home *** CD-ROM | disk | FTP | other *** search
/ OS/2 Shareware BBS: 10 Tools / 10-Tools.zip / nasmos2.zip / INTERNAL.DOC < prev    next >
Text File  |  1997-04-05  |  11KB  |  281 lines

  1. Internals of the Netwide Assembler
  2. ==================================
  3.  
  4. The Netwide Assembler is intended to be a modular, re-usable x86
  5. assembler, which can be embedded in other programs, for example as
  6. the back end to a compiler.
  7.  
  8. The assembler is composed of modules. The interfaces between them
  9. look like:
  10.  
  11.           +--- preproc.c ----+
  12.           |             |
  13.           +---- parser.c ----+
  14.           |       |         |
  15.           |     float.c      |
  16.           |             |
  17.           +--- assemble.c ---+
  18.     nasm.c ---+        |         +--- nasmlib.c
  19.           |     insnsa.c     |
  20.           |             |
  21.           +---- labels.c ----+
  22.           |             |
  23.           +--- outform.c ----+
  24.           |             |
  25.           +----- *out.c -----+
  26.  
  27. In other words, each of `preproc.c', `parser.c', `assemble.c',
  28. `labels.c', `outform.c' and each of the output format modules
  29. `*out.c' are independent modules, which do not inter-communicate
  30. except through the main program.
  31.  
  32. The Netwide *Disassembler* is not intended to be particularly
  33. portable or reusable or anything, however. So I won't bother
  34. documenting it here. :-)
  35.  
  36. nasmlib.c
  37. ---------
  38.  
  39. This is a library module; it contains simple library routines which
  40. may be referenced by all other modules. Among these are a set of
  41. wrappers around the standard `malloc' routines, which will report a
  42. fatal error if they run out of memory, rather than returning NULL.
  43.  
  44. preproc.c
  45. ---------
  46.  
  47. This contains a macro preprocessor, which takes a file name as input
  48. and returns a sequence of preprocessed source lines. The only symbol
  49. exported from the module is `nasmpp', which is a data structure of
  50. type `Preproc', declared in nasm.h. This structure contains pointers
  51. to all the functions designed to be callable from outside the
  52. module.
  53.  
  54. parser.c
  55. --------
  56.  
  57. This contains a source-line parser. It parses `canonical' assembly
  58. source lines, containing some combination of the `label', `opcode',
  59. `operand' and `comment' fields: it does not process directives or
  60. macros. It exports two functions: `parse_line' and `cleanup_insn'.
  61.  
  62. `parse_line' is the main parser function: you pass it a source line
  63. in ASCII text form, and it returns you an `insn' structure
  64. containing all the details of the instruction on that line. The
  65. parameters it requires are:
  66.  
  67. - The location (segment, offset) where the instruction on this line
  68.   will eventually be placed. This is necessary in order to evaluate
  69.   expressions containing the Here token, `$'.
  70.  
  71. - A function which can be called to retrieve the value of any
  72.   symbols the source line references.
  73.  
  74. - Which pass the assembler is on: an undefined symbol only causes an
  75.   error condition on pass two.
  76.  
  77. - The source line to be parsed.
  78.  
  79. - A structure to fill with the results of the parse.
  80.  
  81. - A function which can be called to report errors.
  82.  
  83. Some instructions (DB, DW, DD for example) can require an arbitrary
  84. amount of storage, and so some of the members of the resulting
  85. `insn' structure will be dynamically allocated. The other function
  86. exported by `parser.c' is `cleanup_insn', which can be called to
  87. deallocate any dynamic storage associated with the results of a
  88. parse.
  89.  
  90. names.c
  91. -------
  92.  
  93. This doesn't count as a module - it defines a few arrays which are
  94. shared between NASM and NDISASM, so it's a separate file which is
  95. #included by both parser.c and disasm.c.
  96.  
  97. float.c
  98. -------
  99.  
  100. This is essentially a library module: it exports one function,
  101. `float_const', which converts an ASCII representation of a
  102. floating-point number into an x86-compatible binary representation,
  103. without using any built-in floating-point arithmetic (so it will run
  104. on any platform, portably). It calls nothing, and is called only by
  105. `parser.c'. Note that the function `float_const' must be passed an
  106. error reporting routine.
  107.  
  108. assemble.c
  109. ----------
  110.  
  111. This module contains the code generator: it translates `insn'
  112. structures as returned from the parser module into actual generated
  113. code which can be placed in an output file. It exports two
  114. functions, `assemble' and `insn_size'.
  115.  
  116. `insn_size' is designed to be called on pass one of assembly: it
  117. takes an `insn' structure as input, and returns the amount of space
  118. that would be taken up if the instruction described in the structure
  119. were to be converted to real machine code. `insn_size' also requires
  120. to be told the location (as a segment/offset pair) where the
  121. instruction would be assembled, the mode of assembly (16/32 bit
  122. default), and a function it can call to report errors.
  123.  
  124. `assemble' is designed to be called on pass two: it takes all the
  125. parameters that `insn_size' does, but has an extra parameter which
  126. is an output driver. `assemble' actually converts the input
  127. instruction into machine code, and outputs the machine code by means
  128. of calling the `output' function of the driver.
  129.  
  130. insnsa.c
  131. --------
  132.  
  133. This is another library module: it exports one very big array of
  134. instruction translations. It has to be a separate module so that DOS
  135. compilers, with less memory to spare than typical Unix ones, can
  136. cope with it.
  137.  
  138. labels.c
  139. --------
  140.  
  141. This module contains a label manager. It exports six functions:
  142.  
  143. `init_labels' should be called before any other function in the
  144. module. `cleanup_labels' may be called after all other use of the
  145. module has finished, to deallocate storage.
  146.  
  147. `define_label' is called to define new labels: you pass it the name
  148. of the label to be defined, and the (segment,offset) pair giving the
  149. value of the label. It is also passed an error-reporting function,
  150. and an output driver structure (so that it can call the output
  151. driver's label-definition function). `define_label' mentally
  152. prepends the name of the most recently defined non-local label to
  153. any label beginning with a period.
  154.  
  155. `define_label_stub' is designed to be called in pass two, once all
  156. the labels have already been defined: it does nothing except to
  157. update the "most-recently-defined-non-local-label" status, so that
  158. references to local labels in pass two will work correctly.
  159.  
  160. `declare_as_global' is used to declare that a label should be
  161. global. It must be called _before_ the label in question is defined.
  162.  
  163. Finally, `lookup_label' attempts to translate a label name into a
  164. (segment,offset) pair. It returns non-zero on success.
  165.  
  166. The label manager module is (theoretically :) restartable: after
  167. calling `cleanup_labels', you can call `init_labels' again, and
  168. start a new assembly with a new set of symbols.
  169.  
  170. outform.c
  171. ---------
  172.  
  173. This small module contains a set of routines to manage a list of
  174. output formats, and select one given a keyword. It contains three
  175. small routines: `ofmt_register' which registers an output driver as
  176. part of the managed list, `ofmt_list' which lists the available
  177. drivers on stdout, and `ofmt_find' which tries to find the driver
  178. corresponding to a given name.
  179.  
  180. The output modules
  181. ------------------
  182.  
  183. Each of the output modules, `outbin.o', `outelf.o' and so on,
  184. exports only one symbol, which is an output driver data structure
  185. containing pointers to all the functions needed to produce output
  186. files of the appropriate type.
  187.  
  188. The exception to this is `outcoff.o', which exports _two_ output
  189. driver structures, since COFF and Win32 object file formats are very
  190. similar and most of the code is shared between them.
  191.  
  192. nasm.c
  193. ------
  194.  
  195. This is the main program: it calls all the functions in the above
  196. modules, and puts them together to form a working assembler. We
  197. hope. :-)
  198.  
  199. Segment Mechanism
  200. -----------------
  201.  
  202. In NASM, the term `segment' is used to separate the different
  203. sections/segments/groups of which an object file is composed.
  204. Essentially, every address NASM is capable of understanding is
  205. expressed as an offset from the beginning of some segment.
  206.  
  207. The defining property of a segment is that if two symbols are
  208. declared in the same segment, then the distance between them is
  209. fixed at assembly time. Hence every externally-declared variable
  210. must be declared in its own segment, since none of the locations of
  211. these are known, and so no distances may be computed at assembly
  212. time.
  213.  
  214. The special segment value NO_SEG (-1) is used to denote an absolute
  215. value, e.g. a constant whose value does not depend on relocation,
  216. such as the _size_ of a data object.
  217.  
  218. Apart from NO_SEG, segment indices all have their least significant
  219. bit clear, if they refer to actual in-memory segments. For each
  220. segment of this type, there is an auxiliary segment value, defined
  221. to be the same number but with the LSB set, which denotes the
  222. segment-base value of that segment, for object formats which support
  223. it (Microsoft .OBJ, for example).
  224.  
  225. Hence, if `textsym' is declared in a code segment with index 2, then
  226. referencing `SEG textsym' would return zero offset from
  227. segment-index 3. Or, in object formats which don't understand such
  228. references, it would return an error instead.
  229.  
  230. The next twist is SEG_ABS. Some symbols may be declared with a
  231. segment value of SEG_ABS plus a 16-bit constant: this indicates that
  232. they are far-absolute symbols, such as the BIOS keyboard buffer
  233. under MS-DOS, which always resides at 0040h:001Eh. Far-absolutes are
  234. handled with care in the parser, since they are supposed to evaluate
  235. simply to their offset part within expressions, but applying SEG to
  236. one should yield its segment part. A far-absolute should never find
  237. its way _out_ of the parser, unless it is enclosed in a WRT clause,
  238. in which case Microsoft 16-bit object formats will want to know
  239. about it.
  240.  
  241. Porting Issues
  242. --------------
  243.  
  244. We have tried to write NASM in portable ANSI C: we do not assume
  245. little-endianness or any hardware characteristics (in order that
  246. NASM should work as a cross-assembler for x86 platforms, even when
  247. run on other, stranger machines).
  248.  
  249. Assumptions we _have_ made are:
  250.  
  251. - We assume that `short' is at least 16 bits, and `long' at least
  252.   32. This really _shouldn't_ be a problem, since Kernighan and
  253.   Ritchie tell us we are entitled to do so.
  254.  
  255. - We rely on having more than 6 characters of significance on
  256.   externally linked symbols in the NASM sources. This may get fixed
  257.   at some point. We haven't yet come across a linker brain-dead
  258.   enough to get it wrong anyway.
  259.  
  260. - We assume that `fopen' using the mode "wb" can be used to write
  261.   binary data files. This may be wrong on systems like VMS, with a
  262.   strange file system. Though why you'd want to run NASM on VMS is
  263.   beyond me anyway.
  264.  
  265. That's it. Subject to those caveats, NASM should be completely
  266. portable. If not, we _really_ want to know about it.
  267.  
  268. Porting Non-Issues
  269. ------------------
  270.  
  271. The following is _not_ a portability problem, although it looks like
  272. one.
  273.  
  274. - When compiling with some versions of DJGPP, you may get errors
  275.   such as `warning: ANSI C forbids braced-groups within
  276.   expressions'. This isn't NASM's fault - the problem seems to be
  277.   that DJGPP's definitions of the <ctype.h> macros include a
  278.   GNU-specific C extension. So when compiling using -ansi and
  279.   -pedantic, DJGPP complains about its own header files. It isn't a
  280.   problem anyway, since it still generates correct code.
  281.