home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
ARM Club 3
/
TheARMClub_PDCD3.iso
/
hensa
/
maths
/
pgplot_1
/
Examples
/
f77
/
PGDEMO3
< prev
next >
Wrap
Text File
|
1997-06-10
|
18KB
|
602 lines
PROGRAM PGDEM3
C-----------------------------------------------------------------------
C Demonstration program for PGPLOT contouring routines.
C-----------------------------------------------------------------------
INTEGER PGBEG
WRITE (*,'(A)') ' Demonstration of PGPLOT contouring routines'
C
C Call PGBEG to initiate PGPLOT and open the output device; PGBEG
C will prompt the user to supply the device name and type.
C
IF (PGBEG(0,'?',1,1) .NE. 1) STOP
C
C Call the demonstration subroutines.
C
WRITE (*,'(A)') ' Routine PGCONT'
CALL PGEX31
WRITE (*,'(A)') ' Routine PGCONS'
CALL PGEX32
WRITE (*,'(A)') ' Routine PGCONT with PGCONL labels'
CALL PGEX36
WRITE (*,'(A)') ' Routine PGCONB'
CALL PGEX33
WRITE (*,'(A)') ' Routine PGCONX with arrow labels'
CALL PGEX37
WRITE (*,'(A)') ' Routine PGCONX'
CALL PGEX34
WRITE (*,'(A)') ' Routine PGCONF'
CALL PGEXX1
C
C Finally, call PGEND to terminate things properly.
C
CALL PGEND
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX31
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONT.
C-----------------------------------------------------------------------
INTEGER I,J
REAL F(40,40),FMIN,FMAX,ALEV(1),TR(6)
DATA TR/0.,1.,0.,0.,0.,1./
C
C Compute a suitable function.
C
FMIN = 0.0
FMAX = 0.0
DO 20 I=1,40
DO 10 J=1,40
F(I,J) = COS(0.3*SQRT(I*2.)-0.4*J/3.)*COS(0.4*I/3)+
1 (I-J)/40.0
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
10 CONTINUE
20 CONTINUE
C
C Clear the screen. Set up window and viewport.
C
CALL PGPAGE
CALL PGSVP(0.05,0.95,0.05,0.95)
CALL PGSWIN(1.0,40.0,1.0,40.0)
CALL PGBOX('bcts',0.0,0,'bcts',0.0,0)
CALL PGMTXT('t',1.0,0.0,0.0,'Contouring using PGCONT')
C
C Draw the map. PGCONT is called once for each contour, using
C different line attributes to distinguish contour levels.
C
CALL PGBBUF
DO 30 I=1,21
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
IF (MOD(I,5).EQ.0) THEN
CALL PGSLW(3)
ELSE
CALL PGSLW(1)
END IF
IF (I.LT.10) THEN
CALL PGSCI(2)
CALL PGSLS(2)
ELSE
CALL PGSCI(3)
CALL PGSLS(1)
END IF
CALL PGCONT(F,40,40,1,40,1,40,ALEV,-1,TR)
30 CONTINUE
CALL PGSLW(1)
CALL PGSLS(1)
CALL PGSCI(1)
CALL PGEBUF
END
SUBROUTINE PGEX32
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONS.
C-----------------------------------------------------------------------
INTEGER I,J
REAL F(40,40),FMIN,FMAX,ALEV(1),TR(6)
DATA TR/0.,1.,0.,0.,0.,1./
C
C Compute a suitable function.
C
FMIN = 0.0
FMAX = 0.0
DO 20 I=1,40
DO 10 J=1,40
F(I,J) = COS(0.3*SQRT(I*2.)-0.4*J/3.)*COS(0.4*I/3)+
1 (I-J)/40.0
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
10 CONTINUE
20 CONTINUE
C
C Clear the screen. Set up window and viewport.
C
CALL PGPAGE
CALL PGBOX('bcts',0.0,0,'bcts',0.0,0)
CALL PGMTXT('t',1.0,0.0,0.0,'Contouring using PGCONS')
C
C Draw the map. PGCONS is called once for each contour, using
C different line attributes to distinguish contour levels.
C
CALL PGBBUF
DO 40 I=1,21
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
IF (MOD(I,5).EQ.0) THEN
CALL PGSLW(3)
ELSE
CALL PGSLW(1)
END IF
IF (I.LT.10) THEN
CALL PGSCI(2)
CALL PGSLS(2)
ELSE
CALL PGSCI(3)
CALL PGSLS(1)
END IF
CALL PGCONS(F,40,40,1,40,1,40,ALEV,-1,TR)
40 CONTINUE
CALL PGSLW(1)
CALL PGSLS(1)
CALL PGSCI(1)
CALL PGEBUF
END
SUBROUTINE PGEX33
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONB.
C-----------------------------------------------------------------------
REAL BLANK
PARAMETER (BLANK=-1.2E20)
INTEGER I,J
REAL F(40,40),FMIN,FMAX,ALEV(1),TR(6),X,Y,R
DATA TR/0.,1.,0.,0.,0.,1./
C
C Compute a suitable function.
C
FMIN = 0.0
FMAX = 0.0
DO 20 I=1,40
DO 10 J=1,40
F(I,J) = COS(0.3*SQRT(I*2.)-0.4*J/3.)*COS(0.4*I/3)+
1 (I-J)/40.0
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
10 CONTINUE
20 CONTINUE
C
C "Blank" the data outside an annulus.
C
DO 60 I=1,40
DO 50 J=1,40
R = SQRT((I-20.5)**2 + (J-20.5)**2)
IF (R.GT.20.0 .OR. R.LT.3.0) F(I,J) = BLANK
50 CONTINUE
60 CONTINUE
C
CALL PGPAGE
CALL PGBOX('bcts',0.0,0,'bcts',0.0,0)
CALL PGMTXT('t',1.0,0.0,0.0,'Contouring using PGCONB')
CALL PGBBUF
DO 80 I=1,21
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
IF (MOD(I,5).EQ.0) THEN
CALL PGSLW(3)
ELSE
CALL PGSLW(1)
END IF
IF (I.LT.10) THEN
CALL PGSCI(2)
CALL PGSLS(2)
ELSE
CALL PGSCI(3)
CALL PGSLS(1)
END IF
CALL PGCONB(F,40,40,1,40,1,40,ALEV,-1,TR,BLANK)
80 CONTINUE
CALL PGEBUF
C
C Mark the blanked points for easy identification.
C
CALL PGBBUF
CALL PGSCI(1)
DO 100 I=1,40
DO 90 J=1,40
IF (F(I,J).EQ.BLANK) THEN
X = TR(1) + REAL(I)*TR(2) + REAL(J)*TR(3)
Y = TR(4) + REAL(I)*TR(5) + REAL(J)*TR(6)
CALL PGPT1(X, Y, -1)
END IF
90 CONTINUE
100 CONTINUE
CALL PGEBUF
END
SUBROUTINE PGEX34
C-----------------------------------------------------------------------
C This program is intended to demonstrate the use of the PGPLOT routine
C PGCONX. As an example, we take data defined on a sphere. We want to
C draw a contour map of the data on an equal-area projection of the
C surface of the sphere; we choose the Hammer-Aitoff equal-area
C projection centered on Declination (latitude) 0, Right Ascension
C (longitude) 0. The data are defined at 2-degree intervals in both
C coordinates. We thus need a data array dimensioned 181 by 91; the
C array index runs from -90 to +90 in declination (91 elements) and
C from -180 to +180 in right ascension (181 elements). The data at -180
C and +180 must be identical, of course, but they need to be duplicated
C in the array as these two longitudes appear on opposite sides of the
C map.
C-----------------------------------------------------------------------
REAL PI, RPDEG
PARAMETER (PI=3.14159265359)
PARAMETER (RPDEG=PI/180.0)
INTEGER I, J
REAL RA, DEC, B, L, XC(181), YC(181)
REAL Q(181,91), C(9)
EXTERNAL PLCAIT
C
C Call PGENV to create a rectangular window of 4 x 2 units. This is
C the bounding rectangle of the plot. The JUST argument is 1
C to get equal scales in x and y.
C
CALL PGBBUF
CALL PGENV(-2.0, 2.0, -1.0, 1.0, 1, -2)
CALL PGLAB('Right Ascension', 'Declination', ' ')
CALL PGMTXT('t',2.0,0.0,0.0,
1 'Contouring on a non-Cartesian grid using PGCONX')
CALL PGSCH(0.6)
CALL PGMTXT('b',8.0,0.0,0.0,
1 'Hammer-Aitoff Equal-Area Projection of the Sphere')
CALL PGSCH(1.0)
C
C Draw 7 lines of constant longitude at longitude 0, 60, 120, ...,
C 360 degrees. Each line is made up of 90 straight-line segments.
C
DO 20 J=1,7
RA = (-180.+(J-1)*60.)*RPDEG
DO 10 I=1,91
DEC = 2*(I-46)*RPDEG
CALL AITOFF(DEC,RA,XC(I),YC(I))
10 CONTINUE
CALL PGLINE(91,XC,YC)
20 CONTINUE
C
C Draw 5 lines of constant latitude at latitudes -60, -30, 0, 30,
C 60 degrees. Each line is made up of 360 straight-line segments.
C
DO 40 J=1,5
DEC = (-60.+(J-1)*30.)*RPDEG
DO 30 I=1,181
RA = 2*(I-91)*RPDEG
CALL AITOFF(DEC,RA,XC(I),YC(I))
30 CONTINUE
CALL PGLINE(181,XC,YC)
40 CONTINUE
CALL PGEBUF
C
C Compute the data to be contoured. In practice the data might be read
C in from an external file. In this example the data are computed: they
C are the galactic latitudes of the points on the sphere. Thus the
C contours will be lines of constant galactic latitude.
C
DO 60 J=1,91
DEC = 2*(J-46)*RPDEG
DO 50 I=1,181
RA = 2*(I-91)*RPDEG
CALL GALACT(RA, DEC, B,L)
Q(I,J) = B
50 CONTINUE
60 CONTINUE
C
C Draw the contour map using PGCONX. Contours at 0, 20, 40, 60, 80.
C
DO 70 I=1,9
C(I) = -100.0 +I*20.0
70 CONTINUE
CALL PGBBUF
CALL PGSCI(2)
CALL PGCONX(Q, 181, 91, 1, 181, 1, 91, C, 9, PLCAIT)
CALL PGSCI(1)
CALL PGEBUF
END
SUBROUTINE PLCAIT(VISBLE, X, Y, Z)
INTEGER VISBLE
REAL X,Y,Z
C-----------------------------------------------------------------------
C Plotting subroutine for PGCONX. This routine converts the input
C coordinates (latitude and longitude) into the projected coordinates
C (x and y), and moves or draws as requested by VISBLE.
C-----------------------------------------------------------------------
REAL PI, RPDEG
PARAMETER (PI=3.14159265359)
PARAMETER (RPDEG=PI/180.0)
REAL B, L, XWORLD, YWORLD
B = 2.0*(Y-46.0)*RPDEG
L = 2.0*(X-91.0)*RPDEG
CALL AITOFF(B, L, XWORLD, YWORLD)
IF (VISBLE.EQ.0) THEN
CALL PGMOVE(XWORLD, YWORLD)
ELSE
CALL PGDRAW(XWORLD, YWORLD)
END IF
END
SUBROUTINE AITOFF(B,L,X,Y)
C-----------------------------------------------------------------------
C Hammer-Aitoff projection.
C
C Input: latitude and longitude (B,L) in radians
C Output: cartesian (X,Y) in range +/-2, +/-1
C-----------------------------------------------------------------------
REAL L,B,X,Y,L2,DEN
C
L2 = L/2.0
DEN = SQRT(1.0+COS(B)*COS(L2))
X = 2.0*COS(B)*SIN(L2)/DEN
Y = SIN(B)/DEN
END
SUBROUTINE GALACT(RA,DEC,GLAT,GLONG)
C-----------------------------------------------------------------------
C Convert 1950.0 equatorial coordinates (RA, DEC) to galactic
C latitude and longitude (GLAT, GLONG).
C
C Arguments:
C RA, DEC (input): 1950.0 RA and Dec (radians).
C GLAT, GLONG (output): galactic latitude and longitude
C (degrees).
C
C Reference: e.g., D. R. H. Johnson and D. R. Soderblom, A. J. v93,
C p864 (1987).
C-----------------------------------------------------------------------
REAL RA, RRA, DEC, RDEC, CDEC, R(3,3), E(3), G(3)
REAL RADDEG, GLAT, GLONG
INTEGER I, J
DATA R/-.066988740D0, .492728466D0,-.867600811D0,-.872755766D0,
$ -.450346958D0,-.188374601D0,-.483538915D0, .744584633D0,
$ .460199785D0/
DATA RADDEG/57.29577951D0/
C-----------------------------------------------------------------------
RRA = RA
RDEC = DEC
CDEC = COS(RDEC)
E(1) = CDEC*COS(RRA)
E(2) = CDEC*SIN(RRA)
E(3) = SIN(RDEC)
DO 20 I=1,3
G(I) = 0.0
DO 10 J=1,3
G(I) = G(I) + E(J)*R(I,J)
10 CONTINUE
20 CONTINUE
GLAT = ASIN(G(3))*RADDEG
GLONG = ATAN2(G(2),G(1))*RADDEG
IF (GLONG.LT.0.0) GLONG = GLONG+360.0
RETURN
C-----------------------------------------------------------------------
END
SUBROUTINE PGEX37
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONX.
C-----------------------------------------------------------------------
INTEGER I,J
REAL F(40,40),FMIN,FMAX,ALEV(1)
EXTERNAL PLCARO
C
C Compute a suitable function.
C
FMIN = 0.0
FMAX = 0.0
DO 20 I=1,40
DO 10 J=1,40
F(I,J) = COS(0.3*SQRT(I*2.)-0.4*J/3.)*COS(0.4*I/3)+
1 (I-J)/40.0
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
10 CONTINUE
20 CONTINUE
C
C Clear the screen. Set up window and viewport.
C
CALL PGPAGE
CALL PGSVP(0.05,0.95,0.05,0.95)
CALL PGSWIN(1.0,40.0,1.0,40.0)
CALL PGBOX('bcts',0.0,0,'bcts',0.0,0)
CALL PGMTXT('t',1.0,0.0,0.0,
: 'Contouring using PGCONX with arrows')
C
C Draw the map. PGCONX is called once for each contour, using
C different line attributes to distinguish contour levels.
C
CALL PGBBUF
DO 30 I=1,21
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
IF (MOD(I,5).EQ.0) THEN
CALL PGSLW(3)
ELSE
CALL PGSLW(1)
END IF
IF (I.LT.10) THEN
CALL PGSCI(2)
CALL PGSLS(2)
ELSE
CALL PGSCI(3)
CALL PGSLS(1)
END IF
CALL PGCONX(F,40,40,1,40,1,40,ALEV,-1,PLCARO)
30 CONTINUE
CALL PGSLW(1)
CALL PGSLS(1)
CALL PGSCI(1)
CALL PGEBUF
END
SUBROUTINE PGEX36
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONT and PGCONL.
C-----------------------------------------------------------------------
INTEGER I,J
REAL F(40,40),FMIN,FMAX,ALEV(1),TR(6)
CHARACTER*32 LABEL
DATA TR /0.0, 1.0, 0.0, 0.0, 0.0, 1.0/
C
C Compute a suitable function.
C
FMIN = 0.0
FMAX = 0.0
DO 20 I=1,40
DO 10 J=1,40
F(I,J) = COS(0.3*SQRT(I*2.)-0.4*J/3.)*COS(0.4*I/3)+
1 (I-J)/40.0
FMIN = MIN(F(I,J),FMIN)
FMAX = MAX(F(I,J),FMAX)
10 CONTINUE
20 CONTINUE
C
C Clear the screen. Set up window and viewport.
C
CALL PGPAGE
CALL PGBOX('bcts',0.0,0,'bcts',0.0,0)
CALL PGMTXT('t',1.0,0.0,0.0,
1 'Contouring using PGCONT and PGCONL labels')
C
C Draw the map. PGCONT is called once for each contour, using
C different line attributes to distinguish contour levels.
C
CALL PGBBUF
DO 40 I=1,21
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
IF (MOD(I,5).EQ.0) THEN
CALL PGSLW(3)
ELSE
CALL PGSLW(1)
END IF
IF (I.LT.10) THEN
CALL PGSCI(2)
CALL PGSLS(2)
ELSE
CALL PGSCI(3)
CALL PGSLS(1)
END IF
CALL PGCONT(F,40,40,1,40,1,40,ALEV,-1,TR)
40 CONTINUE
CALL PGSLW(1)
CALL PGSLS(1)
CALL PGEBUF
C
C Label the contours with PGCONL. Only even-numbered contours
C are labelled.
C
CALL PGBBUF
DO 50 I=2,21,2
ALEV(1) = FMIN + (I-1)*(FMAX-FMIN)/20.0
WRITE (LABEL,'(I2)') I
C WRITE (LABEL,'(F8.2)') ALEV
IF (I.LT.10) THEN
CALL PGSCI(2)
ELSE
CALL PGSCI(3)
END IF
CALL PGCONL(F,40,40,1,40,1,40,ALEV,TR,LABEL,16,8)
50 CONTINUE
CALL PGSCI(1)
CALL PGEBUF
END
SUBROUTINE PLCARO(VISBLE, X, Y, Z)
INTEGER VISBLE
REAL X,Y,Z
C-----------------------------------------------------------------------
C Plotting subroutine for PGCONX. This routine labels contours with
C arrows. Arrows point clockwise around minima, anticlockwise around
C maxima. Arrows are drawn on 1/16 of contour line segments.
C-----------------------------------------------------------------------
REAL XP, YP
INTEGER I
SAVE I
DATA I /0/
C
I = MOD(I+1,16)
IF (VISBLE.EQ.0) THEN
I = 0
CALL PGMOVE(X, Y)
ELSE IF (I.EQ.8) THEN
C -- Draw line segment with arrow at midpoint
CALL PGQPOS(XP,YP)
CALL PGARRO(XP, YP, (X+XP)*0.5, (Y+YP)*0.5)
CALL PGDRAW(X, Y)
ELSE
C -- Draw plain line segment
CALL PGDRAW(X, Y)
END IF
END
SUBROUTINE PGEXX1
C-----------------------------------------------------------------------
C Demonstration of contouring routine PGCONF.
C-----------------------------------------------------------------------
INTEGER NX, NY, NC
PARAMETER (NX=51, NY=51, NC=9)
INTEGER I, J
REAL Z(NX,NY),TR(6), R
REAL X, Y, XMIN, XMAX, YMIN, YMAX, DX, DY, MU, C(NC)
DATA C /3.0, 3.2, 3.5, 3.6, 3.766413, 4.0 ,5.0, 10.0, 100.0/
C
C Compute a suitable function. This is the test function used by
C W. V. Snyder, Algorithm 531, Contour Plotting, ACM Trans. Math.
C Softw. v.4, pp.290-294 (1978).
C
XMIN = -2.0
XMAX = 2.0
YMIN =-2.0
YMAX = 2.0
MU = 0.3
DX = (XMAX-XMIN)/FLOAT(NX-1)
DY = (YMAX-YMIN)/FLOAT(NY-1)
TR(1) = XMIN - DX
TR(2) = DX
TR(3) = 0.0
TR(4) = YMIN - DY
TR(5) = 0.0
TR(6) = DY
DO 20 I=1,NX
X = TR(1) + I*TR(2)
DO 10 J=1,NY
Y = TR(4) + J*TR(6)
Z(I,J) = (1.0-MU)*(2.0/SQRT((X-MU)**2+Y**2)+(X-MU)**2+Y**2)
* + MU*(2.0/SQRT((X+1.0-MU)**2+Y**2)+(X+1.0-MU)**2+Y**2)
10 CONTINUE
20 CONTINUE
C
C Clear the screen. Set up window and viewport.
C
CALL PGPAGE
CALL PGVSTD(0.05,0.95,0.05,0.95)
CALL PGWNAD(XMIN, XMAX, YMIN, YMAX)
C
C Fill contours with PGCONF.
C
CALL PGSFS(1)
DO 30 I=1, NC-1
R = 0.5+0.5*REAL(I-1)/REAL(NC-1)
CALL PGSCR(I+10, R, R, R)
CALL PGSCI(I+10)
CALL PGCONF(Z,NX,NY,1,NX,1,NY,C(I),C(I+1),TR)
30 CONTINUE
C
C Draw the contour lines with PGCONT.
C
CALL PGSCI(3)
CALL PGCONT(Z,NX,NY,1,NX,1,NY,C,NC,TR)
C
C Labels and box.
C
CALL PGSCI(1)
CALL PGSCH(0.6)
CALL PGBOX('bctsin',1.0,10,'bctsinv',1.0,10)
CALL PGSCH(1.0)
CALL PGMTXT('t',1.0,0.0,0.0,'Contour filling using PGCONF')
C
END