home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
mesa5.zip
/
mesa5src.zip
/
MesaDLL
/
eval.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
2002-10-24
|
22KB
|
800 lines
/* $Id: eval.c,v 1.24 2002/10/24 23:57:20 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 4.1
*
* Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* eval.c was written by
* Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
* Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
*
* My original implementation of evaluators was simplistic and didn't
* compute surface normal vectors properly. Bernd and Volker applied
* used more sophisticated methods to get better results.
*
* Thanks guys!
*/
#include "glheader.h"
#include "imports.h"
#include "colormac.h"
#include "context.h"
#include "eval.h"
#include "macros.h"
#include "mmath.h"
#include "mtypes.h"
/*
* Return the number of components per control point for any type of
* evaluator. Return 0 if bad target.
* See table 5.1 in the OpenGL 1.2 spec.
*/
GLuint _mesa_evaluator_components( GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3: return 3;
case GL_MAP1_VERTEX_4: return 4;
case GL_MAP1_INDEX: return 1;
case GL_MAP1_COLOR_4: return 4;
case GL_MAP1_NORMAL: return 3;
case GL_MAP1_TEXTURE_COORD_1: return 1;
case GL_MAP1_TEXTURE_COORD_2: return 2;
case GL_MAP1_TEXTURE_COORD_3: return 3;
case GL_MAP1_TEXTURE_COORD_4: return 4;
case GL_MAP2_VERTEX_3: return 3;
case GL_MAP2_VERTEX_4: return 4;
case GL_MAP2_INDEX: return 1;
case GL_MAP2_COLOR_4: return 4;
case GL_MAP2_NORMAL: return 3;
case GL_MAP2_TEXTURE_COORD_1: return 1;
case GL_MAP2_TEXTURE_COORD_2: return 2;
case GL_MAP2_TEXTURE_COORD_3: return 3;
case GL_MAP2_TEXTURE_COORD_4: return 4;
default: break;
}
/* XXX need to check for the vertex program extension
if (!ctx->Extensions.NV_vertex_program)
return 0;
*/
if (target >= GL_MAP1_VERTEX_ATTRIB0_4_NV &&
target <= GL_MAP1_VERTEX_ATTRIB15_4_NV)
return 4;
if (target >= GL_MAP2_VERTEX_ATTRIB0_4_NV &&
target <= GL_MAP2_VERTEX_ATTRIB15_4_NV)
return 4;
return 0;
}
/*
* Return pointer to the gl_1d_map struct for the named target.
*/
static struct gl_1d_map *
get_1d_map( GLcontext *ctx, GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3:
return &ctx->EvalMap.Map1Vertex3;
case GL_MAP1_VERTEX_4:
return &ctx->EvalMap.Map1Vertex4;
case GL_MAP1_INDEX:
return &ctx->EvalMap.Map1Index;
case GL_MAP1_COLOR_4:
return &ctx->EvalMap.Map1Color4;
case GL_MAP1_NORMAL:
return &ctx->EvalMap.Map1Normal;
case GL_MAP1_TEXTURE_COORD_1:
return &ctx->EvalMap.Map1Texture1;
case GL_MAP1_TEXTURE_COORD_2:
return &ctx->EvalMap.Map1Texture2;
case GL_MAP1_TEXTURE_COORD_3:
return &ctx->EvalMap.Map1Texture3;
case GL_MAP1_TEXTURE_COORD_4:
return &ctx->EvalMap.Map1Texture4;
case GL_MAP1_VERTEX_ATTRIB0_4_NV:
case GL_MAP1_VERTEX_ATTRIB1_4_NV:
case GL_MAP1_VERTEX_ATTRIB2_4_NV:
case GL_MAP1_VERTEX_ATTRIB3_4_NV:
case GL_MAP1_VERTEX_ATTRIB4_4_NV:
case GL_MAP1_VERTEX_ATTRIB5_4_NV:
case GL_MAP1_VERTEX_ATTRIB6_4_NV:
case GL_MAP1_VERTEX_ATTRIB7_4_NV:
case GL_MAP1_VERTEX_ATTRIB8_4_NV:
case GL_MAP1_VERTEX_ATTRIB9_4_NV:
case GL_MAP1_VERTEX_ATTRIB10_4_NV:
case GL_MAP1_VERTEX_ATTRIB11_4_NV:
case GL_MAP1_VERTEX_ATTRIB12_4_NV:
case GL_MAP1_VERTEX_ATTRIB13_4_NV:
case GL_MAP1_VERTEX_ATTRIB14_4_NV:
case GL_MAP1_VERTEX_ATTRIB15_4_NV:
if (!ctx->Extensions.NV_vertex_program)
return NULL;
return &ctx->EvalMap.Map1Attrib[target - GL_MAP1_VERTEX_ATTRIB0_4_NV];
default:
return NULL;
}
}
/*
* Return pointer to the gl_2d_map struct for the named target.
*/
static struct gl_2d_map *
get_2d_map( GLcontext *ctx, GLenum target )
{
switch (target) {
case GL_MAP2_VERTEX_3:
return &ctx->EvalMap.Map2Vertex3;
case GL_MAP2_VERTEX_4:
return &ctx->EvalMap.Map2Vertex4;
case GL_MAP2_INDEX:
return &ctx->EvalMap.Map2Index;
case GL_MAP2_COLOR_4:
return &ctx->EvalMap.Map2Color4;
case GL_MAP2_NORMAL:
return &ctx->EvalMap.Map2Normal;
case GL_MAP2_TEXTURE_COORD_1:
return &ctx->EvalMap.Map2Texture1;
case GL_MAP2_TEXTURE_COORD_2:
return &ctx->EvalMap.Map2Texture2;
case GL_MAP2_TEXTURE_COORD_3:
return &ctx->EvalMap.Map2Texture3;
case GL_MAP2_TEXTURE_COORD_4:
return &ctx->EvalMap.Map2Texture4;
case GL_MAP2_VERTEX_ATTRIB0_4_NV:
case GL_MAP2_VERTEX_ATTRIB1_4_NV:
case GL_MAP2_VERTEX_ATTRIB2_4_NV:
case GL_MAP2_VERTEX_ATTRIB3_4_NV:
case GL_MAP2_VERTEX_ATTRIB4_4_NV:
case GL_MAP2_VERTEX_ATTRIB5_4_NV:
case GL_MAP2_VERTEX_ATTRIB6_4_NV:
case GL_MAP2_VERTEX_ATTRIB7_4_NV:
case GL_MAP2_VERTEX_ATTRIB8_4_NV:
case GL_MAP2_VERTEX_ATTRIB9_4_NV:
case GL_MAP2_VERTEX_ATTRIB10_4_NV:
case GL_MAP2_VERTEX_ATTRIB11_4_NV:
case GL_MAP2_VERTEX_ATTRIB12_4_NV:
case GL_MAP2_VERTEX_ATTRIB13_4_NV:
case GL_MAP2_VERTEX_ATTRIB14_4_NV:
case GL_MAP2_VERTEX_ATTRIB15_4_NV:
if (!ctx->Extensions.NV_vertex_program)
return NULL;
return &ctx->EvalMap.Map2Attrib[target - GL_MAP2_VERTEX_ATTRIB0_4_NV];
default:
return NULL;
}
}
/**********************************************************************/
/*** Copy and deallocate control points ***/
/**********************************************************************/
/*
* Copy 1-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Input: see glMap1f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *_mesa_copy_map_points1f( GLenum target, GLint ustride, GLint uorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLint i, k, size = _mesa_evaluator_components(target);
if (!points || !size)
return NULL;
buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
if (buffer)
for (i = 0, p = buffer; i < uorder; i++, points += ustride)
for (k = 0; k < size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *_mesa_copy_map_points1d( GLenum target, GLint ustride, GLint uorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLint i, k, size = _mesa_evaluator_components(target);
if (!points || !size)
return NULL;
buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
if (buffer)
for (i = 0, p = buffer; i < uorder; i++, points += ustride)
for (k = 0; k < size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* Copy 2-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Additional memory is allocated to be used by the horner and
* de Casteljau evaluation schemes.
*
* Input: see glMap2f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *_mesa_copy_map_points2f( GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLint i, j, k, size, dsize, hsize;
GLint uinc;
size = _mesa_evaluator_components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *_mesa_copy_map_points2d(GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLint i, j, k, size, hsize, dsize;
GLint uinc;
size = _mesa_evaluator_components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/**********************************************************************/
/*** API entry points ***/
/**********************************************************************/
/*
* This does the work of glMap1[fd].
*/
static void
map1(GLenum target, GLfloat u1, GLfloat u2, GLint ustride,
GLint uorder, const GLvoid *points, GLenum type )
{
GET_CURRENT_CONTEXT(ctx);
GLint k;
GLfloat *pnts;
struct gl_1d_map *map = NULL;
ASSERT_OUTSIDE_BEGIN_END(ctx);
ASSERT(type == GL_FLOAT || type == GL_DOUBLE);
if (u1 == u2) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
return;
}
if (uorder < 1 || uorder > MAX_EVAL_ORDER) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
return;
}
if (!points) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap1(points)" );
return;
}
k = _mesa_evaluator_components( target );
if (k == 0) {
_mesa_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
}
if (ustride < k) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
return;
}
if (ctx->Texture.CurrentUnit != 0) {
/* See OpenGL 1.2.1 spec, section F.2.13 */
_mesa_error( ctx, GL_INVALID_OPERATION, "glMap2(ACTIVE_TEXTURE != 0)" );
return;
}
map = get_1d_map(ctx, target);
if (!map) {
_mesa_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
return;
}
/* make copy of the control points */
if (type == GL_FLOAT)
pnts = _mesa_copy_map_points1f(target, ustride, uorder, (GLfloat*) points);
else
pnts = _mesa_copy_map_points1d(target, ustride, uorder, (GLdouble*) points);
FLUSH_VERTICES(ctx, _NEW_EVAL);
map->Order = uorder;
map->u1 = u1;
map->u2 = u2;
map->du = 1.0F / (u2 - u1);
if (map->Points)
FREE( map->Points );
map->Points = pnts;
}
void
_mesa_Map1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points )
{
map1(target, u1, u2, stride, order, points, GL_FLOAT);
}
void
_mesa_Map1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride,
GLint order, const GLdouble *points )
{
map1(target, (GLfloat) u1, (GLfloat) u2, stride, order, points, GL_DOUBLE);
}
static void
map2( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLvoid *points, GLenum type )
{
GET_CURRENT_CONTEXT(ctx);
GLint k;
GLfloat *pnts;
struct gl_2d_map *map = NULL;
ASSERT_OUTSIDE_BEGIN_END(ctx);
ASSERT(type == GL_FLOAT || type == GL_DOUBLE);
if (u1==u2) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
return;
}
if (v1==v2) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
return;
}
if (uorder<1 || uorder>MAX_EVAL_ORDER) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
return;
}
if (vorder<1 || vorder>MAX_EVAL_ORDER) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
return;
}
k = _mesa_evaluator_components( target );
if (k==0) {
_mesa_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
}
if (ustride < k) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
return;
}
if (vstride < k) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
return;
}
if (ctx->Texture.CurrentUnit != 0) {
/* See OpenGL 1.2.1 spec, section F.2.13 */
_mesa_error( ctx, GL_INVALID_OPERATION, "glMap2(ACTIVE_TEXTURE != 0)" );
return;
}
map = get_2d_map(ctx, target);
if (!map) {
_mesa_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
return;
}
/* make copy of the control points */
if (type == GL_FLOAT)
pnts = _mesa_copy_map_points2f(target, ustride, uorder,
vstride, vorder, (GLfloat*) points);
else
pnts = _mesa_copy_map_points2d(target, ustride, uorder,
vstride, vorder, (GLdouble*) points);
FLUSH_VERTICES(ctx, _NEW_EVAL);
map->Uorder = uorder;
map->u1 = u1;
map->u2 = u2;
map->du = 1.0F / (u2 - u1);
map->Vorder = vorder;
map->v1 = v1;
map->v2 = v2;
map->dv = 1.0F / (v2 - v1);
if (map->Points)
FREE( map->Points );
map->Points = pnts;
}
void
_mesa_Map2f( GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points)
{
map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder,
points, GL_FLOAT);
}
void
_mesa_Map2d( GLenum target,
GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
const GLdouble *points )
{
map2(target, (GLfloat) u1, (GLfloat) u2, ustride, uorder,
(GLfloat) v1, (GLfloat) v2, vstride, vorder, points, GL_DOUBLE);
}
void
_mesa_GetMapdv( GLenum target, GLenum query, GLdouble *v )
{
GET_CURRENT_CONTEXT(ctx);
struct gl_1d_map *map1d;
struct gl_2d_map *map2d;
GLint i, n;
GLfloat *data;
GLuint comps;
ASSERT_OUTSIDE_BEGIN_END(ctx);
comps = _mesa_evaluator_components(target);
if (!comps) {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
return;
}
map1d = get_1d_map(ctx, target);
map2d = get_2d_map(ctx, target);
ASSERT(map1d || map2d);
switch (query) {
case GL_COEFF:
if (map1d) {
data = map1d->Points;
n = map1d->Order * comps;
}
else {
data = map2d->Points;
n = map2d->Uorder * map2d->Vorder * comps;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
if (map1d) {
v[0] = (GLdouble) map1d->Order;
}
else {
v[0] = (GLdouble) map2d->Uorder;
v[1] = (GLdouble) map2d->Vorder;
}
break;
case GL_DOMAIN:
if (map1d) {
v[0] = (GLdouble) map1d->u1;
v[1] = (GLdouble) map1d->u2;
}
else {
v[0] = (GLdouble) map2d->u1;
v[1] = (GLdouble) map2d->u2;
v[2] = (GLdouble) map2d->v1;
v[3] = (GLdouble) map2d->v2;
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
}
}
void
_mesa_GetMapfv( GLenum target, GLenum query, GLfloat *v )
{
GET_CURRENT_CONTEXT(ctx);
struct gl_1d_map *map1d;
struct gl_2d_map *map2d;
GLint i, n;
GLfloat *data;
GLuint comps;
ASSERT_OUTSIDE_BEGIN_END(ctx);
comps = _mesa_evaluator_components(target);
if (!comps) {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
return;
}
map1d = get_1d_map(ctx, target);
map2d = get_2d_map(ctx, target);
ASSERT(map1d || map2d);
switch (query) {
case GL_COEFF:
if (map1d) {
data = map1d->Points;
n = map1d->Order * comps;
}
else {
data = map2d->Points;
n = map2d->Uorder * map2d->Vorder * comps;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
if (map1d) {
v[0] = (GLfloat) map1d->Order;
}
else {
v[0] = (GLfloat) map2d->Uorder;
v[1] = (GLfloat) map2d->Vorder;
}
break;
case GL_DOMAIN:
if (map1d) {
v[0] = map1d->u1;
v[1] = map1d->u2;
}
else {
v[0] = map2d->u1;
v[1] = map2d->u2;
v[2] = map2d->v1;
v[3] = map2d->v2;
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
}
}
void
_mesa_GetMapiv( GLenum target, GLenum query, GLint *v )
{
GET_CURRENT_CONTEXT(ctx);
struct gl_1d_map *map1d;
struct gl_2d_map *map2d;
GLuint i, n;
GLfloat *data;
GLuint comps;
ASSERT_OUTSIDE_BEGIN_END(ctx);
comps = _mesa_evaluator_components(target);
if (!comps) {
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
return;
}
map1d = get_1d_map(ctx, target);
map2d = get_2d_map(ctx, target);
ASSERT(map1d || map2d);
switch (query) {
case GL_COEFF:
if (map1d) {
data = map1d->Points;
n = map1d->Order * comps;
}
else {
data = map2d->Points;
n = map2d->Uorder * map2d->Vorder * comps;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = ROUNDF(data[i]);
}
}
break;
case GL_ORDER:
if (map1d) {
v[0] = map1d->Order;
}
else {
v[0] = map2d->Uorder;
v[1] = map2d->Vorder;
}
break;
case GL_DOMAIN:
if (map1d) {
v[0] = ROUNDF(map1d->u1);
v[1] = ROUNDF(map1d->u2);
}
else {
v[0] = ROUNDF(map2d->u1);
v[1] = ROUNDF(map2d->u2);
v[2] = ROUNDF(map2d->v1);
v[3] = ROUNDF(map2d->v2);
}
break;
default:
_mesa_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
}
}
void
_mesa_MapGrid1f( GLint un, GLfloat u1, GLfloat u2 )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (un<1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
return;
}
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.MapGrid1un = un;
ctx->Eval.MapGrid1u1 = u1;
ctx->Eval.MapGrid1u2 = u2;
ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
}
void
_mesa_MapGrid1d( GLint un, GLdouble u1, GLdouble u2 )
{
_mesa_MapGrid1f( un, (GLfloat) u1, (GLfloat) u2 );
}
void
_mesa_MapGrid2f( GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
if (un<1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
return;
}
if (vn<1) {
_mesa_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
return;
}
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.MapGrid2un = un;
ctx->Eval.MapGrid2u1 = u1;
ctx->Eval.MapGrid2u2 = u2;
ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
ctx->Eval.MapGrid2vn = vn;
ctx->Eval.MapGrid2v1 = v1;
ctx->Eval.MapGrid2v2 = v2;
ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
}
void
_mesa_MapGrid2d( GLint un, GLdouble u1, GLdouble u2,
GLint vn, GLdouble v1, GLdouble v2 )
{
_mesa_MapGrid2f( un, (GLfloat) u1, (GLfloat) u2,
vn, (GLfloat) v1, (GLfloat) v2 );
}