home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
jikepg12.zip
/
jikespg
/
src
/
resolve.c
< prev
next >
Wrap
C/C++ Source or Header
|
1999-11-04
|
105KB
|
2,562 lines
/* $Id: resolve.c,v 1.2 1999/11/04 14:02:23 shields Exp $ */
/*
This software is subject to the terms of the IBM Jikes Compiler
License Agreement available at the following URL:
http://www.ibm.com/research/jikes.
Copyright (C) 1983, 1999, International Business Machines Corporation
and others. All Rights Reserved.
You must accept the terms of that agreement to use this software.
*/
static char hostfile[] = __FILE__;
#include "common.h"
#include "reduce.h"
#include "header.h"
/***********************************************************************/
/* VISITED is a structure used to mark state-symbol pairs that have */
/* been visited in the process of computing follow-sources for a */
/* given action in conflict. */
/* The field MAP is an array indexable by the states 1..NUM_STATES; */
/* each element of which points to a set (list) of symbols. Thus, for */
/* a given state S, and for all symbol X in the list MAP[S], [S,X] */
/* has been visited. For efficiency, the fields LIST and ROOT are used */
/* to store the set (list) of indexed elements of MAP that are not */
/* NULL. */
/* See routines MARK_VISITED, WAS_VISITED, CLEAR_VISITED, */
/* INIT_LALRK_PROCESS, EXIT_PROCESS */
/***********************************************************************/
static struct visited_element
{
struct node **map;
short *list,
root;
} visited;
/***********************************************************************/
/* Given a set of actions that are in conflict on a given symbol, the */
/* structure SOURCES_ELEMENT is used to store a mapping from each */
/* such action into a set of configurations that can be reached */
/* following execution of the action in question up to the point where */
/* the automaton is about to shift the conflict symbol. */
/* The field CONFIGS is an array indexable by actions which are */
/* encoded as follows: */
/* 1. shift-reduce [-NUM_RULES..-1] */
/* 2. reduce [0..NUM_RULES] */
/* 3. shift [NUM_RULES+1..NUM_STATES+1]. */
/* Each element of CONFIGS points to a set (sorted list) of */
/* configurations. For efficiency, the fields LIST and ROOT are used */
/* to store the set (list) of indexed elements of CONFIGS that are not */
/* NULL. */
/* See routines ALLOCATE_SOURCES, FREE_SOURCES, CLEAR_SOURCES, */
/* ADD_CONFIGS, UNION_CONFIG_SETS. */
/* See STATE_TO_RESOLVE_CONFLICTS for an explanation of STACK_SEEN. */
/* */
/* A configuration is a stack of states that represents a certain path */
/* in the automaton. The stack is implemented as a list of */
/* STACK_ELEMENT nodes linked through the field PREVIOUS. */
/* A set/list of configurations is linked through the field NEXT. */
/* When attempting to resolve conflicts we try to make sure that the */
/* set of configurations associated with each action is unique. This */
/* is achieved by throwing these configurations into a set and making */
/* sure that there are no duplicates. The field LINK is used for that */
/* purpose (see routine STACK_WAS_SEEN). The field STATE_NUMBER is */
/* obviously used to store the number of a state in the automaton. The */
/* field SIZE holds index of the node within the stack. Thus, for the */
/* first element of the stack this field represents the number of */
/* elements in the stack; for the last element, this field holds the */
/* value 1. */
/* See routines ALLOCATE_STACK_ELEMENT, FREE_STACK_ELEMENT, */
/* ADD_DANGLING_STACK, FREE_DANGLING_STACK. */
/***********************************************************************/
static struct sources_element
{
struct stack_element **configs,
**stack_seen;
short *list,
root;
} sources;
struct stack_element
{
struct stack_element *previous,
*next,
*link;
short state_number,
size;
};
static struct stack_element *stack_pool = NULL,
*dangling_stacks = NULL;
/***********************************************************************/
/* The structure STATE_ELEMENT is used to construct lookahead states. */
/* LA_STATE_ROOT point to a list of lookahead states using the LINK */
/* field. The field NEXT_SHIFT is used to hash the new shift maps */
/* associated with lookahead states. The field IN_STATE identifies the */
/* state that shifted into the lookahead state in question. The field */
/* SYMBOL identifies the symbol on shift the transition was made into */
/* the lookahead state in question. The remaining fields are */
/* self-explanatory. */
/***********************************************************************/
struct state_element
{
struct state_element *link,
*next_shift;
struct reduce_header_type reduce;
struct shift_header_type shift;
short in_state,
symbol,
state_number,
shift_number;
};
static struct state_element *la_state_root = NULL;
/***********************************************************************/
/* The structures SR_CONFLICT_ELEMENT and RR_CONFLICT_ELEMENT are used */
/* th store conflict information. CONFLICT_ELEMENT_POOL is used to */
/* keep track of a pool conflict element structures (SR or RR) that */
/* are available for allocation. */
/* See routines ALLOCATE_CONFLICT_ELEMENT and FREE_CONFLICT_ELEMENTS. */
/***********************************************************************/
struct sr_conflict_element
{
struct sr_conflict_element *next;
short state_number,
item,
symbol;
};
static struct sr_conflict_element *sr_conflict_root;
struct rr_conflict_element
{
struct rr_conflict_element *next;
short symbol,
item1,
item2;
};
static struct rr_conflict_element *rr_conflict_root;
static void *conflict_element_pool = NULL;
/***********************************************************************/
/* NT_ITEMS and ITEM_LIST are used to construct a mapping from each */
/* nonterminal into the set of items of which the nonterminal in */
/* question is the dot symbol. See CONFLICTS_INITIALIZATION. */
/***********************************************************************/
static short *nt_items = NULL,
*item_list = NULL;
/***********************************************************************/
/* LALR_VISITED is used to keep track of (state, nonterminal) pairs */
/* that are visited in tracing the path of a lalr conflict.SLR_VISITED */
/* is similarly used to keep track of nonterminal symbols that are */
/* visited in tracing the path of an slr conflict. SYMBOL_SEEN is used */
/* to keep track of nonterminal symbols that are visited in tracing a */
/* path to the start state (root). */
/* */
/* CYCLIC is a boolean vector used to identify states that can enter */
/* a cycle of transitions on nullable nonterminals. */
/* As the computation of CYCLIC requires a modified version of the */
/* digraph algorithm, the variables STACK, INDEX_OF and TOP are used */
/* for that algorithm. */
/* */
/* RMPSELF is a boolean vector that indicates whether or not a given */
/* non-terminal can right-most produce itself. It is only constructed */
/* when LALR_LEVEL > 1. */
/***********************************************************************/
static BOOLEAN *lalr_visited,
*slr_visited,
*symbol_seen,
*cyclic,
*rmpself;
static short *stack,
*index_of,
top;
static struct state_element **shift_table;
/*******************************************************************/
/* ALLOCATE_CONFLICT_ELEMENT: */
/*******************************************************************/
/* This function allocates a conflict_element (sr or rr) structure */
/* & returns a pointer to it. If there are nodes in the free pool, */
/* one of them is returned. Otherwise, a new node is allocated */
/* from the temporary storage pool. */
/*******************************************************************/
static void *allocate_conflict_element(void)
{
void *p;
p = conflict_element_pool;
if (p != NULL)
conflict_element_pool = ((struct sr_conflict_element *) p) -> next;
else
{
p = (void *) talloc(MAX(sizeof(struct sr_conflict_element),
sizeof(struct rr_conflict_element)));
if (p == NULL)
nospace(__FILE__, __LINE__);
}
return p;
}
/**********************************************************************/
/* FREE_CONFLICT_ELEMENTS: */
/**********************************************************************/
/* This routine returns a list of conflict_element (sr/rr)structures */
/* to the free pool. */
/**********************************************************************/
static void free_conflict_elements(void *head, void *tail)
{
((struct sr_conflict_element *) tail) -> next =
(struct sr_conflict_element *) conflict_element_pool;
conflict_element_pool = head;
return;
}
/*******************************************************************/
/* ALLOCATE_STACK_ELEMENT: */
/*******************************************************************/
/* This function allocates a stack_element structure and returns a */
/* pointer to it. If there are nodes in the free pool, one of them */
/* is returned. Otherwise, a new node is allocated from the */
/* temporary storage pool. */
/*******************************************************************/
static struct stack_element *allocate_stack_element(void)
{
struct stack_element *p;
p = stack_pool;
if (p != NULL)
stack_pool = p -> next;
else
{
p = (struct stack_element *)
talloc(sizeof(struct stack_element));
if (p == NULL)
nospace(__FILE__, __LINE__);
}
return p;
}
/**********************************************************************/
/* FREE_STACK_ELEMENTS: */
/**********************************************************************/
/* This routine returns a list of stack_element structures to the */
/* free pool. */
/**********************************************************************/
static void free_stack_elements(struct stack_element *head,
struct stack_element *tail)
{
tail -> next = stack_pool;
stack_pool = head;
return;
}
/***************************************************************************/
/* ADD_DANGLING_STACK_ELEMENT: */
/***************************************************************************/
/* When an allocated stack_element structure is not directly associated */
/* with an action, it is added to a circular list of dangling stack_element*/
/* nodes so that its space can be reclaimed. */
/***************************************************************************/
static void add_dangling_stack_element(struct stack_element *s)
{
if (dangling_stacks == NULL)
s -> next = s;
else
{
s -> next = dangling_stacks -> next;
dangling_stacks -> next = s;
}
dangling_stacks = s;
return;
}
/***************************************************************************/
/* FREE_DANGLING_STACK_ELEMENTS: */
/***************************************************************************/
/* This function is invoked to free up all dangling stack_element nodes */
/* and reset the dangling stack list. */
/* Recall that the dangling stack list is circular. */
/***************************************************************************/
static void free_dangling_stack_elements(void)
{
struct stack_element *tail;
if (dangling_stacks != NULL)
{
tail = dangling_stacks;
free_stack_elements(dangling_stacks -> next, tail);
dangling_stacks = NULL;
}
return;
}
/***************************************************************************/
/* ALLOCATE_SOURCES: */
/***************************************************************************/
/* This function allocates and initializes a SOURCE_ELEMENT map. */
/* See definition of SOURCE_ELEMENT above. */
/***************************************************************************/
static struct sources_element allocate_sources(void)
{
struct sources_element sources;
sources.configs = (struct stack_element **)
calloc(num_rules + num_rules + num_states + 1,
sizeof(struct stack_element *));
if (sources.configs == NULL)
nospace(__FILE__, __LINE__);
sources.configs += num_rules;
sources.stack_seen = (struct stack_element **)
calloc(STATE_TABLE_SIZE,
sizeof(struct stack_element *));
if (sources.stack_seen == NULL)
nospace(__FILE__, __LINE__);
sources.list =
Allocate_short_array(num_rules + num_rules + num_states + 1);
sources.list += num_rules;
sources.root = NIL;
return sources;
}
/***************************************************************************/
/* CLEAR_SOURCES: */
/***************************************************************************/
/* This function takes as argument a SOURCES_ELEMENT structure which it */
/* resets to the empty map. */
/* See definition of SOURCE_ELEMENT above. */
/***************************************************************************/
static struct sources_element clear_sources(struct sources_element sources)
{
struct stack_element *p,
*tail;
int act,
i;
for (act = sources.root; act != NIL; act = sources.list[act])
{
for (p = sources.configs[act]; p != NULL; tail = p, p = p -> next)
;
free_stack_elements(sources.configs[act], tail);
sources.configs[act] = NULL;
}
sources.root = NIL;
return sources;
}
/***************************************************************************/
/* FREE_SOURCES: */
/***************************************************************************/
/* This function takes as argument a SOURCES_ELEMENT structure. First, it */
/* clears it to reclaim all space that was used by STACK_ELEMENTs and then */
/* it frees the array space used as a base to construct the map. */
/***************************************************************************/
static void free_sources(struct sources_element sources)
{
sources = clear_sources(sources);
sources.configs -= num_rules;
ffree(sources.configs);
ffree(sources.stack_seen);
sources.list -= num_rules;
ffree(sources.list);
return;
}
/***************************************************************************/
/* UNION_CONFIG_SETS: */
/***************************************************************************/
/* This function takes as argument two pointers to sorted lists of stacks. */
/* It merges the lists in the proper order and returns the resulting list. */
/***************************************************************************/
static struct stack_element *union_config_sets(struct stack_element *root1,
struct stack_element *root2)
{
struct stack_element *p1,
*p2,
*root,
*tail;
root = NULL;
/*******************************************************************/
/* This loop iterates over both lists until one (or both) has been */
/* completely processed. Each time around the loop, a stack is */
/* removed from one of the lists and possibly added to the new */
/* list. The new list is initially kept as a circular list to */
/* preserve the sorted ordering in which elements are added to it. */
/*******************************************************************/
while (root1 != NULL && root2 != NULL)
{
/***************************************************************/
/* Compare the two stacks in front of the lists for equality. */
/* We exit this loop when we encounter the end of one (or both)*/
/* of the stacks or two elements in them that are not the same.*/
/***************************************************************/
for (p1 = root1, p2 = root2;
p1 != NULL && p2 != NULL;
p1 = p1 -> previous, p2 = p2 -> previous)
{
if (p1 -> state_number != p2 -> state_number)
break;
}
/***************************************************************/
/* We now have 3 cases to consider: */
/* 1. The two stacks are equal? Discard one! */
/* 2. List 1 stack is prefix of list 2 stack (p1 == NULL)? */
/* or list 1 stack is less than list 2 stack? */
/* Remove list 1 stack and add it to new list. */
/* 3. List 2 stack is either a prefix of list 1 stack, or */
/* it is smaller! */
/* Remove list 2 stack and add it to new list. */
/***************************************************************/
if (p1 == p2) /* are both p1 and p2 NULL? */
{
p2 = root2;
root2 = root2 -> next;
add_dangling_stack_element(p2);
}
else if ((p1 == NULL) ||
((p2 != NULL) && (p1 -> state_number < p2 -> state_number)))
{
p1 = root1;
root1 = root1 -> next;
if (root == NULL)
p1 -> next = p1;
else
{
p1 -> next = root -> next;
root -> next = p1;
}
root = p1;
}
else
{
p2 = root2;
root2 = root2 -> next;
if (root == NULL)
p2 -> next = p2;
else
{
p2 -> next = root -> next;
root -> next = p2;
}
root = p2;
}
}
/*******************************************************************/
/* At this stage, at least one (or both) list has been expended */
/* (or was empty to start with). */
/* If the new list is not empty, turn it into a linear list and */
/* append the unexpended list to it, if any. */
/* Otherwise, set the new list to the nonempty list if any! */
/*******************************************************************/
if (root != NULL)
{
tail = root;
root = root -> next;
tail -> next = (root1 == NULL ? root2 : root1);
}
else root = (root1 == NULL ? root2 : root1);
return root;
}
/***************************************************************************/
/* ADD_CONFIGS: */
/***************************************************************************/
/* This function takes as argument a SOURCES_ELEMENT map, an ACTION and a */
/* set (sorted list) of configurations. It adds the set of configurations */
/* to the previous set of configurations associated with the ACTION in the */
/* SOURCES_ELEMENT map. */
/***************************************************************************/
static struct sources_element add_configs(struct sources_element sources,
int action,
struct stack_element *config_root)
{
if (config_root == NULL) /* The new set is empty? Do nothing */
return sources;
if (sources.configs[action] == NULL) /* The previous was empty? */
{
sources.list[action] = sources.root;
sources.root = action;
}
sources.configs[action] = union_config_sets(sources.configs[action],
config_root);
return sources;
}
/***************************************************************************/
/* CLEAR_VISITED: */
/***************************************************************************/
/* This function clears out all external space used by the VISITED set and */
/* resets VISITED to the empty set. */
/***************************************************************************/
static void clear_visited(void)
{
struct node *p,
*tail;
int state_no;
for (state_no = visited.root;
state_no != NIL; state_no = visited.list[state_no])
{
for (p = visited.map[state_no]; p != NULL; tail = p, p = p -> next)
;
free_nodes(visited.map[state_no], tail);
visited.map[state_no] = NULL;
}
visited.root = NIL;
return;
}
/***************************************************************************/
/* WAS_VISITED: */
/***************************************************************************/
/* This boolean function checks whether or not a given pair [state, symbol]*/
/* was already inserted in the VISITED set. */
/***************************************************************************/
static BOOLEAN was_visited(int state_no, int symbol)
{
struct node *p;
for (p = visited.map[state_no]; p != NULL; p = p -> next)
{
if (p -> value == symbol)
break;
}
return (p != NULL);
}
/***************************************************************************/
/* MARK_VISITED: */
/***************************************************************************/
/* This function inserts a given pair [state, symbol] into the VISITED set.*/
/***************************************************************************/
static void mark_visited(int state_no, int symbol)
{
struct node *p;
if (visited.map[state_no] == NULL) /* 1st time we see state_no? */
{
visited.list[state_no] = visited.root;
visited.root = state_no;
}
p = Allocate_node();
p -> value = symbol;
p -> next = visited.map[state_no];
visited.map[state_no] = p;
return;
}
/***********************************************************************/
/* COMPUTE_CYCLIC: */
/***********************************************************************/
/* This procedure is a modified instantiation of the digraph algorithm */
/* to compute the CYCLIC set of states. */
/***********************************************************************/
static void compute_cyclic(short state_no)
{
int indx;
struct goto_header_type go_to;
int symbol,
act,
i;
stack[++top] = state_no;
indx = top;
cyclic[state_no] = FALSE;
index_of[state_no] = indx;
go_to = statset[state_no].go_to;
for (i = 1; i <= go_to.size; i++)
{
symbol = GOTO_SYMBOL(go_to, i);
act = GOTO_ACTION(go_to, i);
if (act > 0 && null_nt[symbol])
{ /* We have a transition on a nullable nonterminal? */
if (index_of[act] == OMEGA)
compute_cyclic(act);
else if (index_of[act] != INFINITY)
cyclic[state_no] = TRUE;
cyclic[state_no] = cyclic[state_no] || cyclic[act];
index_of[state_no] = MIN(index_of[state_no], index_of[act]);
}
}
if (index_of[state_no] == indx)
{
do
{
act = stack[top--];
index_of[act] = INFINITY;
} while(act != state_no);
}
return;
}
/***********************************************************************/
/* TRACE_ROOT: */
/***********************************************************************/
/* In tracing an error, we will be moving backward in the state */
/* automaton looking for items with the conflict symbol as look-ahead. */
/* In the case of SLR, we may have to analoguously look at an */
/* arbitrary set of items involved. In moving around these graphs, it */
/* is possible to encounter a cycle, in which case, we simply want to */
/* back out of the cycle and try another path. We therefore need to */
/* keep track of which nodes have already been visited. For LALR */
/* conflicts, we use the LA_PTR field of the GOTO_ELEMENTs as an index */
/* to a BOOLEAN array LALR_VISITED. For SLR conflicts, a boolean */
/* array, SLR_VISITED, indexable by non-terminals, is used. For */
/* trace-backs to the root item, the boolean array SYMBOL_SEEN, also */
/* also indexable by non-terminals, is used. */
/***********************************************************************/
static BOOLEAN trace_root(int lhs_symbol)
{
int item;
if (lhs_symbol == accept_image)
return(TRUE);
if (symbol_seen[lhs_symbol])
return(FALSE);
symbol_seen[lhs_symbol] = TRUE;
for (item = nt_items[lhs_symbol]; item != NIL; item = item_list[item])
{
if (trace_root(rules[item_table[item].rule_number].lhs))
{
print_item(item);
return(TRUE);
}
}
return(FALSE);
}
/***********************************************************************/
/* PRINT_ROOT_PATH: */
/***********************************************************************/
/* The procedure below is invoked to retrace a path from the initial */
/* item to a given item (ITEM_NO) passed to it as argument. */
/***********************************************************************/
static void print_root_path(int item_no)
{
symbol_seen = Allocate_boolean_array(num_non_terminals);
symbol_seen -= (num_terminals + 1);
if (trace_root(rules[item_table[item_no].rule_number].lhs))
{
fprintf(syslis, "\n"); /* Leave one blank line after root trace. */
ENDPAGE_CHECK;
}
symbol_seen += (num_terminals + 1);
ffree(symbol_seen);
return;
}
/***********************************************************************/
/* LALR_PATH_RETRACED: */
/***********************************************************************/
/* This procedure takes as argument, a state number, STATE_NO, an */
/* index into the goto map of state_no, GOTO_INDX, which identifies a */
/* starting point for a search for the CONFLICT_SYMBOL. It attempts to */
/* find a path in the automaton (from the starting point) that leads */
/* to a state where the conflict symbol can be read. If a path is */
/* found, all items along the path are printed and SUCCESS is returned.*/
/* Otherwise, FAILURE is returned. */
/***********************************************************************/
static BOOLEAN lalr_path_retraced(int state_no,
int goto_indx,
int conflict_symbol)
{
int symbol,
item,
state,
i;
struct goto_header_type go_to;
struct node *p,
*q,
*tail,
*w;
BOOLEAN found;
go_to = statset[state_no].go_to;
lalr_visited[GOTO_LAPTR(go_to, goto_indx)] = TRUE;
found = FALSE;
state = GOTO_ACTION(go_to, goto_indx);
for (p = (state > 0 ? statset[state].kernel_items
: adequate_item[-state]);
(p != NULL) && (! found); p = p -> next)
{
item = p -> value - 1;
if IS_IN_SET(first, item_table[item].suffix_index, conflict_symbol)
{ /* Conflict_symbol can be read in state? */
if (trace_opt == TRACE_FULL)
print_root_path(item);
found = TRUE;
}
else if IS_IN_SET(first, item_table[item].suffix_index, empty)
{
symbol = rules[item_table[item].rule_number].lhs;
w = lpgaccess(state_no, item);
for (q = w; q != NULL; tail = q, q = q -> next)
{
go_to = statset[q -> value].go_to;
for (i = 1; GOTO_SYMBOL(go_to, i) != symbol; i++)
;
if (! lalr_visited[GOTO_LAPTR(go_to, i)])
{
if (lalr_path_retraced(q -> value, i, conflict_symbol))
{
found = TRUE;
break;
}
}
}
for (; q != NULL; tail = q, q = q -> next)
;
free_nodes(w, tail);
}
}
if (found)
print_item(item);
return(found);
}
/***********************************************************************/
/* PRINT_RELEVANT_LALR_ITEMS: */
/***********************************************************************/
/* In this procedure, we attempt to retrace an LALR conflict path */
/* (there may be more than one) of CONFLICT_SYMBOL in the state */
/* automaton that led to ITEM_NO in state STATE_NO. */
/***********************************************************************/
static void print_relevant_lalr_items(int state_no,
int item_no,
int conflict_symbol)
{
int lhs_symbol,
i;
struct node *p,
*tail,
*v;
lhs_symbol = rules[item_table[item_no].rule_number].lhs;
if (lhs_symbol == accept_image)
return;
lalr_visited = Allocate_boolean_array(la_top + 1);
v = lpgaccess(state_no, item_no);
for (p = v; p != NULL; tail = p, p = p -> next)
{
struct goto_header_type go_to;
go_to = statset[p -> value].go_to;
for (i = 1; GOTO_SYMBOL(go_to, i) != lhs_symbol; i++)
;
if (lalr_path_retraced(p -> value, i, conflict_symbol))
break;
}
for (; p != NULL; tail = p, p = p -> next)
;
free_nodes(v, tail);
ffree(lalr_visited);
return;
}
/***********************************************************************/
/* SLR_TRACE: */
/***********************************************************************/
/* The procedure below is invoked to retrace a path that may have */
/* introduced the CONFLICT_SYMBOL in the FOLLOW set of the nonterminal */
/* that produces ITEM_NO. Note that such a path must exist. */
/***********************************************************************/
static BOOLEAN slr_trace(int lhs_symbol, int conflict_symbol)
{
int item;
if (slr_visited[lhs_symbol])
return(FALSE);
slr_visited[lhs_symbol] = TRUE;
for (item = nt_items[lhs_symbol]; item != NIL; item = item_list[item])
{
if IS_IN_SET(first, item_table[item].suffix_index, conflict_symbol)
{
if (trace_opt == TRACE_FULL)
print_root_path(item);
break;
}
if IS_IN_SET(first, item_table[item].suffix_index, empty)
{
if (slr_trace(rules[item_table[item].rule_number].lhs,
conflict_symbol))
break;
}
}
if (item != NIL)
{
print_item(item);
return(TRUE);
}
else
return(FALSE);
}
/***********************************************************************/
/* PRINT_RELEVANT_SLR_ITEMS: */
/***********************************************************************/
/* This procedure is invoked to print an SLR path of items that leads */
/* to the conflict symbol. */
/***********************************************************************/
static void print_relevant_slr_items(int item_no, int conflict_symbol)
{
slr_visited = Allocate_boolean_array(num_non_terminals);
slr_visited -= (num_terminals + 1);
if (slr_trace(rules[item_table[item_no].rule_number].lhs,
conflict_symbol))
;
slr_visited += (num_terminals + 1);
ffree(slr_visited);
return;
}
/***********************************************************************/
/* CONFLICTS_INITIALIZATION: */
/***********************************************************************/
/* This routine is invoked when a grammar contains conflicts, and the */
/* first conflict is detected. */
/***********************************************************************/
static void conflicts_initialization(void)
{
int i;
/*******************************************************************/
/* NT_ITEMS and ITEM_LIST are used in reporting SLR conflicts, and */
/* in recreating paths from the Start item. See the routines */
/* PRINT_RELEVANT_SLR_ITEMS and PRINT_ROOT_PATH. */
/*******************************************************************/
nt_items = Allocate_short_array(num_non_terminals);
nt_items -= (num_terminals + 1);
item_list = Allocate_short_array(num_items + 1);
i = (PRINT_LINE_SIZE - 11) / 2 - 1;
PR_HEADING;
fill_in(msg_line, i, '-');
fprintf(syslis, "\n%s CONFLICTS %s\n", msg_line, msg_line);
output_line_no += 2;
/***********************************************************************/
/* SLR conflicts may be caused by a symbol in the FOLLOW set of a */
/* left hand side, which is not actually in the LALR look-ahead set in */
/* that context. Therefore, there may not exist a path in the state */
/* automaton from the state where the conflict was detected to another */
/* state where it was introduced. In such a case, we try to retrace a */
/* path that contributed the conflict-symbol to the FOLLOW set via a */
/* sequence of productions. */
/* */
/* To assist in this task, we build below a map from each non-terminal */
/* A to the set of items of which A is the dot SYMBOL. I.e., all items */
/* of the form [x .A y] where x and y are arbitrary strings, and A is */
/* a non-terminal. This map is also used in retracing a path from the */
/* Start item to any other item. */
/***********************************************************************/
for ALL_NON_TERMINALS(i)
nt_items[i] = NIL;
for ALL_ITEMS(i)
{
if (item_table[i].symbol IS_A_NON_TERMINAL)
{
item_list[i] = nt_items[item_table[i].symbol];
nt_items[item_table[i].symbol] = i;
}
}
return;
}
/***********************************************************************/
/* PROCESS_CONFLICTS: */
/***********************************************************************/
/* If conflicts are detected, tehy are placed in two lists headed by */
/* SR_CONFLICT_ROOT and RR_CONFLICT_ROOT. We scan these lists, and */
/* report the conflicts. */
/***********************************************************************/
static void process_conflicts(int state_no)
{
int symbol,
rule_no,
n;
char temp[SYMBOL_SIZE + 1];
if (nt_items == NULL)
conflicts_initialization();
print_state(state_no); /* Print state containing conflicts */
/*******************************************************************/
/* Process shift-reduce conflicts. */
/*******************************************************************/
if (sr_conflict_root != NULL)
{
struct sr_conflict_element *p,
*tail;
for (p = sr_conflict_root; p != NULL; tail = p, p = p -> next)
{
symbol = p -> symbol;
rule_no = item_table[p -> item].rule_number;
restore_symbol(temp, RETRIEVE_STRING(symbol));
printf("*** Shift/reduce conflict on \"%s\" with rule %d\n",
temp, rule_no);
fprintf(syslis,
"\n*** Shift/reduce conflict on \"%s\" with rule %d\n",
temp, rule_no);
if (trace_opt != NOTRACE)
{
if (! slr_bit)
print_relevant_lalr_items(state_no, p -> item, symbol);
else
print_relevant_slr_items(p -> item, symbol);
print_item(p -> item);
}
}
free_conflict_elements(sr_conflict_root, tail);
}
/*******************************************************************/
/* Process reduce-reduce conflicts. */
/*******************************************************************/
if (rr_conflict_root != NULL)
{
struct rr_conflict_element *p,
*tail;
for (p = rr_conflict_root; p != NULL; tail = p, p = p -> next)
{
symbol = p -> symbol;
n = item_table[p -> item1].rule_number;
rule_no = item_table[p -> item2].rule_number;
restore_symbol(temp, RETRIEVE_STRING(symbol));
printf("*** Reduce/reduce conflict "
"on \"%s\" between rule %d and %d\n",
temp, n, rule_no);
fprintf(syslis,
"\n*** Reduce/reduce conflict "
"on \"%s\" between rule %d and %d\n",
temp, n, rule_no);
output_line_no +=2;
if (trace_opt != NOTRACE)
{
if (! slr_bit)
print_relevant_lalr_items(state_no, p -> item1, symbol);
else
print_relevant_slr_items(p -> item1, symbol);
print_item(p -> item1);
fill_in(msg_line, PRINT_LINE_SIZE - 3, '-');
fprintf(syslis,"\n%s",msg_line);
ENDPAGE_CHECK;
if (! slr_bit)
print_relevant_lalr_items(state_no, p -> item2, symbol);
else
print_relevant_slr_items(p -> item2, symbol);
print_item(p -> item2);
}
}
free_conflict_elements(rr_conflict_root, tail);
}
return;
}
/***********************************************************************/
/* ADD_CONFLICT_SYMBOL: */
/***********************************************************************/
/* Add SYMBOL to the set of symbols CONFLICT_SYMBOLS[STATE_NO]. */
/***********************************************************************/
static void add_conflict_symbol(int state_no, int symbol)
{
struct node *p;
p = Allocate_node();
p -> value = symbol;
if (conflict_symbols[state_no] == NULL)
p -> next = p;
else
{
p -> next = conflict_symbols[state_no] -> next;
conflict_symbols[state_no] -> next = p;
}
conflict_symbols[state_no] = p;
return;
}
/***********************************************************************/
/* FOLLOW_SOURCES: */
/***********************************************************************/
/* This function takes as argument a configuration STACK, a SYMBOL on */
/* which a transition can be made in the configuration and a terminal */
/* lookahead symbol, LA_SYMBOL. It executes the transition on SYMBOL */
/* and simulates all paths taken in the automaton after that transition*/
/* until new state(s) are reached where a transition is possible on */
/* the lookahead symbol. It then returns the new set of configurations */
/* found on which a transition on LA_SYMBOL is possible. */
/***********************************************************************/
static struct stack_element *follow_sources(struct stack_element *stack,
int symbol, int la_symbol)
{
struct shift_header_type sh;
struct goto_header_type go_to;
struct stack_element *configs,
*q;
struct node *item_ptr;
int item_no,
state_no,
rule_no,
lhs_symbol,
act,
i;
configs = NULL; /* Initialize the output set of configurations */
/*******************************************************************/
/* If the starting configuration consists of a single state and */
/* the initial [state, symbol] pair has already been visited, */
/* return the null set. Otherwise, mark the pair visited and ... */
/*******************************************************************/
state_no = stack -> state_number;
if (stack -> size == 1)
{
if (was_visited(state_no, symbol) ||
(state_no == 1 && symbol == accept_image))
return configs;
mark_visited(state_no, symbol);
}
/*******************************************************************/
/* Find the transition defined on the symbol... */
/* If the SYMBOL is a nonterminal and we can determine that the */
/* lookahead symbol (LA_SYMBOL) cannot possibly follow the */
/* nonterminal in question in this context, we simply abandon the */
/* search and return the NULL set. */
/*******************************************************************/
if (symbol IS_A_NON_TERMINAL)
{
go_to = statset[state_no].go_to;
for (i = 1; GOTO_SYMBOL(go_to, i) != symbol; i++)
;
if (la_index[GOTO_LAPTR(go_to, i)] == OMEGA)
{
int stack_top = 0;
la_traverse(state_no, i, &stack_top);
}
if (! IS_IN_SET(la_set, GOTO_LAPTR(go_to, i), la_symbol))
return configs;
act = GOTO_ACTION(go_to, i);
}
else
{
sh = shift[statset[state_no].shift_number];
for (i = 1; SHIFT_SYMBOL(sh, i) != symbol; i++)
;
act = SHIFT_ACTION(sh, i);
}
/*******************************************************************/
/* If the ACTion on the symbol is a shift or a goto, ... */
/*******************************************************************/
if (act > 0)
{
/***************************************************************/
/* We check to see if the new state contains an action on the */
/* lookahead symbol. If that's the case then we create a new */
/* configuration by appending ACT to the starting configuration*/
/* and add this newly formed configuration to the set(list) of */
/* configurations... */
/***************************************************************/
sh = shift[statset[act].shift_number];
for (i = 1; i <= sh.size; i++)
{
if (SHIFT_SYMBOL(sh, i) == la_symbol)
break;
}
if (i <= sh.size) /* there is a transition on la_symbol in act */
{
q = allocate_stack_element();
q -> state_number = act;
q -> size = stack -> size + 1;
q -> previous = stack;
q -> next = NULL;
configs = q;
}
/***************************************************************/
/* If the new state cannot get into a cycle of null */
/* transitions, we check to see if it contains any transition */
/* on a nullable nonterminal. For each such transition, we */
/* append the new state to the stack and recursively invoke */
/* FOLLOW_SOURCES to check if a transition on LA_SYMBOL cannot */
/* follow such a null transition. */
/***************************************************************/
if (! cyclic[act])
{
go_to = statset[act].go_to;
for (i = 1; i <= go_to.size; i++)
{
symbol = GOTO_SYMBOL(go_to, i);
if (null_nt[symbol])
{
struct stack_element *new_configs;
q = allocate_stack_element();
q -> state_number = act;
q -> size = stack -> size + 1;
q -> previous = stack;
q -> next = NULL;
new_configs = follow_sources(q, symbol, la_symbol);
if (new_configs == NULL)
free_stack_elements(q, q);
else
{
add_dangling_stack_element(q);
configs = union_config_sets(configs, new_configs);
}
}
}
}
}
/*******************************************************************/
/* We now iterate over the kernel set of items associated with the */
/* ACTion defined on SYMBOL... */
/*******************************************************************/
for (item_ptr = (act > 0 ? statset[act].kernel_items
: adequate_item[-act]);
item_ptr != NULL; item_ptr = item_ptr -> next)
{
item_no = item_ptr -> value;
/***************************************************************/
/* For each item that is a final item whose left-hand side */
/* is neither the starting symbol nor a symbol that can */
/* right-most produce itself... */
/***************************************************************/
if (item_table[item_no].symbol == empty)
{
rule_no = item_table[item_no].rule_number;
lhs_symbol = rules[rule_no].lhs;
if (lhs_symbol != accept_image && ! rmpself[lhs_symbol])
{
/*******************************************************/
/* If the length of the prefix of the item preceeding */
/* the dot is shorter that the length of the stack, we */
/* retrace the item's path within the stack and */
/* invoke FOLLOW_SOURCES with the prefix of the stack */
/* where the item was introduced through closure, the */
/* left-hand side of the item and the lookahead symbol.*/
/*******************************************************/
if (item_table[item_no].dot < stack -> size)
{
q = stack;
for (i = 1; i < item_table[item_no].dot; i++)
q = q -> previous;
q = follow_sources(q, lhs_symbol, la_symbol);
configs = union_config_sets(configs, q);
}
else
{
struct node *v,
*p,
*tail;
/***************************************************/
/* Compute the item in the root state of the stack,*/
/* and find the root state... */
/***************************************************/
item_no -= stack -> size;
for (q = stack; q -> size != 1; q = q -> previous)
;
/***************************************************/
/* We are now back in the main automaton, find all */
/* sources where the item was introduced through */
/* closure start a new configuration and invoke */
/* FOLLOW_SOURCES with the appropriate arguments to*/
/* calculate the set of configurations associated */
/* with these sources. */
/***************************************************/
v = lpgaccess(q -> state_number, item_no);
for (p = v; p != NULL; tail = p, p = p -> next)
{
struct stack_element *new_configs;
q = allocate_stack_element();
q -> state_number = p -> value;
q -> size = 1;
q -> previous = NULL;
q -> next = NULL;
new_configs = follow_sources(q, lhs_symbol, la_symbol);
if (new_configs == NULL)
free_stack_elements(q, q);
else
{
add_dangling_stack_element(q);
configs = union_config_sets(configs, new_configs);
}
}
free_nodes(v, tail);
}
}
}
}
return configs;
}
/***********************************************************************/
/* NEXT_LA: */
/***********************************************************************/
/* This function has a similar structure as FOLLOW_SOURCES. But, */
/* instead of computing configurations that can be reached, it */
/* computes lookahead symbols that can be reached. It takes as */
/* argument a configuration STACK, a SYMBOL on which a transition can */
/* be made in the configuration and a set variable, LOOK_AHEAD, where */
/* the result is to be stored. When NEXT_LA is invoked from the */
/* outside, LOOK_AHEAD is assumed to be initialized to the empty set. */
/* NEXT_LA first executes the transition on SYMBOL and thereafter, all */
/* terminal symbols that can be read are added to LOOKAHEAD. */
/***********************************************************************/
static void next_la(struct stack_element *stack,
int symbol, SET_PTR look_ahead)
{
struct shift_header_type sh;
struct goto_header_type go_to;
struct stack_element *q;
struct node *item_ptr;
int item_no,
state_no,
rule_no,
lhs_symbol,
act,
i;
/*******************************************************************/
/* The only symbol that can follow the end-of-file symbol is the */
/* end-of-file symbol. */
/*******************************************************************/
if (symbol == eoft_image)
{
SET_BIT_IN(look_ahead, 0, eoft_image);
return;
}
state_no = stack -> state_number;
/*******************************************************************/
/* Find the transition defined on the symbol... */
/*******************************************************************/
if (symbol IS_A_NON_TERMINAL)
{
go_to = statset[state_no].go_to;
for (i = 1; GOTO_SYMBOL(go_to, i) != symbol; i++)
;
act = GOTO_ACTION(go_to, i);
}
else
{
sh = shift[statset[state_no].shift_number];
for (i = 1; SHIFT_SYMBOL(sh, i) != symbol; i++)
;
act = SHIFT_ACTION(sh, i);
}
/*******************************************************************/
/* If the ACTion on the symbol is a shift or a goto, then all */
/* terminal symbols that can be read in ACT are added to */
/* LOOK_AHEAD. */
/*******************************************************************/
if (act > 0)
{
SET_UNION(look_ahead, 0, read_set, act);
}
/*******************************************************************/
/* We now iterate over the kernel set of items associated with the */
/* ACTion defined on SYMBOL... */
/* Recall that the READ_SET of ACT is but the union of the FIRST */
/* map defined on the suffixes of the items in the kernel of ACT. */
/*******************************************************************/
for (item_ptr = (act > 0 ? statset[act].kernel_items
: adequate_item[-act]);
item_ptr != NULL; item_ptr = item_ptr -> next)
{
item_no = item_ptr -> value;
/***************************************************************/
/* For each item that is a final item whose left-hand side */
/* is neither the starting symbol nor a symbol that can */
/* right-most produce itself... */
/***************************************************************/
if (IS_IN_SET(first, item_table[item_no - 1].suffix_index, empty))
{
rule_no = item_table[item_no].rule_number;
lhs_symbol = rules[rule_no].lhs;
if (lhs_symbol != accept_image && ! rmpself[lhs_symbol])
{
/*******************************************************/
/* If the length of the prefix of the item preceeding */
/* the dot is shorter that the length of the stack, we */
/* retrace the item's path within the stack and */
/* invoke NEXT_LA with the prefix of the stack */
/* where the item was introduced through closure, the */
/* left-hand side of the item and LOOK_AHEAD. */
/*******************************************************/
if (item_table[item_no].dot < stack -> size)
{
q = stack;
for (i = 1; i < item_table[item_no].dot; i++)
q = q -> previous;
next_la(q, lhs_symbol, look_ahead);
}
else
{
struct node *v,
*p,
*tail;
/***************************************************/
/* Compute the item in the root state of the stack,*/
/* and find the root state... */
/***************************************************/
item_no -= stack -> size;
for (q = stack; q -> size != 1; q = q -> previous)
;
/***************************************************/
/* We are now back in the main automaton, find all */
/* sources where the item was introduced through */
/* closure and add all terminal symbols in the */
/* follow set of the left-hand side symbol in each */
/* source to LOOK_AHEAD. */
/***************************************************/
v = lpgaccess(q -> state_number, item_no);
for (p = v; p != NULL; tail = p, p = p -> next)
{
go_to = statset[p -> value].go_to;
for (i = 1; GOTO_SYMBOL(go_to, i) != lhs_symbol; i++)
;
/***********************************************/
/* If look-ahead after left hand side is not */
/* yet computed,call LA_TRAVERSE to compute it.*/
/***********************************************/
if (la_index[GOTO_LAPTR(go_to, i)] == OMEGA)
{
int stack_top = 0;
la_traverse(p -> value, i, &stack_top);
}
SET_UNION(look_ahead, 0,
la_set, GOTO_LAPTR(go_to, i));
}
free_nodes(v, tail);
}
}
}
}
return;
}
/***********************************************************************/
/* STACK_WAS_SEEN: */
/***********************************************************************/
/* This function takes as argument an array, STACK_SEEN, with */
/* STATE_TABLE_SIZE elements (indexable in the range */
/* 0..STATE_TABLE_SIZE-1) which is the base of a hash table and a */
/* STACK. It searches the hash table to see if it already contained */
/* the stack in question. If yes, it returns TRUE. Otherwise, it */
/* inserts the stack into the table and returns FALSE. */
/***********************************************************************/
static BOOLEAN stack_was_seen(struct stack_element **stack_seen,
struct stack_element *stack)
{
unsigned long hash_address;
struct stack_element *p,
*q,
*r;
hash_address = stack -> size; /* Initialize hash address */
for (p = stack; p != NULL; p = p -> previous)
hash_address += p -> state_number;
hash_address %= STATE_TABLE_SIZE;
for (p = stack_seen[hash_address]; p != NULL; p = p -> link)
{
if (stack -> size == p -> size)
{
for (q = stack, r = p;
q != NULL;
q = q -> previous, r = r -> previous)
{
if (q -> state_number != r -> state_number)
break;
}
if (q == NULL)
return TRUE;
}
}
stack -> link = stack_seen[hash_address];
stack_seen[hash_address] = stack;
return FALSE;
}
/***********************************************************************/
/* STATE_TO_RESOLVE_CONFLICTS: */
/***********************************************************************/
/* STATE_TO_RESOLVE_CONFLICTS is a function that attempts to resolve */
/* conflicts by doing more look-ahead. If the conflict resolution */
/* is successful, then a new state is created and returned; otherwise, */
/* the NULL pointer is returned. */
/***********************************************************************/
static struct state_element *state_to_resolve_conflicts
(struct sources_element sources, int la_symbol, int level)
{
struct sources_element new_sources;
struct node **action,
*p,
*tail;
short *symbol_list,
*action_list,
*rule_count,
symbol_root,
shift_root,
reduce_root;
SET_PTR look_ahead;
struct stack_element *stack;
struct state_element **la_shift_state,
*state;
int num_shift_actions,
num_reduce_actions,
default_rule,
count,
i,
symbol,
act;
new_sources = allocate_sources();
action = (struct node **)
calloc(num_terminals + 1, sizeof(struct node *));
if (action == NULL)
nospace(__FILE__, __LINE__);
symbol_list = Allocate_short_array(num_terminals + 1);
action_list = Allocate_short_array(num_terminals + 1);
rule_count = Allocate_short_array(num_rules + 1);
look_ahead = (SET_PTR)
calloc(1, term_set_size * sizeof(BOOLEAN_CELL));
if (look_ahead == NULL)
nospace(__FILE__, __LINE__);
la_shift_state = (struct state_element **)
calloc(num_terminals + 1,
sizeof(struct state_element *));
if (la_shift_state == NULL)
nospace(__FILE__, __LINE__);
/*******************************************************************/
/* Initialize new lookahead state. Initialize counters. Check and */
/* adjust HIGHEST_LEVEL reached so far, if necessary. */
/*******************************************************************/
state = NULL;
num_shift_actions = 0;
num_reduce_actions = 0;
shift_root = NIL;
reduce_root = NIL;
if (level > highest_level)
highest_level = level;
/*******************************************************************/
/* One of the parameters received is a SOURCES map whose domain is */
/* a set of actions and each of these actions is mapped into a set */
/* of configurations that can be reached after that action is */
/* executed (in the state where the conflicts were detected). */
/* In this loop, we compute an ACTION map which maps each each */
/* terminal symbol into 0 or more actions in the domain of SOURCES.*/
/* */
/* NOTE in a sources map, if a configuration is associated with */
/* more than one action then the grammar is not LALR(k) for any k. */
/* We check for that condition below. However, this check is there */
/* for purely cosmetic reason. It is not necessary for the */
/* algorithm to work correctly and its removal will speed up this */
/* loop somewhat (for conflict-less input). */
/* The first loop below initializes the hash table used for */
/* lookups ... */
/*******************************************************************/
for (i = 0; i < STATE_TABLE_SIZE; i++)
sources.stack_seen[i] = NULL;
symbol_root = NIL;
for (act = sources.root; act != NIL; act = sources.list[act])
{
/***************************************************************/
/* For each action we iterate over its associated set of */
/* configurations and invoke NEXT_LA to compute the lookahead */
/* set for that configuration. These lookahead sets are in */
/* turn unioned together to form a lookahead set for the */
/* action in question. */
/***************************************************************/
INIT_SET(look_ahead);
for (stack = sources.configs[act];
stack != NULL; stack = stack -> next)
{
if (stack_was_seen(sources.stack_seen, stack))
{/* This is the superfluous code mentioned above! */
highest_level = INFINITY;
goto clean_up_and_return;
}
next_la(stack, la_symbol, look_ahead);
}
RESET_BIT(look_ahead, empty); /* EMPTY never in LA set */
/***************************************************************/
/* For each lookahead symbol computed for this action, add an */
/* action to the ACTION map and keep track of the symbols on */
/* which any action is defined. */
/* If new conflicts are detected and we are already at the */
/* lookahead level requested, we terminate the computation... */
/***************************************************************/
count = 0;
for ALL_TERMINALS(symbol)
{
if (IS_ELEMENT(look_ahead, symbol))
{
count++;
if (action[symbol] == NULL)
{
symbol_list[symbol] = symbol_root;
symbol_root = symbol;
}
else if (level == lalr_level)
goto clean_up_and_return;
p = Allocate_node();
p -> value = act;
p -> next = action[symbol];
action[symbol] = p;
}
}
/***************************************************************/
/* If the action in question is a reduction then we keep track */
/* of how many times it was used. */
/***************************************************************/
if (act >= 0 && act <= num_rules)
rule_count[act] = count;
}
/*******************************************************************/
/* We now iterate over the symbols on which actions are defined. */
/* If we detect conflicts on any symbol, we compute new sources */
/* and try to recover by computing more lookahead. Otherwise, we */
/* update the counts and create two lists: a list of symbols on */
/* which shift actions are defined and a list of symbols on which */
/* reduce actions are defined. */
/*******************************************************************/
for (symbol = symbol_root;
symbol != NIL; symbol = symbol_list[symbol])
{
/***************************************************************/
/* We have four cases to consider: */
/* 1. There are conflicts on SYMBOL */
/* 2. The action on SYMBOL is a shift-reduce */
/* 3. The action on SYMBOL is a shift */
/* 4. The action on SYMBOL is a reduce */
/***************************************************************/
if (action[symbol] -> next != NULL)
{
new_sources = clear_sources(new_sources);
for (p = action[symbol]; p != NULL; tail = p, p = p -> next)
{
act = p -> value;
if (act >= 0 && act <= num_rules)
rule_count[act]--;
clear_visited();
for (stack = sources.configs[act];
stack != NULL; stack = stack -> next)
{
struct stack_element *new_configs;
new_configs = follow_sources(stack, la_symbol, symbol);
new_sources = add_configs(new_sources, act, new_configs);
}
}
free_nodes(action[symbol], tail);
action[symbol] = NULL;
state = state_to_resolve_conflicts(new_sources, symbol, level + 1);
if (state == NULL)
goto clean_up_and_return;
la_shift_state[symbol] = state;
p = Allocate_node();
p -> value = state -> state_number;
p -> next = NULL;
action[symbol] = p;
num_shift_actions++;
action_list[symbol] = shift_root;
shift_root = symbol;
}
else if (action[symbol] -> value < 0)
{
num_shift_actions++;
action_list[symbol] = shift_root;
shift_root = symbol;
}
else if (action[symbol] -> value > num_rules)
{
num_shift_actions++;
(action[symbol] -> value) -= num_rules;
action_list[symbol] = shift_root;
shift_root = symbol;
}
else
{
num_reduce_actions++;
action_list[symbol] = reduce_root;
reduce_root = symbol;
}
}
/*******************************************************************/
/* We now iterate over the reduce actions in the domain of sources */
/* and compute a default action. */
/*******************************************************************/
default_rule = OMEGA;
count = 0;
for (act = sources.root; act != NIL; act = sources.list[act])
{
if (act >= 0 && act <= num_rules)
{
if (rule_count[act] > count)
{
count = rule_count[act];
default_rule = act;
}
}
}
/*******************************************************************/
/* By now, we are ready to create a new look-ahead state. The */
/* actions for the state are in the ACTION vector, and the */
/* constants: NUM_SHIFT_ACTIONS and NUM_REDUCE_ACTIONS indicate */
/* the number of shift and reduce actions in the ACTION vector. */
/* Note that the IN_STATE field of each look-ahead state created */
/* is initially set to the number associated with that state. If */
/* all the conflicts detected in the state, S, that requested the */
/* creation of a look-ahead state are resolved, then this field */
/* is updated with S. */
/* Otherwise, this field indicates that this look-ahead state is */
/* dangling - no other state point to it. */
/*******************************************************************/
state = (struct state_element *)
talloc(sizeof(struct state_element));
if (state == (struct state_element *) NULL)
nospace(__FILE__, __LINE__);
state -> link = la_state_root;
la_state_root = state;
max_la_state++;
SHORT_CHECK(max_la_state);
state -> symbol = la_symbol;
state -> state_number = max_la_state;
state -> in_state = max_la_state; /* Initialize it to something! */
/*******************************************************************/
/* If there are any shift-actions in this state, we create a shift */
/* map for them if one does not yet exist, otherwise, we reuse the */
/* old existing one. */
/*******************************************************************/
if (num_shift_actions > 0)
{
unsigned long hash_address;
struct shift_header_type sh;
struct state_element *p;
/***************************************************************/
/* In this loop, we compute the hash address as the number of */
/* shift actions, plus the sum of all the symbols on which a */
/* shift action is defined. As a side effect, we also take */
/* care of some other issues. Shift actions which were encoded */
/* to distinguish them from reduces action are decoded. */
/* The counters for shift and shift-reduce actions are updated.*/
/* For all Shift actions to look-ahead states, the IN_STATE */
/* field of these look-ahead target states are updated. */
/***************************************************************/
hash_address = num_shift_actions; /* Initialize hash address */
for (symbol = shift_root;
symbol != NIL; symbol = action_list[symbol])
{
hash_address += symbol;
if (action[symbol] -> value < 0)
num_shift_reduces++;
else if (action[symbol] -> value <= num_states)
num_shifts++;
else /* lookahead-shift */
la_shift_state[symbol] -> in_state = max_la_state;
}
hash_address %= SHIFT_TABLE_SIZE;
/***************************************************************/
/* Search list associated with HASH_ADDRESS, and if the shift */
/* map in question is found, update the SHIFT, and SHIFT_NUMBER*/
/* fields of the new Look-Ahead State. */
/***************************************************************/
for (p = shift_table[hash_address]; p != NULL; p = p -> next_shift)
{ /* Search hash table for shift map */
sh = p -> shift;
if (sh.size == num_shift_actions)
{
for (i = 1; i <= num_shift_actions; i++)
{ /* compare shift maps */
if (SHIFT_ACTION(sh, i) !=
action[SHIFT_SYMBOL(sh, i)] -> value)
break;
}
if (i > num_shift_actions) /* are they equal ? */
{
state -> shift = sh;
state -> shift_number = p -> shift_number;
break;
}
}
}
/***************************************************************/
/* Shift map was not found. We have to create a new one and */
/* insert it into the table. */
/***************************************************************/
if (p == NULL)
{
num_shift_maps++;
sh = Allocate_shift_map(num_shift_actions);
state -> shift = sh;
state -> shift_number = num_shift_maps;
state -> next_shift = shift_table[hash_address];
shift_table[hash_address] = state;
for (symbol = shift_root, i = 1;
symbol != NIL; symbol = action_list[symbol], i++)
{
SHIFT_SYMBOL(sh, i) = symbol;
SHIFT_ACTION(sh, i) = action[symbol] -> value;
}
}
}
else
{
state -> shift.size = 0;
state -> shift_number = 0;
}
/*******************************************************************/
/* Construct Reduce map. */
/* When SPACE or TIME tables are requested, no default actions are */
/* taken. */
/*******************************************************************/
Build_reduce_map:
{
struct reduce_header_type red;
int i;
if (default_rule != OMEGA &&
table_opt != OPTIMIZE_TIME &&
table_opt != OPTIMIZE_SPACE &&
default_opt != 0)
num_reduce_actions -= rule_count[default_rule];
num_reductions += num_reduce_actions;
red = Allocate_reduce_map(num_reduce_actions);
state -> reduce = red;
for (symbol = reduce_root, i = 1;
symbol != NIL; symbol = action_list[symbol])
{
if (default_opt == 0 ||
action[symbol] -> value != default_rule ||
table_opt == OPTIMIZE_TIME ||
table_opt == OPTIMIZE_SPACE)
{
REDUCE_SYMBOL (red, i) = symbol;
REDUCE_RULE_NO(red, i) = action[symbol] -> value;
i++;
}
}
REDUCE_SYMBOL(red, 0) = DEFAULT_SYMBOL;
if (default_opt > 0)
REDUCE_RULE_NO(red, 0) = default_rule;
else
REDUCE_RULE_NO(red, 0) = OMEGA;
}
/*******************************************************************/
/* Release all space allocated to process this lookahead state and */
/* return. */
/*******************************************************************/
clean_up_and_return:
free_sources(new_sources);
for (symbol = symbol_root; symbol != NIL; symbol = symbol_list[symbol])
{
for (p = action[symbol]; p != NULL; tail = p, p = p -> next)
;
if (action[symbol] != NULL)
free_nodes(action[symbol], tail);
}
ffree(action);
ffree(symbol_list);
ffree(action_list);
ffree(rule_count);
ffree(look_ahead);
ffree(la_shift_state);
return state;
}
/***********************************************************************/
/* INIT_RMPSELF: */
/***********************************************************************/
/* This procedure is invoked when LALR_LEVEL > 1 to construct the */
/* RMPSELF set which identifies the nonterminals that can right-most */
/* produce themselves. It takes as argumen the map PRODUCES which */
/* identifies for each nonterminal the set of nonterminals that it can */
/* right-most produce. */
/***********************************************************************/
void init_rmpself(SET_PTR produces)
{
int nt;
rmpself = Allocate_boolean_array(num_non_terminals);
rmpself -= (num_terminals + 1);
/*******************************************************************/
/* Note that each element of the map produces is a boolean vector */
/* that is indexable in the range 1..num_non_terminals. Since each */
/* nonterminal is offset by the value num_terminals (to distinguish*/
/* it from the terminals),it must therefore be adjusted accordingly*/
/* when dereferencing an element in the range of the produces map. */
/*******************************************************************/
for ALL_NON_TERMINALS(nt)
rmpself[nt] = IS_IN_NTSET(produces, nt, nt - num_terminals);
return;
}
/***********************************************************************/
/* INIT_LALRK_PROCESS: */
/***********************************************************************/
/* If LALR(k), k > 1, is requested, we may have to create more shift */
/* maps. Initialize SHIFT_TABLE. Note that each element of SHIFT_TABLE */
/* is automatically initialized to NULL by CALLOC. */
/* (See STATE_TO_RESOLVE_CONFLICTS) */
/* Second, we check whether or not the grammar is not LR(k) for any k */
/* because there exist a nonterminal A such that */
/* */
/* A =>+rm A */
/* */
/* Finally, allocate and compute the CYCLIC vector which identifies */
/* states that can enter a cycle via transitions on nullable */
/* nonterminals. If such a cyle exists, the grammar can also be */
/* claimed to be not LR(k) for any k. */
/***********************************************************************/
void init_lalrk_process(void)
{
int state_no,
symbol;
not_lrk = FALSE;
if (lalr_level > 1)
{
shift_table = (struct state_element **)
calloc(SHIFT_TABLE_SIZE,
sizeof(struct state_element *));
if (shift_table == NULL)
nospace(__FILE__, __LINE__);
for ALL_NON_TERMINALS(symbol)
not_lrk = not_lrk || rmpself[symbol];
cyclic = Allocate_boolean_array(num_states + 1);
index_of = Allocate_short_array(num_states + 1);
stack = Allocate_short_array(num_states + 1);
for ALL_STATES(state_no)
index_of[state_no] = OMEGA;
top = 0;
for ALL_STATES(state_no)
{
if (index_of[state_no] == OMEGA)
compute_cyclic(state_no);
not_lrk = not_lrk || cyclic[state_no];
}
ffree(stack);
ffree(index_of);
sources = allocate_sources();
visited.map = (struct node **)
calloc(num_states + 1, sizeof(struct node *));
if (visited.map == NULL)
nospace(__FILE__, __LINE__);
visited.list = Allocate_short_array(num_states + 1);
visited.root = NIL;
}
return;
}
/***********************************************************************/
/* EXIT_LALRK_PROCESS: */
/***********************************************************************/
/* Free all support structures that were allocated to help compute */
/* additional lookahead. */
/***********************************************************************/
void exit_lalrk_process(void)
{
if (lalr_level > 1)
{
rmpself += (num_terminals + 1);
ffree(rmpself);
ffree(shift_table);
ffree(cyclic);
free_sources(sources);
clear_visited();
ffree(visited.map);
ffree(visited.list);
}
return;
}
/***********************************************************************/
/* FREE_CONFLICT_SPACE */
/***********************************************************************/
/* If we had to report conflicts, free the SLR support structures. */
/***********************************************************************/
void free_conflict_space(void)
{
if (nt_items != NULL)
{
nt_items += (num_terminals + 1);
ffree(nt_items);
ffree(item_list);
}
return;
}
/***********************************************************************/
/* RESOLVE_CONFLICTS: */
/***********************************************************************/
/* If conflicts were detected and LALR(k) processing was requested, */
/* where k > 1, then we attempt to resolve the conflicts by computing */
/* more lookaheads. Shift-Reduce conflicts are processed first, */
/* followed by Reduce-Reduce conflicts. */
/***********************************************************************/
void resolve_conflicts(int state_no, struct node **action,
short *symbol_list, int symbol_root)
{
struct shift_header_type sh;
struct node *p,
*tail;
struct stack_element *q;
struct state_element *state;
int i,
act,
item_no,
lhs_symbol,
symbol;
/*******************************************************************/
/* Note that a shift action to a state "S" is encoded with the */
/* value (S+NUM_RULES) to help distinguish it from reduce actions. */
/* Reduce actions lie in the range [0..NUM_RULES]. Shift-reduce */
/* actions lie in the range [-NUM_RULES..-1]. */
/*******************************************************************/
sr_conflict_root = NULL;
sh = shift[statset[state_no].shift_number];
for (i = 1; i <= sh.size; i++)
{
symbol = SHIFT_SYMBOL(sh, i);
if (single_productions_bit && action[symbol] != NULL)
add_conflict_symbol(state_no, symbol);
if (lalr_level > 1 && action[symbol] != NULL)
{
sources = clear_sources(sources);
q = allocate_stack_element();
q -> state_number = state_no;
q -> size = 1;
q -> previous = NULL;
q -> next = NULL;
act = SHIFT_ACTION(sh, i);
if (act > 0)
sources = add_configs(sources, act + num_rules, q);
else
sources = add_configs(sources, act, q);
for (p = action[symbol]; p != NULL; tail = p, p = p -> next)
{
struct stack_element *new_configs;
struct node *v,
*s;
item_no = p -> value;
act = item_table[item_no].rule_number;
lhs_symbol = rules[act].lhs;
clear_visited();
v = lpgaccess(state_no, item_no);
for (s = v; s != NULL; tail = s, s = s -> next)
{
q = allocate_stack_element();
q -> state_number = s -> value;
q -> size = 1;
q -> previous = NULL;
q -> next = NULL;
new_configs = follow_sources(q, lhs_symbol, symbol);
if (new_configs == NULL)
free_stack_elements(q, q);
else
{
add_dangling_stack_element(q);
sources = add_configs(sources, act, new_configs);
}
}
free_nodes(v, tail);
}
/***************************************************************/
/* The function STATE_TO_RESOLVE_CONFLICTS returns a pointer */
/* value to a STATE_ELEMENT which has been constructed to */
/* resolve the conflicts in question. If the value returned by */
/* that function is NULL, then it was not possible to resolve */
/* the conflicts. In any case, STATE_TO_RESOLVE_CONFLICTS */
/* frees the space that is used by the action map headed by */
/* ACTION_ROOT. */
/***************************************************************/
state = state_to_resolve_conflicts(sources, symbol, 2);
if (state != NULL)
{
state -> in_state = state_no;
free_nodes(action[symbol], tail);
action[symbol] = NULL;
}
}
/***************************************************************/
/* If unresolved shift-reduce conflicts are detected on symbol,*/
/* add them to the list of conflicts so they can be reported */
/* (if the CONFLICT option is on) and count them. */
/***************************************************************/
if (action[symbol] != NULL)
{
act = SHIFT_ACTION(sh, i);
for (p = action[symbol]; p != NULL; tail = p, p = p -> next)
{
if (conflicts_bit)
{
struct sr_conflict_element *q;
q = (struct sr_conflict_element *)
allocate_conflict_element();
q -> state_number = act;
q -> item = p -> value;
q -> symbol = symbol;
q -> next = sr_conflict_root;
sr_conflict_root = q;
}
num_sr_conflicts++;
}
/***********************************************************/
/* Remove reduce actions defined on symbol so as to give */
/* precedence to the shift. */
/***********************************************************/
free_nodes(action[symbol], tail);
action[symbol] = NULL;
}
}
/*******************************************************************/
/* We construct a map from each action to a list of states as we */
/* did for the Shift-reduce conflicts. A boolean vector ITEM_SEEN */
/* is used to prevent duplication of actions. This problem does */
/* not occur with Shift-Reduce conflicts. */
/*******************************************************************/
rr_conflict_root = NULL;
for (symbol = symbol_root;
symbol != NIL; symbol = symbol_list[symbol])
{
if (action[symbol] != NULL)
{
if (single_productions_bit && action[symbol] -> next != NULL)
add_conflict_symbol(state_no, symbol);
if (lalr_level > 1 && action[symbol] -> next != NULL)
{
sources = clear_sources(sources);
for (p = action[symbol]; p != NULL; tail = p, p = p -> next)
{
struct stack_element *new_configs;
struct node *v,
*s;
item_no = p -> value;
act = item_table[item_no].rule_number;
lhs_symbol = rules[act].lhs;
clear_visited();
v = lpgaccess(state_no, item_no);
for (s = v; s != NULL; tail = s, s = s -> next)
{
q = allocate_stack_element();
q -> state_number = s -> value;
q -> size = 1;
q -> previous = NULL;
q -> next = NULL;
new_configs = follow_sources(q, lhs_symbol, symbol);
if (new_configs == NULL)
free_stack_elements(q, q);
else
{
add_dangling_stack_element(q);
sources = add_configs(sources, act, new_configs);
}
}
free_nodes(v, tail);
}
/***************************************************************/
/* STATE_TO_RESOLVE_CONFLICTS will return a pointer to a */
/* STATE_ELEMENT if the conflicts were resolvable with more */
/* lookaheads, otherwise, it returns NULL. */
/***************************************************************/
state = state_to_resolve_conflicts(sources, symbol, 2);
if (state != NULL)
{
state -> in_state = state_no;
free_nodes(action[symbol], tail);
action[symbol] = NULL;
}
}
/***********************************************************/
/* If unresolved reduce-reduce conflicts are detected on */
/* symbol, add them to the list of conflicts so they can be*/
/* reported (if the CONFLICT option is on) and count them. */
/***********************************************************/
if (action[symbol] != NULL)
{
act = action[symbol] -> value;
for (p = action[symbol] -> next;
p != NULL; tail = p, p = p -> next)
{
if (conflicts_bit)
{
struct rr_conflict_element *q;
q = (struct rr_conflict_element *)
allocate_conflict_element();
q -> symbol = symbol;
q -> item1 = act;
q -> item2 = p -> value;
q -> next = rr_conflict_root;
rr_conflict_root = q;
}
num_rr_conflicts++;
}
/***********************************************************/
/* Remove all reduce actions that are defined on symbol */
/* except the first one. That rule is the one with the */
/* longest right-hand side that was associated with symbol.*/
/* See code in MKRED.C. */
/***********************************************************/
if (action[symbol] -> next != NULL)
{
free_nodes(action[symbol] -> next, tail);
action[symbol] -> next = NULL;
}
}
}
}
/*******************************************************************/
/* If any unresolved conflicts were detected, process them. */
/*******************************************************************/
if (sr_conflict_root != NULL || rr_conflict_root != NULL)
process_conflicts(state_no);
free_dangling_stack_elements();
return;
}
/***********************************************************************/
/* CREATE_LASTATS: */
/***********************************************************************/
/* Transfer the look-ahead states to their permanent destination, the */
/* array LASTATS and update the original automaton with the relevant */
/* transitions into the lookahead states. */
/***********************************************************************/
void create_lastats(void)
{
struct state_element **new_shift_actions,
*p;
struct shift_header_type sh;
short *shift_action,
*shift_list,
*shift_count,
*state_list;
int shift_root,
state_root,
shift_size,
i,
symbol,
state_no,
shift_no;
/*******************************************************************/
/* Allocate LASTATS structure to permanently construct lookahead */
/* states and reallocate SHIFT map as we may have to construct */
/* new shift maps. */
/*******************************************************************/
lastats = (struct lastats_type *)
calloc(max_la_state - num_states,
sizeof(struct lastats_type));
if (lastats == NULL)
nospace(__FILE__, __LINE__);
lastats -= (num_states + 1);
shift = (struct shift_header_type *)
realloc(shift,
(max_la_state + 1) * sizeof(struct shift_header_type));
if (shift == NULL)
nospace(__FILE__, __LINE__);
/*******************************************************************/
/* Allocate temporary space used to construct final lookahead */
/* states. */
/*******************************************************************/
new_shift_actions = (struct state_element **)
calloc(num_states + 1, sizeof(struct state_element *));
if (new_shift_actions == NULL)
nospace(__FILE__, __LINE__);
shift_action = Allocate_short_array(num_terminals + 1);
shift_list = Allocate_short_array(num_terminals + 1);
shift_count = Allocate_short_array(max_la_state + 1);
state_list = Allocate_short_array(max_la_state + 1);
/*******************************************************************/
/* The array shift_action will be used to construct a shift map */
/* for a given state. It is initialized here to the empty map. */
/* The array shift_count is used to count how many references */
/* there are to each shift map. */
/*******************************************************************/
for ALL_TERMINALS(symbol)
shift_action[symbol] = OMEGA;
for (i = 0; i <= (int) max_la_state; i++)
shift_count[i] = 0;
for ALL_STATES(state_no)
shift_count[statset[state_no].shift_number]++;
/*******************************************************************/
/* Traverse the list of lookahead states and initialize the */
/* final lastat element appropriately. Also, construct a mapping */
/* from each relevant initial state into the list of lookahead */
/* states into which it can shift. We also keep track of these */
/* initial states in a list headed by state_root. */
/*******************************************************************/
state_root = NIL;
for (p = la_state_root; p != NULL; p = p -> link)
{
lastats[p -> state_number].in_state = p -> in_state;
lastats[p -> state_number].shift_number = p -> shift_number;
lastats[p -> state_number].reduce = p -> reduce;
if (p -> shift.size != 0)
shift[p -> shift_number] = p -> shift;
state_no = p -> in_state;
if (state_no <= (int) num_states)
{
if (new_shift_actions[state_no] == NULL)
{
state_list[state_no] = state_root;
state_root = state_no;
}
p -> next_shift = new_shift_actions[state_no];
new_shift_actions[state_no] = p;
}
}
/*******************************************************************/
/* We now traverse the list of initial states that can shift into */
/* lookahead states and update their shift map appropriately. */
/*******************************************************************/
for (state_no = state_root;
state_no != NIL; state_no = state_list[state_no])
{
/***************************************************************/
/* Copy the shift map associated with STATE_NO into the direct */
/* access map SHIFT_ACTION. */
/***************************************************************/
shift_no = statset[state_no].shift_number;
sh = shift[shift_no];
shift_root = NIL;
for (i = 1; i <= sh.size; i++)
{
symbol = SHIFT_SYMBOL(sh, i);
shift_action[symbol] = SHIFT_ACTION(sh, i);
shift_list[symbol] = shift_root;
shift_root = symbol;
}
/***************************************************************/
/* Add the lookahead shift transitions to the initial shift */
/* map. */
/***************************************************************/
shift_size = sh.size;
for (p = new_shift_actions[state_no]; p != NULL; p = p -> next_shift)
{
if (shift_action[p -> symbol] == OMEGA)
{
shift_size++;
shift_list[p -> symbol] = shift_root;
shift_root = p -> symbol;
}
else if (shift_action[p -> symbol] < 0)
num_shift_reduces--;
else
num_shifts--;
shift_action[p -> symbol] = p -> state_number;
}
/***************************************************************/
/* There are two conditions under which we have to construct */
/* a brand new shift map: */
/* 1. The initial shift map was shared with other states. */
/* 2. The updated shift map contains more elements than */
/* the initial one. */
/***************************************************************/
if (shift_count[shift_no] > 1)
{
shift_count[shift_no]--;
num_shift_maps++;
sh = Allocate_shift_map(shift_size);
shift[num_shift_maps] = sh;
statset[state_no].shift_number = num_shift_maps;
}
else if (shift_size > sh.size)
{
sh = Allocate_shift_map(shift_size);
shift[shift_no] = sh;
}
/***************************************************************/
/* Reconstruct the relevant shift map. */
/***************************************************************/
for (symbol = shift_root, i = 1;
symbol != NIL;
shift_action[symbol] = OMEGA, symbol = shift_list[symbol], i++)
{
SHIFT_SYMBOL(sh, i) = symbol;
SHIFT_ACTION(sh, i) = shift_action[symbol];
}
}
/*******************************************************************/
/* Free all local temporary structures and return. */
/*******************************************************************/
ffree(new_shift_actions);
ffree(shift_action);
ffree(shift_list);
ffree(shift_count);
ffree(state_list);
return;
}