home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Enigma Amiga Life 109
/
EnigmaAmiga109CD.iso
/
software
/
sviluppo
/
mesa-tk
/
samples.tk
/
wave.c
< prev
Wrap
C/C++ Source or Header
|
1998-10-23
|
15KB
|
644 lines
/*
* Copyright (c) 1991, 1992, 1993 Silicon Graphics, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee, provided
* that (i) the above copyright notices and this permission notice appear in
* all copies of the software and related documentation, and (ii) the name of
* Silicon Graphics may not be used in any advertising or
* publicity relating to the software without the specific, prior written
* permission of Silicon Graphics.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF
* ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL SILICON GRAPHICS BE LIABLE FOR
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "gltk.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
#define GETCOORD(frame, x, y) (&(theMesh.coords[frame*theMesh.numCoords+(x)+(y)*(theMesh.widthX+1)]))
#define GETFACET(frame, x, y) (&(theMesh.facets[frame*theMesh.numFacets+(x)+(y)*theMesh.widthX]))
GLenum rgb, doubleBuffer, directRender;
GLint colorIndexes1[3];
GLint colorIndexes2[3];
GLenum clearMask = GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT;
GLenum smooth = GL_FALSE;
GLenum lighting = GL_TRUE;
GLenum depth = GL_TRUE;
GLenum stepMode = GL_FALSE;
GLenum spinMode = GL_FALSE;
GLint contouring = 0;
GLint widthX, widthY;
GLint checkerSize;
float height;
GLint frames, curFrame = 0, nextFrame = 0;
struct facet {
float color[3];
float normal[3];
};
struct coord {
float vertex[3];
float normal[3];
};
struct mesh {
GLint widthX, widthY;
GLint numFacets;
GLint numCoords;
GLint frames;
struct coord *coords;
struct facet *facets;
} theMesh;
GLubyte contourTexture1[] =
{
255, 255, 255, 255,
255, 255, 255, 255,
255, 255, 255, 255,
127, 127, 127, 127,
};
GLubyte contourTexture2[] =
{
255, 255, 255, 255,
255, 127, 127, 127,
255, 127, 127, 127,
255, 127, 127, 127,
};
static void Animate(void)
{
struct coord *coord;
struct facet *facet;
float *lastColor;
float *thisColor;
GLint i, j;
glClear(clearMask);
if (nextFrame || !stepMode) {
curFrame++;
}
if (curFrame >= theMesh.frames) {
curFrame = 0;
}
if ((nextFrame || !stepMode) && spinMode) {
glRotatef(5.0, 0.0, 0.0, 1.0);
}
nextFrame = 0;
for (i = 0; i < theMesh.widthX; i++) {
glBegin(GL_QUAD_STRIP);
lastColor = NULL;
for (j = 0; j < theMesh.widthY; j++) {
facet = GETFACET(curFrame, i, j);
if (!smooth && lighting) {
glNormal3fv(facet->normal);
}
if (lighting) {
if (rgb) {
thisColor = facet->color;
glColor3fv(facet->color);
}
else {
thisColor = facet->color;
glMaterialfv(GL_FRONT_AND_BACK, GL_COLOR_INDEXES,
facet->color);
}
}
else {
if (rgb) {
thisColor = facet->color;
glColor3fv(facet->color);
}
else {
thisColor = facet->color;
glIndexf(facet->color[1]);
}
}
if (!lastColor || (thisColor[0] != lastColor[0] && smooth)) {
if (lastColor) {
glEnd();
glBegin(GL_QUAD_STRIP);
}
coord = GETCOORD(curFrame, i, j);
if (smooth && lighting) {
glNormal3fv(coord->normal);
}
glVertex3fv(coord->vertex);
coord = GETCOORD(curFrame, i + 1, j);
if (smooth && lighting) {
glNormal3fv(coord->normal);
}
glVertex3fv(coord->vertex);
}
coord = GETCOORD(curFrame, i, j + 1);
if (smooth && lighting) {
glNormal3fv(coord->normal);
}
glVertex3fv(coord->vertex);
coord = GETCOORD(curFrame, i + 1, j + 1);
if (smooth && lighting) {
glNormal3fv(coord->normal);
}
glVertex3fv(coord->vertex);
lastColor = thisColor;
}
glEnd();
}
glFlush();
if (doubleBuffer) {
tkSwapBuffers();
}
}
static void SetColorMap(void)
{
static float green[3] =
{0.2, 1.0, 0.2};
static float red[3] =
{1.0, 0.2, 0.2};
float *color, percent;
GLint *indexes, entries, i, j;
entries = tkGetColorMapSize();
colorIndexes1[0] = 1;
colorIndexes1[1] = 1 + (GLint) ((entries - 1) * 0.3);
colorIndexes1[2] = (GLint) ((entries - 1) * 0.5);
colorIndexes2[0] = 1 + (GLint) ((entries - 1) * 0.5);
colorIndexes2[1] = 1 + (GLint) ((entries - 1) * 0.8);
colorIndexes2[2] = entries - 1;
for (i = 0; i < 2; i++) {
switch (i) {
case 0:
color = green;
indexes = colorIndexes1;
break;
case 1:
color = red;
indexes = colorIndexes2;
break;
}
for (j = indexes[0]; j < indexes[1]; j++) {
percent = 0.2 + 0.8 * (j - indexes[0]) /
(float)(indexes[1] - indexes[0]);
tkSetOneColor(j, percent * color[0], percent * color[1],
percent * color[2]);
}
for (j = indexes[1]; j <= indexes[2]; j++) {
percent = (j - indexes[1]) / (float)(indexes[2] - indexes[1]);
tkSetOneColor(j, percent * (1 - color[0]) + color[0],
percent * (1 - color[1]) + color[1],
percent * (1 - color[2]) + color[2]);
}
}
}
static void InitMesh(void)
{
struct coord *coord;
struct facet *facet;
float dp1[3], dp2[3];
float *pt1, *pt2, *pt3;
float angle, d, x, y;
GLint numFacets, numCoords, frameNum, i, j;
theMesh.widthX = widthX;
theMesh.widthY = widthY;
theMesh.frames = frames;
numFacets = widthX * widthY;
numCoords = (widthX + 1) * (widthY + 1);
theMesh.numCoords = numCoords;
theMesh.numFacets = numFacets;
theMesh.coords = (struct coord *)malloc(frames * numCoords *
sizeof(struct coord));
theMesh.facets = (struct facet *)malloc(frames * numFacets *
sizeof(struct facet));
if (theMesh.coords == NULL || theMesh.facets == NULL) {
printf("Out of memory.\n");
tkQuit();
}
for (frameNum = 0; frameNum < frames; frameNum++) {
for (i = 0; i <= widthX; i++) {
x = i / (float)widthX;
for (j = 0; j <= widthY; j++) {
y = j / (float)widthY;
d = sqrt(x * x + y * y);
if (d == 0.0) {
d = 0.0001;
}
angle = 2 * PI * d + (2 * PI / frames * frameNum);
coord = GETCOORD(frameNum, i, j);
coord->vertex[0] = x - 0.5;
coord->vertex[1] = y - 0.5;
coord->vertex[2] = (height - height * d) * cos(angle);
coord->normal[0] = -(height / d) * x * ((1 - d) * 2 * PI *
sin(angle) + cos(angle));
coord->normal[1] = -(height / d) * y * ((1 - d) * 2 * PI *
sin(angle) + cos(angle));
coord->normal[2] = -1;
d = 1.0 / sqrt(coord->normal[0] * coord->normal[0] +
coord->normal[1] * coord->normal[1] + 1);
coord->normal[0] *= d;
coord->normal[1] *= d;
coord->normal[2] *= d;
}
}
for (i = 0; i < widthX; i++) {
for (j = 0; j < widthY; j++) {
facet = GETFACET(frameNum, i, j);
if (((i / checkerSize) % 2) ^ (j / checkerSize) % 2) {
if (rgb) {
facet->color[0] = 1.0;
facet->color[1] = 0.2;
facet->color[2] = 0.2;
}
else {
facet->color[0] = colorIndexes1[0];
facet->color[1] = colorIndexes1[1];
facet->color[2] = colorIndexes1[2];
}
}
else {
if (rgb) {
facet->color[0] = 0.2;
facet->color[1] = 1.0;
facet->color[2] = 0.2;
}
else {
facet->color[0] = colorIndexes2[0];
facet->color[1] = colorIndexes2[1];
facet->color[2] = colorIndexes2[2];
}
}
pt1 = GETCOORD(frameNum, i, j)->vertex;
pt2 = GETCOORD(frameNum, i, j + 1)->vertex;
pt3 = GETCOORD(frameNum, i + 1, j + 1)->vertex;
dp1[0] = pt2[0] - pt1[0];
dp1[1] = pt2[1] - pt1[1];
dp1[2] = pt2[2] - pt1[2];
dp2[0] = pt3[0] - pt2[0];
dp2[1] = pt3[1] - pt2[1];
dp2[2] = pt3[2] - pt2[2];
facet->normal[0] = dp1[1] * dp2[2] - dp1[2] * dp2[1];
facet->normal[1] = dp1[2] * dp2[0] - dp1[0] * dp2[2];
facet->normal[2] = dp1[0] * dp2[1] - dp1[1] * dp2[0];
d = 1.0 / sqrt(facet->normal[0] * facet->normal[0] +
facet->normal[1] * facet->normal[1] +
facet->normal[2] * facet->normal[2]);
facet->normal[0] *= d;
facet->normal[1] *= d;
facet->normal[2] *= d;
}
}
}
}
static void InitMaterials(void)
{
static float ambient[] =
{0.1, 0.1, 0.1, 1.0};
static float diffuse[] =
{0.5, 1.0, 1.0, 1.0};
static float position[] =
{90.0, 90.0, 150.0, 0.0};
static float front_mat_shininess[] =
{60.0};
static float front_mat_specular[] =
{0.2, 0.2, 0.2, 1.0};
static float front_mat_diffuse[] =
{0.5, 0.28, 0.38, 1.0};
static float back_mat_shininess[] =
{60.0};
static float back_mat_specular[] =
{0.5, 0.5, 0.2, 1.0};
static float back_mat_diffuse[] =
{1.0, 1.0, 0.2, 1.0};
static float lmodel_ambient[] =
{1.0, 1.0, 1.0, 1.0};
static float lmodel_twoside[] =
{GL_TRUE};
glMatrixMode(GL_PROJECTION);
gluPerspective(90.0, 1.0, 0.5, 10.0);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_POSITION, position);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
glLightModelfv(GL_LIGHT_MODEL_TWO_SIDE, lmodel_twoside);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glMaterialfv(GL_FRONT, GL_SHININESS, front_mat_shininess);
glMaterialfv(GL_FRONT, GL_SPECULAR, front_mat_specular);
glMaterialfv(GL_FRONT, GL_DIFFUSE, front_mat_diffuse);
glMaterialfv(GL_BACK, GL_SHININESS, back_mat_shininess);
glMaterialfv(GL_BACK, GL_SPECULAR, back_mat_specular);
glMaterialfv(GL_BACK, GL_DIFFUSE, back_mat_diffuse);
if (rgb) {
glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
}
if (rgb) {
glEnable(GL_COLOR_MATERIAL);
}
else {
SetColorMap();
}
}
static void InitTexture(void)
{
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
static void Init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glFrontFace(GL_CW);
glEnable(GL_DEPTH_TEST);
InitMaterials();
InitTexture();
InitMesh();
glMatrixMode(GL_MODELVIEW);
glTranslatef(0.0, 0.4, -1.8);
glScalef(2.0, 2.0, 2.0);
glRotatef(-35.0, 1.0, 0.0, 0.0);
glRotatef(35.0, 0.0, 0.0, 1.0);
}
static void Reshape(int width, int height)
{
glViewport(0, 0, (GLint) width, (GLint) height);
}
static GLenum Key(int key, GLenum mask)
{
switch (key) {
case TK_ESCAPE:
tkQuit();
case TK_c:
contouring++;
if (contouring == 1) {
static GLfloat map[4] =
{0, 0, 20, 0};
glTexImage2D(GL_TEXTURE_2D, 0, 3, 4, 4, 0, GL_LUMINANCE,
GL_UNSIGNED_BYTE, (GLvoid *) contourTexture1);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, map);
glTexGenfv(GL_T, GL_OBJECT_PLANE, map);
glEnable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
}
else if (contouring == 2) {
static GLfloat map[4] =
{0, 0, 20, 0};
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTexGenfv(GL_S, GL_EYE_PLANE, map);
glTexGenfv(GL_T, GL_EYE_PLANE, map);
glPopMatrix();
}
else {
contouring = 0;
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_2D);
}
break;
case TK_s:
smooth = !smooth;
if (smooth) {
glShadeModel(GL_SMOOTH);
}
else {
glShadeModel(GL_FLAT);
}
break;
case TK_l:
lighting = !lighting;
if (lighting) {
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
if (rgb) {
glEnable(GL_COLOR_MATERIAL);
}
}
else {
glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
if (rgb) {
glDisable(GL_COLOR_MATERIAL);
}
}
break;
case TK_d:
depth = !depth;
if (depth) {
glEnable(GL_DEPTH_TEST);
clearMask |= GL_DEPTH_BUFFER_BIT;
}
else {
glDisable(GL_DEPTH_TEST);
clearMask &= ~GL_DEPTH_BUFFER_BIT;
}
break;
case TK_SPACE:
stepMode = !stepMode;
if (stepMode) {
tkIdleFunc(0);
tkDisplayFunc(Animate);
}
else {
tkIdleFunc(Animate);
tkDisplayFunc(0);
}
break;
case TK_n:
if (stepMode) {
nextFrame = 1;
}
break;
case TK_a:
spinMode = !spinMode;
break;
default:
return GL_FALSE;
}
return GL_TRUE;
}
static GLenum Args(int argc, char **argv)
{
GLint i;
rgb = GL_TRUE;
doubleBuffer = GL_FALSE;
directRender = GL_TRUE;
frames = 10;
widthX = 10;
widthY = 10;
checkerSize = 2;
height = 0.2;
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "-ci") == 0) {
rgb = GL_FALSE;
}
else if (strcmp(argv[i], "-rgb") == 0) {
rgb = GL_TRUE;
}
else if (strcmp(argv[i], "-sb") == 0) {
doubleBuffer = GL_FALSE;
}
else if (strcmp(argv[i], "-db") == 0) {
doubleBuffer = GL_TRUE;
}
else if (strcmp(argv[i], "-dr") == 0) {
directRender = GL_TRUE;
}
else if (strcmp(argv[i], "-ir") == 0) {
directRender = GL_FALSE;
}
else if (strcmp(argv[i], "-grid") == 0) {
if (i + 2 >= argc || argv[i + 1][0] == '-' || argv[i + 2][0] == '-') {
printf("-grid (No numbers).\n");
return GL_FALSE;
}
else {
widthX = atoi(argv[++i]);
widthY = atoi(argv[++i]);
}
}
else if (strcmp(argv[i], "-size") == 0) {
if (i + 1 >= argc || argv[i + 1][0] == '-') {
printf("-checker (No number).\n");
return GL_FALSE;
}
else {
checkerSize = atoi(argv[++i]);
}
}
else if (strcmp(argv[i], "-wave") == 0) {
if (i + 1 >= argc || argv[i + 1][0] == '-') {
printf("-wave (No number).\n");
return GL_FALSE;
}
else {
height = atof(argv[++i]);
}
}
else if (strcmp(argv[i], "-frames") == 0) {
if (i + 1 >= argc || argv[i + 1][0] == '-') {
printf("-frames (No number).\n");
return GL_FALSE;
}
else {
frames = atoi(argv[++i]);
}
}
else {
printf("%s (Bad option).\n", argv[i]);
return GL_FALSE;
}
}
return GL_TRUE;
}
void main(int argc, char **argv)
{
GLenum type;
if (Args(argc, argv) == GL_FALSE) {
tkQuit();
}
tkInitPosition(0, 0, 300, 300);
type = TK_DEPTH;
type |= (rgb) ? TK_RGB : TK_INDEX;
type |= (doubleBuffer) ? TK_DOUBLE : TK_SINGLE;
type |= (directRender) ? TK_DIRECT : TK_INDIRECT;
tkInitDisplayMode(type);
if (tkInitWindow("Wave Demo") == GL_FALSE) {
tkQuit();
}
Init();
tkExposeFunc(Reshape);
tkReshapeFunc(Reshape);
tkKeyDownFunc(Key);
tkIdleFunc(Animate);
tkExec();
}