home *** CD-ROM | disk | FTP | other *** search
/ ARM Club 3 / TheARMClub_PDCD3.iso / hensa / office / a115_1 / Documents / Functions / Complex < prev    next >
Text File  |  1992-01-09  |  6KB  |  239 lines

  1. %OP%VS4.12 Test (Dec 12 1991), Colton Software - Development, R0123 4567 8901 2345
  2. %OP%DP4
  3. %OP%LP*
  4. %OP%TM4
  5. %OP%BM4
  6. %OP%LM5
  7. %OP%FX
  8. %OP%FY
  9. %OP%FS
  10. %OP%WC216,1492,460,1200,0,0,0,0
  11. %CO:A,12,100%
  12. %C%%H1%Complex Functions Examples
  13.  
  14. %C%Function
  15.  
  16.  z
  17. w
  18. z+w
  19. z-w
  20. z*w
  21. z/w
  22. z^w
  23. exp(z)
  24. ln(z)
  25. cos(z)
  26. sin(z)
  27. tan(z)
  28. acos(z)
  29. asin(z)
  30. atan(z)
  31. cosh(z)
  32. sinh(z)
  33. tanh(z)
  34. acosh(z)
  35. asinh(z)
  36. atanh(z)
  37. cosec(z)
  38. cot(z)
  39. sec(z)
  40. acosec(z)
  41. acot(z)
  42. asec(z)
  43. cosech(z)
  44. coth(z)
  45. sech(z)
  46. acosech(z)
  47. acoth(z)
  48. asech(z)
  49. %CO:B,10,0%
  50.  
  51.  
  52. %R%Real
  53.  
  54. %V%%R%1
  55. %V%%R%2
  56. %V%%R%index(c_add({$B$6,$C$6},{$B$7,$C$7}),1,1)
  57. %V%%R%index(c_sub({$B$6,$C$6},{$B$7,$C$7}),1,1)
  58. %V%%R%index(c_mul({$B$6,$C$6},{$B$7,$C$7}),1,1)
  59. %V%%R%index(c_div({$B$6,$C$6},{$B$7,$C$7}),1,1)
  60. %V%%R%index(c_power({$B$6,$C$6},{$B$7,$C$7}),1,1)
  61. %V%%R%index(c_exp({$B$6,$C$6}),1,1)
  62. %V%%R%index(c_ln({$B$6,$C$6}),1,1)
  63. %V%%R%index(c_cos({$B$6,$C$6}),1,1)
  64. %V%%R%index(c_sin({$B$6,$C$6}),1,1)
  65. %V%%R%index(c_tan({$B$6,$C$6}),1,1)
  66. %V%%R%index(c_acos({$B$6,$C$6}),1,1)
  67. %V%%R%index(c_asin({$B$6,$C$6}),1,1)
  68. %V%%R%index(c_atan({$B$6,$C$6}),1,1)
  69. %V%%R%index(c_cosh({$B$6,$C$6}),1,1)
  70. %V%%R%index(c_sinh({$B$6,$C$6}),1,1)
  71. %V%%R%index(c_tanh({$B$6,$C$6}),1,1)
  72. %V%%R%index(c_acosh({$B$6,$C$6}),1,1)
  73. %V%%R%index(c_asinh({$B$6,$C$6}),1,1)
  74. %V%%R%index(c_atanh({$B$6,$C$6}),1,1)
  75. %V%%R%index(c_cosec({$B$6,$C$6}),1,1)
  76. %V%%R%index(c_cot({$B$6,$C$6}),1,1)
  77. %V%%R%index(c_sec({$B$6,$C$6}),1,1)
  78. %V%%R%index(c_acosec({$B$6,$C$6}),1,1)
  79. %V%%R%index(c_acot({$B$6,$C$6}),1,1)
  80. %V%%R%index(c_asec({$B$6,$C$6}),1,1)
  81. %V%%R%index(c_cosech({$B$6,$C$6}),1,1)
  82. %V%%R%index(c_coth({$B$6,$C$6}),1,1)
  83. %V%%R%index(c_sech({$B$6,$C$6}),1,1)
  84. %V%%R%index(c_acosech({$B$6,$C$6}),1,1)
  85. %V%%R%index(c_acoth({$B$6,$C$6}),1,1)
  86. %V%%R%index(c_asech({$B$6,$C$6}),1,1)
  87. %CO:C,10,0%
  88.  
  89.  
  90. %R%Imaginary
  91.  
  92. %V%%R%1
  93. %V%%R%-1
  94. %V%%R%index(c_add({$B$6,$C$6},{$B$7,$C$7}),2,1)
  95. %V%%R%index(c_sub({$B$6,$C$6},{$B$7,$C$7}),2,1)
  96. %V%%R%index(c_mul({$B$6,$C$6},{$B$7,$C$7}),2,1)
  97. %V%%R%index(c_div({$B$6,$C$6},{$B$7,$C$7}),2,1)
  98. %V%%R%index(c_power({$B$6,$C$6},{$B$7,$C$7}),2,1)
  99. %V%%R%index(c_exp({$B$6,$C$6}),2,1)
  100. %V%%R%index(c_ln({$B$6,$C$6}),2,1)
  101. %V%%R%index(c_cos({$B$6,$C$6}),2,1)
  102. %V%%R%index(c_sin({$B$6,$C$6}),2,1)
  103. %V%%R%index(c_tan({$B$6,$C$6}),2,1)
  104. %V%%R%index(c_acos({$B$6,$C$6}),2,1)
  105. %V%%R%index(c_atan({$B$6,$C$6}),2,1)
  106. %V%%R%index(c_atan({$B$6,$C$6}),2,1)
  107. %V%%R%index(c_cosh({$B$6,$C$6}),2,1)
  108. %V%%R%index(c_sinh({$B$6,$C$6}),2,1)
  109. %V%%R%index(c_tanh({$B$6,$C$6}),2,1)
  110. %V%%R%index(c_acosh({$B$6,$C$6}),2,1)
  111. %V%%R%index(c_asinh({$B$6,$C$6}),2,1)
  112. %V%%R%index(c_atanh({$B$6,$C$6}),2,1)
  113. %V%%R%index(c_cosec({$B$6,$C$6}),2,1)
  114. %V%%R%index(c_cot({$B$6,$C$6}),2,1)
  115. %V%%R%index(c_sec({$B$6,$C$6}),2,1)
  116. %V%%R%index(c_acosec({$B$6,$C$6}),2,1)
  117. %V%%R%index(c_acot({$B$6,$C$6}),2,1)
  118. %V%%R%index(c_asec({$B$6,$C$6}),2,1)
  119. %V%%R%index(c_cosech({$B$6,$C$6}),2,1)
  120. %V%%R%index(c_coth({$B$6,$C$6}),2,1)
  121. %V%%R%index(c_sech({$B$6,$C$6}),2,1)
  122. %V%%R%index(c_acosech({$B$6,$C$6}),2,1)
  123. %V%%R%index(c_acoth({$B$6,$C$6}),2,1)
  124. %V%%R%index(c_asech({$B$6,$C$6}),2,1)
  125. %CO:D,10,0%
  126.  
  127.  
  128. %R%Modulus
  129.  
  130. %V%%R%c_radius({B6,C6})
  131. %V%%R%c_radius({B7,C7})
  132. %V%%R%c_radius({B8,C8})
  133. %V%%R%c_radius({B9,C9})
  134. %V%%R%c_radius({B10,C10})
  135. %V%%R%c_radius({B11,C11})
  136. %V%%R%c_radius({B12,C12})
  137. %V%%R%c_radius({B13,C13})
  138. %V%%R%c_radius({B14,C14})
  139. %V%%R%c_radius({B15,C15})
  140. %V%%R%c_radius({B16,C16})
  141. %V%%R%c_radius({B17,C17})
  142. %V%%R%c_radius({B18,C18})
  143. %V%%R%c_radius({B19,C19})
  144. %V%%R%c_radius({B20,C20})
  145. %V%%R%c_radius({B21,C21})
  146. %V%%R%c_radius({B22,C22})
  147. %V%%R%c_radius({B23,C23})
  148. %V%%R%c_radius({B24,C24})
  149. %V%%R%c_radius({B25,C25})
  150. %V%%R%c_radius({B26,C26})
  151. %V%%R%c_radius({B27,C27})
  152. %V%%R%c_radius({B28,C28})
  153. %V%%R%c_radius({B29,C29})
  154. %V%%R%c_radius({B30,C30})
  155. %V%%R%c_radius({B31,C31})
  156. %V%%R%c_radius({B32,C32})
  157. %V%%R%c_radius({B33,C33})
  158. %V%%R%c_radius({B34,C34})
  159. %V%%R%c_radius({B35,C35})
  160. %V%%R%c_radius({B36,C36})
  161. %V%%R%c_radius({B37,C37})
  162. %V%%R%c_radius({B38,C38})
  163. %CO:E,10,0%
  164.  
  165.  
  166. %R%Argument
  167.  
  168. %V%%R%c_theta({B6,C6})
  169. %V%%R%c_theta({B7,C7})
  170. %V%%R%c_theta({B8,C8})
  171. %V%%R%c_theta({B9,C9})
  172. %V%%R%c_theta({B10,C10})
  173. %V%%R%c_theta({B11,C11})
  174. %V%%R%c_theta({B12,C12})
  175. %V%%R%c_theta({B13,C13})
  176. %V%%R%c_theta({B14,C14})
  177. %V%%R%c_theta({B15,C15})
  178. %V%%R%c_theta({B16,C16})
  179. %V%%R%c_theta({B17,C17})
  180. %V%%R%c_theta({B18,C18})
  181. %V%%R%c_theta({B19,C19})
  182. %V%%R%c_theta({B20,C20})
  183. %V%%R%c_theta({B21,C21})
  184. %V%%R%c_theta({B22,C22})
  185. %V%%R%c_theta({B23,C23})
  186. %V%%R%c_theta({B24,C24})
  187. %V%%R%c_theta({B25,C25})
  188. %V%%R%c_theta({B26,C26})
  189. %V%%R%c_theta({B27,C27})
  190. %V%%R%c_theta({B28,C28})
  191. %V%%R%c_theta({B29,C29})
  192. %V%%R%c_theta({B30,C30})
  193. %V%%R%c_theta({B31,C31})
  194. %V%%R%c_theta({B32,C32})
  195. %V%%R%c_theta({B33,C33})
  196. %V%%R%c_theta({B34,C34})
  197. %V%%R%c_theta({B35,C35})
  198. %V%%R%c_theta({B36,C36})
  199. %V%%R%c_theta({B37,C37})
  200. %V%%R%c_theta({B38,C38})
  201. %CO:F,1,0%%CO:G,49,56%
  202.  
  203.  
  204. Summary
  205.  
  206. Defining complex number z.
  207. Defining complex number w.
  208. Adds two complex numbers.
  209. Subtracts two complex numbers.
  210. Multiplies two complex numbers.
  211. Divides one complex number by another.
  212. Raises one complex number to the power of another.
  213. Raises e (natural exponent) to the power of a complex number.
  214. Returns the natural logarithm of a complex number.
  215. Returns the Cosine of a complex number.
  216. Returns the Sine of a complex number.
  217. Returns the Tangent of a complex number.
  218. Returns the inverse Cosine of a complex number.
  219. Returns the inverse Sine of a complex number.
  220. Returns the inverse Tangent of a complex number.
  221. Returns the hyperbolic Cosine of a complex number.
  222. Returns the hyperbolic Sine of a complex number.
  223. Returns the hyperbolic Tangent of a complex number.
  224. Returns the inverse hyperbolic Cosine of a complex number.
  225. Returns the inverse hyperbolic Sine of a complex number.
  226. Returns the inverse hyperbolic Tangent of a complex number.
  227. Returns the Cosecant of a complex number.
  228. Returns the Cotangent of a complex number.
  229. Returns the Secant of a complex number.
  230. Returns the inverse Cosecant of a complex number.
  231. Returns the inverse Cotangent of a complex number.
  232. Returns the inverse Secant of a complex number.
  233. Returns the hyperbolic Cosecant of a complex number.
  234. Returns the hyperbolic Cotangent of a complex number.
  235. Returns the hyperbolic Secant of a complex number.
  236. Returns the inverse hyperbolic Cosecant of a complex number.
  237. Returns the inverse hyperbolic Cotangent of a complex number.
  238. Returns the inverse hyperbolic Secant of a complex number.
  239.