home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
hugs101.zip
/
hugs101sc.zip
/
hugsdist
/
demos
/
examples.hs
< prev
next >
Wrap
Text File
|
1995-02-14
|
3KB
|
82 lines
-- Some examples of functional programming for Hugs
-- Factorials:
fact n = product [1..n] -- a simple definition
fac n = if n==0 then 1 else n * fac (n-1) -- a recursive definition
fac' 0 = 1 -- using two equations
fac' n = n * fac (n-1)
facts, facts' :: (Enum a, Num a) => [a]
facts = scanl (*) 1 [1..] -- infinite list of factorials
facts' = 1 : zipWith (*) facts' [1..] -- another way of doing it
facFix :: Num a => a -> a
facFix = fixedPt f -- using a fixed point combinator
where f g 0 = 1 -- overlapping patterns
f g n = n * g (n-1)
fixedPt f = g where g = f g -- fixed point combinator
facCase :: Integral a => a -> a
facCase = \n -> case n of
0 -> 1
(m+1) -> (m+1) * facCase m
-- Fibonacci numbers:
fib 0 = 0 -- using pattern matching:
fib 1 = 1 -- base cases...
fib (n+2) = fib n + fib (n+1) -- recursive case
fastFib n = fibs !! n -- using an infinite stream
where fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- Perfect numbers:
factors n = [ i | i<-[1..n-1], n `mod` i == 0 ]
perfect n = sum (factors n) == n
firstperfect = head perfects
perfects = filter perfect [1::Int..]
-- Prime numbers:
primes :: Integral a => [a]
primes = map head (iterate sieve [2..])
sieve (p:xs) = [ x | x<-xs, x `rem` p /= 0 ]
-- Pythagorean triads:
triads n = [ (x,y,z) | let ns=[1..n], x<-ns, y<-ns, z<-ns, x*x+y*y==z*z ]
-- The Hamming problem:
hamming :: [Int]
hamming = 1 : (map (2*) hamming || map (3*) hamming || map (5*) hamming)
where (x:xs) || (y:ys) | x==y = x : (xs || ys)
| x<y = x : (xs || (y:ys))
| y<x = y : (ys || (x:xs))
-- Digits of e:
eFactBase :: [Int]
eFactBase = map head (iterate scale (2:repeat 1))
scale :: Integral a => [a] -> [a]
scale = renorm . map (10*) . tail
renorm ds = foldr step [0] (zip ds [2..])
step (d,n) bs | (d `mod` n + 9) < n = (d `div` n) : b : tail bs
| otherwise = c : b : tail bs
where b' = head bs
b = (d+b') `mod` n
c = (d+b') `div` n
-- Pascal's triangle
pascal :: [[Int]]
pascal = iterate (\row -> zipWith (+) ([0]++row) (row++[0])) [1]
showPascal = (layn . map show . take 14) pascal