home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
ARM Club 3
/
TheARMClub_PDCD3.iso
/
hensa
/
maths
/
b116_1
/
jacal
/
vect
< prev
next >
Wrap
Text File
|
1993-08-27
|
7KB
|
266 lines
;;; JACAL: Symbolic Mathematics System. -*-scheme-*-
;;; Copyright 1989, 1990, 1991, 1992, 1993 Aubrey Jaffer.
;;; See the file "COPYING" for terms applying to this program.
(define (bunch:norm x)
(if (null? (cdr x))
(car x)
x))
(define (copymatrix m)
(if (matrix? m)
(map copy-list m)
(math:error 'Not-a-matrix:- m)))
(define (row? a)
(and (bunch? a)
(notevery bunch? a)))
(define (matrix? a)
(and (bunch? a)
(not (null? a))
(bunch? (car a))
(let ((len (length (car a))))
(and (every (lambda (r) (and (bunch? r) (= (length r) len)))
(cdr a))
len))))
(define (matrix . lst)
(if (matrix? lst) lst (matrix lst)))
(define (butnth n lst)
(cond ((null? lst) (math:error 'Coordinate-out-of-range:- n " " lst))
((zero? n) (cdr lst))
(else (cons (car lst)
(butnth (+ -1 n) (cdr lst))))))
(define (mtrx:minor m i j)
(butnth (+ -1 i)
(map (lambda (x) (butnth (+ -1 j) x))
m)))
(define (transpose m)
(cond ((matrix? m)
(bunch:norm (apply map list m)))
((bunch? m) (map list m))
(else m)))
(define (cart-prod choices)
(if (null? choices) '(())
(let* ((choice (car choices)))
(apply append
(map (lambda (tuple)
(map (lambda (elt)
(cons elt tuple))
choice))
(cart-prod (cdr choices)))))))
(define (mtrx:square? m)
(if (not (matrix? m))
#f
(let ((rows (length m)))
(every (lambda (r) (= (length r) rows)) m))))
(define (mtrx:genmatrix fun i2 j2 i1 j1)
(do ((i i2 (+ -1 i))
(mat '()
(cons
(do ((j j2 (+ -1 j))
(row '() (cons (app* fun i j) row)))
((< j j1) row))
mat)))
((< i i1)
(bunch:norm mat))))
;;;Create a matrix of indeterminates
(define (nmatrix var . rst)
(apply genmatrix
(lambda subs (apply rapply var subs))
rst))
(define (dotproduct a b)
(let ((cols (matrix? a))
(colbs (matrix? b)))
(cond ((or (and cols (bunch? b)) (and colbs (bunch? a)))
(if (not (and (eqv? cols colbs) (eqv? (length a) (length b))))
(math:error 'dotproduct-of-unequal-size-matrices:- a
" " b))
(reduce (lambda (x y) (app* $1+$2 x y))
(reduce (lambda (x y) (app* $1+$2 x y))
(map (lambda (x y) (app* $1*$2 x y))
a b))))
((and (row? a) (row? b))
(reduce (lambda (x y) (app* $1+$2 x y))
(map (lambda (x y) (app* $1*$2 x y))
a b)))
((bunch? a) (map (lambda (x) (app* $1*$2 x b))
a))
((bunch? b) (map (lambda (x) (app* $1*$2 a x))
b))
(else (app* $1*$2 a b)))))
(define (ncmult a b)
(let ((cols (matrix? a))
(colbs (matrix? b)))
(cond ((or (and cols (bunch? b)) (and colbs (bunch? a)))
(if (not colbs) (set! b (list b)))
(if (not (= (or cols (length a)) (length b)))
(math:error 'matrix-product-of-unequal-size-matrices:- a
" " b))
(or cols (set! a (matrix a)))
(bunch:norm
(map (lambda (arow)
(apply map
(lambda bcol
(dotproduct bcol arow))
b))
a)))
(else (deferop _ncmult a b)))))
(define (mtrx:expt a pow)
(cond ((zero? pow) 1)
((one? pow) a)
((negative? pow) (mtrx:expt (mtrx:inverse a) (- pow)))
(else (ipow-by-squaring a (+ -1 pow) a ncmult))))
(define (crossproduct a b)
(if (and (row? a) (row? b))
(cond ((not (= (length a) (length b)))
(math:error 'Crossproduct 'unequal-length-vectors a b))
((= 2 (length a))
(app* $1-$2
(app* $1*$2 (car a) (cadr b))
(app* $1*$2 (car b) (cadr a))))
((= 3 (length a))
(list
(app* $1-$2
(app* $1*$2 (cadr a) (caddr b))
(app* $1*$2 (cadr b) (caddr a)))
(app* $1-$2
(app* $1*$2 (caddr a) (car b))
(app* $1*$2 (caddr b) (car a)))
(app* $1-$2
(app* $1*$2 (car a) (cadr b))
(app* $1*$2 (car b) (cadr a)))))
(else (math:error 'Crossproduct 'funny-length-vectors a b)))
(dotproduct a b)))
(define (mtrx:scalarmatrix n x)
(do ((i 1 (+ 1 i))
(rows (list (nconc (make-list (+ -1 n) 0) (list x)))
(cons (append (cdar rows) (list 0)) rows)))
((>= i n) rows)))
(define (mtrx:diagmatrix diag)
(set! diag (reverse diag))
(do ((i (+ -1 (length diag)) (+ -1 i))
(j 0 (+ 1 j))
(diag diag (cdr diag))
(rows '()
(cons (nconc (make-list i 0) (list (car diag)) (make-list j 0))
rows)))
((null? diag) rows)))
(define (determinant m)
(if (not (mtrx:square? m)) (math:error 'determinant-of-non-square-matrix m))
(letrec
((x11 1)
(ds (lambda (m)
(cond ((null? m) 0)
((expr:0? (caar m))
(set! x11 (- x11))
(cons (cdar m) (ds (cdr m))))
(else
(set! x11
(if (negative? x11) (app* _-$1 (caar m)) (caar m)))
(map (lambda (ro)
(if (expr:0? (car ro))
(cdr ro)
(app* $1-$2*$3
(cdr ro)
(cdar m)
(app* $1/$2 (car ro) (caar m)))))
(cdr m)))))))
(cond ((null? (cdr m)) (caar m))
((null? (cddr m)) (crossproduct (car m) (cadr m)))
(else (let ((subdet (determinant (ds m))))
(app* $1*$2 x11 subdet))))))
(define (charpoly m var)
(determinant (app* $1-$2
m
(mtrx:scalarmatrix (length m) var))))
(define (cofactor m i j)
(let ((det (determinant (mtrx:minor m i j))))
(if (odd? (+ i j))
(app* _-$1 det)
det)))
(define (coefmatrix eqns vars)
(map
(lambda (eq)
(map (lambda (var)
(let ((c (poly:coeff eq var 1)))
(set! eq (poly:coeff eq var 0))
c))
vars))
eqns))
(define (augcoefmatrix eqns vars)
(map
(lambda (eq)
(nconc
(map (lambda (var)
(let ((value (poly:coeff eq var 1)))
(set! eq (poly:coeff eq var 0))
value))
vars)
(list eq)))
eqns))
;;; This algorithm taken from:
;;; Knuth, D. E.,
;;; The Art Of Computer Programming, Vol. 2: Seminumerical Algorithms,
;;; Addison Wesley, Reading, MA 1969.
;;; pp 425-426
(define (rank m)
(let* ((cols (matrix? m))
(n (length m))
(c (make-list n -1))
(r 0))
(cond ((null? cols) (set! m (list m))
(set! n 1))
((> cols n) (set! m (copymatrix m)))
(else (set! m (transpose m))
(set! n cols)))
(do ((k 0 (+ 1 k)))
((>= k n) (- n r))
(let* ((l #f)
(j
(do ((j 0 (+ 1 j)))
((or l (>= j n)) l)
(if (and (< (list-ref c j) 0)
(not (poly:0? (list-ref (list-ref m k) j))))
(set! l j))))
(rowj (and j (list-ref m j))))
(cond (j
(set! rowj (app* _-$1/$2
rowj
(list-ref rowj k)))
(set-car! (list-tail m j) rowj)
(do ((restrows m (cdr restrows)))
((null? restrows))
(if (not (eq? (car restrows) rowj))
(set-car! restrows
(app* $1*$2+$3
rowj
(list-ref (car restrows) k)
(car restrows)))))
(set-car! (list-tail c j) k))
(else (set! r (+ 1 r))))))))
;;; Copyright 1989, 1990, 1991, 1992, 1993 Aubrey Jaffer.