pol is the set of poles
# corresponding to to gain gvec(ii)
# gvec: gains used to compute root locus
# real_ax_pts: breakpoints of the real axis locus.
# Convert the input to a transfer function if necessary
# Written by Clem and Tenison
# Updated by Kristi McGowan July 1996 for intelligent gain selection
# Updated by John Ingram July 1996 for systems
if (nargin < 1) | (nargin > 4)
usage("rlocus(sys[,inc,mink,maxk])");
endif
[num,den] = sys2tf(sys); # extract numerator/denom polyomials
lnum = length(num); lden = length(den);
if(lden < 2)
error(sprintf("length of derivative=%d, doesn't make sense",lden));
elseif(lnum == 1)
num = [0, num]; # so that derivative is shortened by one
endif
# root locus plot axis limits
# compute real axis locus breakpoints
# compute the derivative of the numerator and the denominator
dern=polyderv(num); derd=polyderv(den);
# compute real axis breakpoints
real_ax_pol = conv(den,dern) - conv(num,derd);
real_ax_pts = roots(real_ax_pol);
if(isempty(real_ax_pts))
k_break = [];
maxk = 0;
else
# compute gains that achieve the breakpoints
c1 = polyval(num,real_ax_pts);
c2 = polyval(den,real_ax_pts);
k_break = -real(c2 ./ c1);
maxk = max(max(k_break,0));
endif
# compute gain ranges based on computed K values
if(maxk == 0) maxk = 1;
else maxk = 1.1*maxk; endif
mink = 0;
ngain = 20;
# check for input arguments:
if (nargin > 2) mink = min_k; endif
if (nargin > 3) maxk = max_k; endif
if (nargin > 1)
if(increment <= 0) error("increment must be positive");
else
ngain = (maxk-mink)/increment;
endif
endif
# vector of gains
ngain = max(3,ngain);
gvec = linspace(mink,maxk,ngain);
# Find the open loop zeros and the initial poles
rlzer = roots(num);
# update num to be the same length as den
lnum = length(num); if(lnum < lden) num = [zeros(1,lden - lnum),num]; endif
# compute preliminary pole sets
nroots = lden-1;
for ii=1:ngain
gain = gvec(ii);
rlpol(1:nroots,ii) = vec(sortcom(roots(den + gain*num)));
endfor
# compute axis limits (isolate asymptotes)
olpol = roots(den);
real_axdat = union(real(rlzer), real(union(olpol,real_ax_pts)) );
rmin = min(real_axdat); rmax = max(real_axdat);
rlpolv = [vec(rlpol); vec(real_axdat)];
idx = find(real(rlpolv) >= rmin & real(rlpolv) <= rmax);
axlim = ax2dlim([real(rlpolv(idx)),imag(rlpolv(idx))]);
xmin = axlim(1);
xmax = axlim(2);
# set smoothing tolerance per axis limits
smtol = 0.01*max(abs(axlim));
# smooth poles if necessary, up to maximum of 1000 gain points
# only smooth points within the axis limit window
# smoothing done if max_k not specified as a command argument
done=(nargin == 4); # perform a smoothness check
while((!done) & ngain < 1000)
done = 1 ; # assume done
dp = abs(diff(rlpol'))';
maxd = max(dp);
# search for poles in the real axis limits whose neighbors are distant
idx = find(maxd > smtol);
for ii=1:length(idx)
i1 = idx(ii); g1 = gvec(i1); p1 = rlpol(:,i1);
i2 = idx(ii)+1; g2 = gvec(i2); p2 = rlpol(:,i2);
# isolate poles in p1, p2 that are inside the real axis limits
bidx = find( (real(p1) >= xmin & real(p1) <= xmax) ...
| (real(p2) >= xmin & real(p2) <= xmax) );
if(!isempty(bidx))
p1 = p1(bidx);
p2 = p2(bidx);
if( max(abs(p2-p1)) > smtol)
newg = linspace(g1,g2,5);
newg = newg(2:4);
if(isempty(newg))
printf("rlocus: empty newg")
g1
g2
i1
i2
idx_i1 = idx(ii)
gvec_i1 = gvec(i1:i2)
delta_vec_i1 = diff(gvec(i1:i2))
prompt
endif
gvec = [gvec,newg];
done = 0; # need to process new gains
endif
endif
endfor
# process new gain values
ngain1 = length(gvec);
for ii=(ngain+1):ngain1
gain = gvec(ii);
rlpol(1:nroots,ii) = vec(sortcom(roots(den + gain*num)));
endfor
[gvec,idx] = sort(gvec);
rlpol = rlpol(:,idx);
ngain = length(gvec);
endwhile
# Plot the data
if(nargout == 0)
rlpolv = vec(rlpol);
idx = find(real(rlpolv) >= xmin & real(rlpolv) <= xmax);
axdata = [real(rlpolv(idx)),imag(rlpolv(idx))];
axlim = ax2dlim(axdata);
axlim(1:2) = [xmin, xmax];
gset nologscale xy;
grid("on");
rldata = [real(rlpolv), imag(rlpolv) ];
axis(axlim);
[stn,inname,outname] = sysgetsg(sys);
xlabel(sprintf("Root locus from %s to %s, gain=[%f,%f]: Real axis", ...
nth(inname,1),nth(outname,1),gvec(1),gvec(ngain)));
ylabel("Imag. axis");
plot(real(rlpolv),imag(rlpolv),".1;locus points;", ...
real(olpol),imag(olpol),"x2;open loop poles;", ...
real(rlzer),imag(rlzer),"o3;zeros;");
rldata = [];
endif
endfunction