home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
ARM Club 1
/
ARM_CLUB_CD.iso
/
contents
/
apps
/
languages
/
progs
/
gcc
/
!GCC
/
docs
/
UsingGCC
< prev
Encoding:
Amiga
Atari
Commodore
DOS
FM Towns/JPY
Macintosh
Macintosh JP
Macintosh to JP
NeXTSTEP
RISC OS/Acorn
Shift JIS
UTF-8
Wrap
GNU Info File
|
1995-02-24
|
257.5 KB
|
6,249 lines
This is Info file @.Distr.UsingGCC, produced by Makeinfo-1.55 from the
input file gcc.texi.
This file documents the use of the GNU compiler.
Published by the Free Software Foundation 675 Massachusetts Avenue
Cambridge, MA 02139 USA
Copyright (C) 1988, 1989, 1992, 1993 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the sections entitled "GNU General Public License" and "Protect
Your Freedom--Fight `Look And Feel'" are included exactly as in the
original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this
one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that the sections entitled "GNU General Public
License" and "Protect Your Freedom--Fight `Look And Feel'", and this
permission notice, may be included in translations approved by the Free
Software Foundation instead of in the original English.
File: @.Distr.UsingGCC, Node: Top, Next: Copying, Up: (DIR)
Introduction
************
This manual documents how to run and install the GNU compiler, as
well as its new features and incompatibilities, and how to report bugs.
It corresponds to GNU CC version 2.4.
* Menu:
* Copying:: GNU General Public License says
how you can copy and share GNU CC.
* Contributors:: People who have contributed to GNU CC.
* Boycott:: Protect your freedom--fight "look and feel".
* G++ and GCC:: You can compile C or C++ programs.
* Invoking GCC:: Command options supported by `gcc'.
* Installation:: How to configure, compile and install GNU CC.
* C Extensions:: GNU extensions to the C language family.
* C++ Extensions:: GNU extensions to the C++ language.
* Trouble:: If you have trouble installing GNU CC.
* Bugs:: How, why and where to report bugs.
* Service:: How to find suppliers of support for GNU CC.
* VMS:: Using GNU CC on VMS.
* Index:: Index of concepts and symbol names.
File: @.Distr.UsingGCC, Node: Copying, Next: Contributors, Prev: Top, Up: Top
GNU GENERAL PUBLIC LICENSE
**************************
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
========
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each
licensee is addressed as "you".
Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange
for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.
c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an
announcement, your work based on the Program is not required
to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a
whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on
a volume of a storage or distribution medium does not bring the
other work under the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:
a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for
software interchange; or,
b. Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either
source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify
or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance
by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply
in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of
any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.
9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following
the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
=============================================
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
Copyright (C) 19YY NAME OF AUTHOR
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Also add information on how to contact you by electronic and paper
mail.
If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than `show w' and `show
c'; they could even be mouse-clicks or menu items--whatever suits your
program.
You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program,
if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
SIGNATURE OF TY COON, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.
File: @.Distr.UsingGCC, Node: Contributors, Next: Boycott, Prev: Copying, Up: Top
Contributors to GNU CC
**********************
In addition to Richard Stallman, several people have written parts
of GNU CC.
* The idea of using RTL and some of the optimization ideas came from
the program PO written at the University of Arizona by Jack
Davidson and Christopher Fraser. See "Register Allocation and
Exhaustive Peephole Optimization", Software Practice and
Experience 14 (9), Sept. 1984, 857-866.
* Paul Rubin wrote most of the preprocessor.
* Leonard Tower wrote parts of the parser, RTL generator, and RTL
definitions, and of the Vax machine description.
* Ted Lemon wrote parts of the RTL reader and printer.
* Jim Wilson implemented loop strength reduction and some other loop
optimizations.
* Nobuyuki Hikichi of Software Research Associates, Tokyo,
contributed the support for the Sony NEWS machine.
* Charles LaBrec contributed the support for the Integrated Solutions
68020 system.
* Michael Tiemann of Cygnus Support wrote the front end for C++, as
well as the support for inline functions and instruction
scheduling. Also the descriptions of the National Semiconductor
32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.
* Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.
* Randy Smith finished the Sun FPA support.
* Robert Brown implemented the support for Encore 32000 systems.
* David Kashtan of SRI adapted GNU CC to the Vomit-Making System
(VMS).
* Alex Crain provided changes for the 3b1.
* Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX
for the 9000 series 300.
* William Schelter did most of the work on the Intel 80386 support.
* Christopher Smith did the port for Convex machines.
* Paul Petersen wrote the machine description for the Alliant FX/8.
* Alain Lichnewsky ported GNU CC to the Mips cpu.
* Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the
Tahoe.
* Jonathan Stone wrote the machine description for the Pyramid
computer.
* Gary Miller ported GNU CC to Charles River Data Systems machines.
* Richard Kenner of the New York University Ultracomputer Research
Laboratory wrote the machine descriptions for the AMD 29000, the
DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
support for instruction attributes. He also made changes to
better support RISC processors including changes to common
subexpression elimination, strength reduction, function calling
sequence handling, and condition code support, in addition to
generalizing the code for frame pointer elimination.
* Richard Kenner and Michael Tiemann jointly developed reorg.c, the
delay slot scheduler.
* Mike Meissner and Tom Wood of Data General finished the port to the
Motorola 88000.
* Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).
* NeXT, Inc. donated the front end that supports the Objective C
language.
* James van Artsdalen wrote the code that makes efficient use of the
Intel 80387 register stack.
* Mike Meissner at the Open Software Foundation finished the port to
the MIPS cpu, including adding ECOFF debug support.
* Ron Guilmette implemented the `protoize' and `unprotoize' tools,
the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on
the Intel 386 and 860 support.
* Torbjorn Granlund of the Swedish Institute of Computer Science
implemented multiply-by-constant optimization and better long long
support, and improved leaf function register allocation.
* Mike Stump implemented the support for Elxsi 64 bit CPU.
* John Wehle added the machine description for the Western Electric
32000 processor used in several 3b series machines (no relation to
the National Semiconductor 32000 processor).
* Holger Teutsch provided the support for the Clipper cpu.
* Kresten Krab Thorup wrote the run time support for the Objective C
language.
* Stephen Moshier contributed the floating point emulator that
assists in cross-compilation and permits support for floating
point numbers wider than 64 bits.
* Steve Chamberlain wrote the support for the Hitachi SH processor.
File: @.Distr.UsingGCC, Node: Boycott, Next: G++ and GCC, Prev: Contributors, Up: Top
Protect Your Freedom--Fight "Look And Feel"
*******************************************
This section is a political message from the League for Programming
Freedom to the users of GNU CC. It is included here as an
expression of support for the League on the part of the Free
Software Foundation.
Apple and Lotus are trying to create a new form of legal monopoly: a
copyright on a class of user interfaces. These monopolies would cause
serious problems for users and developers of computer software and
systems. Xerox, too, has tried to make a monopoly for itself on window
systems; their suit against Apple was thrown out on a technicality, but
Xerox has not said anything to indicate it wouldn't try again.
Until a few years ago, the law seemed clear: no one could restrict
others from using a user interface; programmers were free to implement
any interface they chose. Imitating interfaces, sometimes with changes,
was standard practice in the computer field. The interfaces we know
evolved gradually in this way; for example, the Macintosh user interface
drew ideas from the Xerox interface, which in turn drew on work done at
Stanford and SRI. 1-2-3 imitated VisiCalc, and dBase imitated a
database program from JPL.
Most computer companies, and nearly all computer users, were happy
with this state of affairs. The companies that are suing say it does
not offer "enough incentive" to develop their products, but they must
have considered it "enough" when they made their decision to do so. It
seems they are not satisfied with the opportunity to continue to compete
in the marketplace--not even with a head start.
If companies like Xerox, Lotus, and Apple are permitted to make law
through the courts, the precedent will hobble the software industry:
* Gratuitous incompatibilities will burden users. Imagine if each
car manufacturer had to arrange the pedals in a different order.
* Software will become and remain more expensive. Users will be
"locked in" to proprietary interfaces, for which there is no real
competition.
* Large companies have an unfair advantage wherever lawsuits become
commonplace. Since they can easily afford to sue, they can
intimidate small companies with threats even when they don't
really have a case.
* User interface improvements will come slower, since incremental
evolution through creative imitation will no longer be permitted.
* Even Apple, etc., will find it harder to make improvements if they
can no longer adapt the good ideas that others introduce, for fear
of weakening their own legal positions. Some users suggest that
this stagnation may already have started.
* If you use GNU software, you might find it of some concern that
user interface copyright will make it hard for the Free Software
Foundation to develop programs compatible with the interfaces that
you already know.
To protect our freedom from lawsuits like these, a group of
programmers and users have formed a new grass-roots political
organization, the League for Programming Freedom.
The purpose of the League is to oppose new monopolistic practices
such as user-interface copyright and software patents; it calls for a
return to the legal policies of the recent past, in which these
practices were not allowed. The League is not concerned with free
software as an issue, and not affiliated with the Free Software
Foundation.
The League's membership rolls include John McCarthy, inventor of
Lisp, Marvin Minsky, founder of the Artificial Intelligence lab, Guy L.
Steele, Jr., author of well-known books on Lisp and C, as well as
Richard Stallman, the developer of GNU CC. Please join and add your
name to the list. Membership dues in the League are $42 per year for
programmers, managers and professionals; $10.50 for students; $21 for
others.
The League needs both activist members and members who only pay their
dues.
To join, or for more information, phone (617) 243-4091 or write to:
League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139
You can also send electronic mail to `league@prep.ai.mit.edu'.
Here are some suggestions from the League for things you can do to
protect your freedom to write programs:
* Don't buy from Xerox, Lotus or Apple. Buy from their competitors
or from the defendants they are suing.
* Don't develop software to work with the systems made by these
companies.
* Port your existing software to competing systems, so that you
encourage users to switch.
* Write letters to company presidents to let them know their conduct
is unacceptable.
* Tell your friends and colleagues about this issue and how it
threatens to ruin the computer industry.
* Above all, don't work for the look-and-feel plaintiffs, and don't
accept contracts from them.
* Write to Congress to explain the importance of this issue.
House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515
Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510
(These committees have received lots of mail already; let's give
them even more.)
Express your opinion! You can make a difference.
File: @.Distr.UsingGCC, Node: G++ and GCC, Next: Invoking GCC, Prev: Boycott, Up: Top
Compile C, C++, or Objective C
******************************
The C, C++, and Objective C versions of the compiler are integrated;
the GNU C compiler can compile programs written in C, C++, or Objective
C.
"GCC" is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when the
emphasis is on compiling C programs.
When referring to C++ compilation, it is usual to call the compiler
"G++". Since there is only one compiler, it is also accurate to call
it "GCC" no matter what the language context; however, the term "G++"
is more useful when the emphasis is on compiling C++ programs.
G++ is a *compiler*, not merely a preprocessor. G++ builds object
code directly from your C++ program source. There is no intermediate C
version of the program. (By contrast, for example, some other
implementations use a program that generates a C program from your C++
source.) Avoiding an intermediate C representation of the program means
that you get better object code, and better debugging information. The
GNU debugger, GDB, works with this information in the object code to
give you comprehensive C++ source-level editing capabilities (*note C
and C++: (gdb.info)C.).
File: @.Distr.UsingGCC, Node: Invoking GCC, Next: Installation, Prev: G++ and GCC, Up: Top
GNU CC Command Options
**********************
When you invoke GNU CC, it normally does preprocessing, compilation,
assembly and linking. The "overall options" allow you to stop this
process at an intermediate stage. For example, the `-c' option says
not to run the linker. Then the output consists of object files output
by the assembler.
Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another
language (usually C++), the explanation says so explicitly. If the
description for a particular option does not mention a source language,
you can use that option with all supported languages.
*Note Compiling C++ Programs: Invoking G++, for a summary of special
options for compiling C++ programs.
The `gcc' program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options
may *not* be grouped: `-dr' is very different from `-d -r'.
You can mix options and other arguments. For the most part, the
order you use doesn't matter. Order does matter when you use several
options of the same kind; for example, if you specify `-L' more than
once, the directories are searched in the order specified.
Many options have long names starting with `-f' or with `-W'--for
example, `-fforce-mem', `-fstrength-reduce', `-Wformat' and so on.
Most of these have both positive and negative forms; the negative form
of `-ffoo' would be `-fno-foo'. This manual documents only one of
these two forms, whichever one is not the default.
* Menu:
* Option Summary:: Brief list of all options, without explanations.
* Overall Options:: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
* Invoking G++:: Compiling C++ programs.
* C Dialect Options:: Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Optimize Options:: How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
Also, getting dependency information for Make.
* Assembler Options:: Passing options to the assembler.
* Link Options:: Specifying libraries and so on.
* Directory Options:: Where to find header files and libraries.
Where to find the compiler executable files.
* Target Options:: Running a cross-compiler, or an old version of GNU CC.
* Submodel Options:: Specifying minor hardware or convention variations,
such as 68010 vs 68020.
* Code Gen Options:: Specifying conventions for function calls, data layout
and register usage.
* Environment Variables:: Env vars that affect GNU CC.
* Running Protoize:: Automatically adding or removing function prototypes.
File: @.Distr.UsingGCC, Node: Option Summary, Next: Overall Options, Up: Invoking GCC
Option Summary
==============
Here is a summary of all the options, grouped by type. Explanations
are in the following sections.
*Overall Options*
*Note Options Controlling the Kind of Output: Overall Options.
-c -S -E -o FILE -pipe -v -x LANGUAGE
*C Language Options*
*Note Options Controlling C Dialect: C Dialect Options.
-ansi -fcond-mismatch -fno-asm -fno-builtin
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs
*C++ Language Options*
*Note Options Controlling C++ Dialect: C++ Dialect Options.
-fall-virtual -fdollars-in-identifiers
-felide-constructors -fenum-int-equiv -fmemoize-lookups
-fno-strict-prototype -fnonnull-objects
-fthis-is-variable -nostdinc++
*Warning Options*
*Note Options to Request or Suppress Warnings: Warning Options.
-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wcast-align
-Wcast-qual -Wchar-subscript -Wcomment -Wconversion
-Wenum-clash -Werror -Wformat -Wid-clash-LEN
-Wimplicit -Wimport -Winline -Wmissing-prototypes
-Wnested-externs -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreturn-type
-Wshadow -Wstrict-prototypes -Wswitch
-Wtemplate-debugging -Wtraditional -Wtrigraphs
-Wuninitialized -Wunused -Wwrite-strings
*Debugging Options*
*Note Options for Debugging Your Program or GCC: Debugging Options.
-a -dLETTERS -fpretend-float
-g -gLEVEL -ggdb -gdwarf -gdwarf+
-gstabs -gstabs+ -gcoff -gxcoff -gxcoff+
-p -pg -save-temps -print-libgcc-file-name
*Optimization Options*
*Note Options that Control Optimization: Optimize Options.
-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-O -O2
*Preprocessor Options*
*Note Options Controlling the Preprocessor: Preprocessor Options.
-AASSERTION -C -dD -dM -dN
-DMACRO[=DEFN] -E -H
-idirafter DIR
-include FILE -imacros FILE
-iprefix FILE -iwithprefix DIR
-M -MD -MM -MMD -nostdinc -P -trigraphs -UMACRO
*Assembler Option*
*Note Passing Options to the Assembler: Assembler Options.
-Wa,OPTION
*Linker Options*
*Note Options for Linking: Link Options.
OBJECT-FILE-NAME
-lLIBRARY -nostartfiles -nostdlib
-static -shared -symbolic
-Wl,OPTION -Xlinker OPTION
-u SYMBOL
*Directory Options*
*Note Options for Directory Search: Directory Options.
-BPREFIX -IDIR -I- -LDIR
*Target Options*
*Note Target Options::.
-b MACHINE -V VERSION
*Machine Dependent Options*
*Note Hardware Models and Configurations: Submodel Options.
*M680x0 Options*
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float
*VAX Options*
-mg -mgnu -munix
*SPARC Options*
-mepilogue -mfpu -mhard-float
-mno-fpu -mno-epilogue -msoft-float
-msparclite -mv8
*Convex Options*
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mbolatile-cache -mvolatile-nocache
*AMD29K Options*
-m29000 -m29050 -mbw -mdw -mkernel-registers
-mlarge -mnbw -mnodw -msmall -mstack-check
-muser-registers
*M88K Options*
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-NUM -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs
*RS/6000 Options*
-mfp-in-toc -mno-fop-in-toc
*RT Options*
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return
*MIPS Options*
-mcpu=CPU TYPE -mips2 -mips3 -mint64
-mlong64 -mlonglong128 -mmips-as -mgas -mrnames
-mno-rnames -mgpopt -mno-gpopt -mstats -mno-stats
-mmemcpy -mno-memcpy -mno-mips-tfile -mmips-tfile
-msoft-float -mhard-float -mabicalls -mno-abicalls
-mhalf-pic -mno-half-pic -mlong-calls -mno-long-calls
-G NUM -nocpp
*i386 Options*
-m486 -mno-486 -msoft-float -msvr3-shlib -mieee-fp
-mno-fp-ret-in-387
*HPPA Options*
-mpa-risc-1-0
-mpa-risc-1-1
-mkernel
-mshared-libs
-mno-shared-libs
-mlong-calls
-mdisable-fpregs
-mdisable-indexing
-mtrailing-colon
*Intel 960 Options*
-mCPU TYPE
-mnumerics -msoft-float
-mcode-align -mno-code-align
-mleaf-procedures -mno-leaf-procedures
-mtail-call -mno-tail-call
-mcomplex-addr -mno-complex-addr
-mclean-linkage -mno-clean-linkage
-mic-compat -mic2.0-compat -mic3.0-compat
-masm-compat -mintel-asm
-mstrict-align -mno-strict-align
-mold-align -mno-old-align
*DEC Alpha Options*
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float
*System V Options*
-G -Qy -Qn -YP,PATHS -Ym,DIR
*Code Generation Options*
*Note Options for Code Generation Conventions: Code Gen Options.
-fcall-saved-REG -fcall-used-REG
-ffixed-REG -finhibit-size-directive
-fno-common -fno-ident
-fno-gnu-linker -fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global
-fverbose-asm
* Menu:
* Overall Options:: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
* C Dialect Options:: Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Optimize Options:: How much optimization?
* Preprocessor Options:: Controlling header files and macro definitions.
Also, getting dependency information for Make.
* Assembler Options:: Passing options to the assembler.
* Link Options:: Specifying libraries and so on.
* Directory Options:: Where to find header files and libraries.
Where to find the compiler executable files.
* Target Options:: Running a cross-compiler, or an old version of GNU CC.
File: @.Distr.UsingGCC, Node: Overall Options, Next: Invoking G++, Prev: Option Summary, Up: Invoking GCC
Options Controlling the Kind of Output
======================================
Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three
stages apply to an individual source file, and end by producing an
object file; linking combines all the object files (those newly
compiled, and those specified as input) into an executable file.
For any given input file, the file name suffix determines what kind
of compilation is done:
`FILE.c'
C source code which must be preprocessed.
`FILE.i'
C source code which should not be preprocessed.
`FILE.ii'
C++ source code which should not be preprocessed.
`FILE.m'
Objective-C source code. Note that you must link with the library
`libobjc.a' to make an Objective-C program work.
`FILE.h'
C header file (not to be compiled or linked).
`FILE.cc'
`FILE.cxx'
`FILE.C'
C++ source code which must be preprocessed. Note that in `.cxx',
the last two letters must both be literally `x'. Likewise, `.C'
refers to a literal capital C.
`FILE.s'
Assembler code.
`FILE.S'
Assembler code which must be preprocessed.
`OTHER'
An object file to be fed straight into linking. Any file name
with no recognized suffix is treated this way.
You can specify the input language explicitly with the `-x' option:
`-x LANGUAGE'
Specify explicitly the LANGUAGE for the following input files
(rather than letting the compiler choose a default based on the
file name suffix). This option applies to all following input
files until the next `-x' option. Possible values for LANGUAGE
are:
c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp
`-x none'
Turn off any specification of a language, so that subsequent files
are handled according to their file name suffixes (as they are if
`-x' has not been used at all).
If you only want some of the stages of compilation, you can use `-x'
(or filename suffixes) to tell `gcc' where to start, and one of the
options `-c', `-S', or `-E' to say where `gcc' is to stop. Note that
some combinations (for example, `-x cpp-output -E' instruct `gcc' to do
nothing at all.
`-c'
Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
By default, the object file name for a source file is made by
replacing the suffix `.c', `.i', `.s', etc., with `.o'.
Unrecognized input files, not requiring compilation or assembly,
are ignored.
`-S'
Stop after the stage of compilation proper; do not assemble. The
output is in the form of an assembler code file for each
non-assembler input file specified.
By default, the assembler file name for a source file is made by
replacing the suffix `.c', `.i', etc., with `.s'.
Input files that don't require compilation are ignored.
`-E'
Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.
Input files which don't require preprocessing are ignored.
`-o FILE'
Place output in file FILE. This applies regardless to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.
Since only one output file can be specified, it does not make
sense to use `-o' when compiling more than one input file, unless
you are producing an executable file as output.
If `-o' is not specified, the default is to put an executable file
in `a.out', the object file for `SOURCE.SUFFIX' in `SOURCE.o', its
assembler file in `SOURCE.s', and all preprocessed C source on
standard output.
`-v'
Print (on standard error output) the commands executed to run the
stages of compilation. Also print the version number of the
compiler driver program and of the preprocessor and the compiler
proper.
`-pipe'
Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems
where the assembler is unable to read from a pipe; but the GNU
assembler has no trouble.
File: @.Distr.UsingGCC, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC
Compiling C++ Programs
======================
C++ source files conventionally use one of the suffixes `.C', `.cc',
or `.cxx'; preprocessed C++ files use the suffix `.ii'. GNU CC
recognizes files with these names and compiles them as C++ programs
even if you call the compiler the same way as for compiling C programs
(usually with the name `gcc').
However, C++ programs often require class libraries as well as a
compiler that understands the C++ language--and under some
circumstances, you might want to compile programs from standard input,
or otherwise without a suffix that flags them as C++ programs. `g++'
is a shell script that calls GNU CC with the default language set to
C++, and automatically specifies linking against the GNU class library
libg++. (1) On many systems, the script `g++' is also installed with
the name `c++'.
When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs. *Note
Options Controlling C Dialect: C Dialect Options, for explanations of
options for languages related to C. *Note Options Controlling C++
Dialect: C++ Dialect Options, for explanations of options that are
meaningful only for C++ programs.
---------- Footnotes ----------
(1) Prior to release 2 of the compiler, there was a separate `g++'
compiler. That version was based on GNU CC, but not integrated with
it. Versions of `g++' with a `1.XX' version number--for example, `g++'
version 1.37 or 1.42--are much less reliable than the versions
integrated with GCC 2. Moreover, combining G++ `1.XX' with a version 2
GCC will simply not work.
File: @.Distr.UsingGCC, Node: C Dialect Options, Next: C++ Dialect Options, Prev: Invoking G++, Up: Invoking GCC
Options Controlling C Dialect
=============================
The following options control the dialect of C (or languages derived
from C, such as C++ and Objective C) that the compiler accepts:
`-ansi'
Support all ANSI standard C programs.
This turns off certain features of GNU C that are incompatible
with ANSI C, such as the `asm', `inline' and `typeof' keywords, and
predefined macros such as `unix' and `vax' that identify the type
of system you are using. It also enables the undesirable and
rarely used ANSI trigraph feature, and disallows `$' as part of
identifiers.
The alternate keywords `__asm__', `__extension__', `__inline__'
and `__typeof__' continue to work despite `-ansi'. You would not
want to use them in an ANSI C program, of course, but it useful to
put them in header files that might be included in compilations
done with `-ansi'. Alternate predefined macros such as `__unix__'
and `__vax__' are also available, with or without `-ansi'.
The `-ansi' option does not cause non-ANSI programs to be rejected
gratuitously. For that, `-pedantic' is required in addition to
`-ansi'. *Note Warning Options::.
The macro `__STRICT_ANSI__' is predefined when the `-ansi' option
is used. Some header files may notice this macro and refrain from
declaring certain functions or defining certain macros that the
ANSI standard doesn't call for; this is to avoid interfering with
any programs that might use these names for other things.
The functions `alloca', `abort', `exit', and `_exit' are not
builtin functions when `-ansi' is used.
`-fno-asm'
Do not recognize `asm', `inline' or `typeof' as a keyword. These
words may then be used as identifiers. You can use the keywords
`__asm__', `__inline__' and `__typeof__' instead. `-ansi' implies
`-fno-asm'.
`-fno-builtin'
Don't recognize built-in functions that do not begin with two
leading underscores. Currently, the functions affected include
`abort', `abs', `alloca', `cos', `exit', `fabs', `ffs', `labs',
`memcmp', `memcpy', `sin', `sqrt', `strcmp', `strcpy', and
`strlen'.
The `-ansi' option prevents `alloca' and `ffs' from being builtin
functions, since these functions do not have an ANSI standard
meaning.
`-trigraphs'
Support ANSI C trigraphs. You don't want to know about this
brain-damage. The `-ansi' option implies `-trigraphs'.
`-traditional'
Attempt to support some aspects of traditional C compilers.
Specifically:
* All `extern' declarations take effect globally even if they
are written inside of a function definition. This includes
implicit declarations of functions.
* The newer keywords `typeof', `inline', `signed', `const' and
`volatile' are not recognized. (You can still use the
alternative keywords such as `__typeof__', `__inline__', and
so on.)
* Comparisons between pointers and integers are always allowed.
* Integer types `unsigned short' and `unsigned char' promote to
`unsigned int'.
* Out-of-range floating point literals are not an error.
* Certain constructs which ANSI regards as a single invalid
preprocessing number, such as `0xe-0xd', are treated as
expressions instead.
* String "constants" are not necessarily constant; they are
stored in writable space, and identical looking constants are
allocated separately. (This is the same as the effect of
`-fwritable-strings'.)
* All automatic variables not declared `register' are preserved
by `longjmp'. Ordinarily, GNU C follows ANSI C: automatic
variables not declared `volatile' may be clobbered.
* In the preprocessor, comments convert to nothing at all,
rather than to a space. This allows traditional token
concatenation.
* In the preprocessor, macro arguments are recognized within
string constants in a macro definition (and their values are
stringified, though without additional quote marks, when they
appear in such a context). The preprocessor always considers
a string constant to end at a newline.
* The predefined macro `__STDC__' is not defined when you use
`-traditional', but `__GNUC__' is (since the GNU extensions
which `__GNUC__' indicates are not affected by
`-traditional'). If you need to write header files that work
differently depending on whether `-traditional' is in use, by
testing both of these predefined macros you can distinguish
four situations: GNU C, traditional GNU C, other ANSI C
compilers, and other old C compilers. *Note Standard
Predefined Macros: (cpp.info)Standard Predefined, for more
discussion of these and other predefined macros.
* The preprocessor considers a string constant to end at a
newline (unless the newline is escaped with `\'). (Without
`-traditional', string constants can contain the newline
character as typed.)
* The character escape sequences `\x' and `\a' evaluate as the
literal characters `x' and `a' respectively. Without
`-traditional', `\x' is a prefix for the hexadecimal
representation of a character, and `\a' produces a bell.
* In C++ programs, assignment to `this' is permitted with
`-traditional'. (The option `-fthis-is-variable' also has
this effect.)
You may wish to use `-fno-builtin' as well as `-traditional' if
your program uses names that are normally GNU C builtin functions
for other purposes of its own.
`-traditional-cpp'
Attempt to support some aspects of traditional C preprocessors.
This includes the last three items in the table immediately above,
but none of the other effects of `-traditional'.
`-fcond-mismatch'
Allow conditional expressions with mismatched types in the second
and third arguments. The value of such an expression is void.
`-funsigned-char'
Let the type `char' be unsigned, like `unsigned char'.
Each kind of machine has a default for what `char' should be. It
is either like `unsigned char' by default or like `signed char' by
default.
Ideally, a portable program should always use `signed char' or
`unsigned char' when it depends on the signedness of an object.
But many programs have been written to use plain `char' and expect
it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let
you make such a program work with the opposite default.
The type `char' is always a distinct type from each of `signed
char' or `unsigned char', even though its behavior is always just
like one of those two.
`-fsigned-char'
Let the type `char' be signed, like `signed char'.
Note that this is equivalent to `-fno-unsigned-char', which is the
negative form of `-funsigned-char'. Likewise, the option
`-fno-signed-char' is equivalent to `-funsigned-char'.
`-fsigned-bitfields'
`-funsigned-bitfields'
`-fno-signed-bitfields'
`-fno-unsigned-bitfields'
These options control whether a bitfield is signed or unsigned,
when the declaration does not use either `signed' or `unsigned'.
By default, such a bitfield is signed, because this is consistent:
the basic integer types such as `int' are signed types.
However, when `-traditional' is used, bitfields are all unsigned
no matter what.
`-fwritable-strings'
Store string constants in the writable data segment and don't
uniquize them. This is for compatibility with old programs which
assume they can write into string constants. The option
`-traditional' also has this effect.
Writing into string constants is a very bad idea; "constants"
should be constant.
File: @.Distr.UsingGCC, Node: C++ Dialect Options, Next: Warning Options, Prev: C Dialect Options, Up: Invoking GCC
Options Controlling C++ Dialect
===============================
This section describes the command-line options that are only
meaningful for C++ programs; but you can also use most of the GNU
compiler options regardless of what language your program is in. For
example, you might compile a file `firstClass.C' like this:
g++ -g -felide-constructors -O -c firstClass.C
In this example, only `-felide-constructors' is an option meant only
for C++ programs; you can use the other options with any language
supported by GNU CC.
Here is a list of options that are *only* for compiling C++ programs:
`-fall-virtual'
Treat all possible member functions as virtual, implicitly. All
member functions (except for constructor functions and `new' or
`delete' member operators) are treated as virtual functions of the
class where they appear.
This does not mean that all calls to these member functions will
be made through the internal table of virtual functions. Under
some circumstances, the compiler can determine that a call to a
given virtual function can be made directly; in these cases the
calls are direct in any case.
`-fdollars-in-identifiers'
Accept `$' in identifiers. You can also explicitly prohibit use of
`$' with the option `-fno-dollars-in-identifiers'. (GNU C++
allows `$' by default on some target systems but not others.)
Traditional C allowed the character `$' to form part of
identifiers. However, ANSI C and C++ forbid `$' in identifiers.
`-felide-constructors'
Elide constructors when this seems plausible. With this option,
GNU C++ initializes `y' directly from the call to `foo' without
going through a temporary in the following code:
A foo ();
A y = foo ();
Without this option, GNU C++ (1) initializes `y' by calling the
appropriate constructor for type `A'; (2) assigns the result of
`foo' to a temporary; and, finally, (3) replaces the initial value
of `y' with the temporary.
The default behavior (`-fno-elide-constructors') is specified by
the draft ANSI C++ standard. If your program's constructors have
side effects, `-felide-constructors' can change your program's
behavior, since some constructor calls may be omitted.
`-fenum-int-equiv'
Permit implicit conversion of `int' to enumeration types. Normally
GNU C++ allows conversion of `enum' to `int', but not the other
way around.
`-fmemoize-lookups'
`-fsave-memoized'
Use heuristics to compile faster. These heuristics are not
enabled by default, since they are only effective for certain
input files. Other input files compile more slowly.
The first time the compiler must build a call to a member function
(or reference to a data member), it must (1) determine whether the
class implements member functions of that name; (2) resolve which
member function to call (which involves figuring out what sorts of
type conversions need to be made); and (3) check the visibility of
the member function to the caller. All of this adds up to slower
compilation. Normally, the second time a call is made to that
member function (or reference to that data member), it must go
through the same lengthy process again. This means that code like
this:
cout << "This " << p << " has " << n << " legs.\n";
makes six passes through all three steps. By using a software
cache, a "hit" significantly reduces this cost. Unfortunately,
using the cache introduces another layer of mechanisms which must
be implemented, and so incurs its own overhead.
`-fmemoize-lookups' enables the software cache.
Because access privileges (visibility) to members and member
functions may differ from one function context to the next, G++
may need to flush the cache. With the `-fmemoize-lookups' flag,
the cache is flushed after every function that is compiled. The
`-fsave-memoized' flag enables the same software cache, but when
the compiler determines that the context of the last function
compiled would yield the same access privileges of the next
function to compile, it preserves the cache. This is most helpful
when defining many member functions for the same class: with the
exception of member functions which are friends of other classes,
each member function has exactly the same access privileges as
every other, and the cache need not be flushed.
`-fno-strict-prototype'
Treat a function declaration with no arguments, such as `int foo
();', as C would treat it--as saying nothing about the number of
arguments or their types. Normally, such a declaration in C++
means that the function `foo' takes no arguments.
`-fnonnull-objects'
Assume that objects reached through references are not null.
Normally, GNU C++ makes conservative assumptions about objects
reached through references. For example, the compiler must check
that `a' is not null in code like the following:
obj &a = g ();
a.f (2);
Checking that references of this sort have non-null values requires
extra code, however, and it is unnecessary for many programs. You
can use `-fnonnull-objects' to omit the checks for null, if your
program doesn't require checking.
`-fthis-is-variable'
Permit assignment to `this'. The incorporation of user-defined
free store management into C++ has made assignment to `this' an
anachronism. Therefore, by default it is invalid to assign to
`this' within a class member function; that is, GNU C++ treats the
type of `this' in a member function of class `X' to be `X *const'.
However, for backwards compatibility, you can make it valid with
`-fthis-is-variable'.
`-nostdinc++'
Do not search for header files in the standard directories
specific to C++, but do still search the other standard
directories. (This option is used when building libg++.)
`-traditional'
For C++ programs (in addition to the effects that apply to both C
and C++), this has the same effect as `-fthis-is-variable'. *Note
Options Controlling C Dialect: C Dialect Options.
In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:
`-fno-default-inline'
Do not assume `inline' for functions defined inside a class scope.
*Note Options That Control Optimization: Optimize Options.
`-Wenum-clash'
`-Woverloaded-virtual'
`-Wtemplate-debugging'
Warnings that apply only to C++ programs. *Note Options to
Request or Suppress Warnings: Warning Options.
`+eN'
Control how virtual function definitions are used, in a fashion
compatible with `cfront' 1.x. *Note Options for Code Generation
Conventions: Code Gen Options.
File: @.Distr.UsingGCC, Node: Warning Options, Next: Debugging Options, Prev: C++ Dialect Options, Up: Invoking GCC
Options to Request or Suppress Warnings
=======================================
Warnings are diagnostic messages that report constructions which are
not inherently erroneous but which are risky or suggest there may have
been an error.
You can request many specific warnings with options beginning `-W',
for example `-Wimplicit' to request warnings on implicit declarations.
Each of these specific warning options also has a negative form
beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'.
This manual lists only one of the two forms, whichever is not the
default.
These options control the amount and kinds of warnings produced by
GNU CC:
`-fsyntax-only'
Check the code for syntax errors, but don't do anything beyond
that.
`-w'
Inhibit all warning messages.
`-Wno-import'
Inhibit warning messages about the use of `#import'.
`-pedantic'
Issue all the warnings demanded by strict ANSI standard C; reject
all programs that use forbidden extensions.
Valid ANSI standard C programs should compile properly with or
without this option (though a rare few will require `-ansi').
However, without this option, certain GNU extensions and
traditional C features are supported as well. With this option,
they are rejected.
`-pedantic' does not cause warning messages for use of the
alternate keywords whose names begin and end with `__'. Pedantic
warnings are also disabled in the expression that follows
`__extension__'. However, only system header files should use
these escape routes; application programs should avoid them.
*Note Alternate Keywords::.
This option is not intended to be useful; it exists only to satisfy
pedants who would otherwise claim that GNU CC fails to support the
ANSI standard.
Some users try to use `-pedantic' to check programs for strict ANSI
C conformance. They soon find that it does not do quite what they
want: it finds some non-ANSI practices, but not all--only those
for which ANSI C *requires* a diagnostic.
A feature to report any failure to conform to ANSI C might be
useful in some instances, but would require considerable
additional work and would be quite different from `-pedantic'. We
recommend, rather, that users take advantage of the extensions of
GNU C and disregard the limitations of other compilers. Aside
from certain supercomputers and obsolete small machines, there is
less and less reason ever to use any other C compiler other than
for bootstrapping GNU CC.
`-pedantic-errors'
Like `-pedantic', except that errors are produced rather than
warnings.
`-W'
Print extra warning messages for these events:
* A nonvolatile automatic variable might be changed by a call to
`longjmp'. These warnings as well are possible only in
optimizing compilation.
The compiler sees only the calls to `setjmp'. It cannot know
where `longjmp' will be called; in fact, a signal handler
could call it at any point in the code. As a result, you may
get a warning even when there is in fact no problem because
`longjmp' cannot in fact be called at the place which would
cause a problem.
* A function can return either with or without a value.
(Falling off the end of the function body is considered
returning without a value.) For example, this function would
evoke such a warning:
foo (a)
{
if (a > 0)
return a;
}
* An expression-statement contains no side effects.
* An unsigned value is compared against zero with `>' or `<='.
* A comparison like `x<=y<=z' appears; this is equivalent to
`(x<=y ? 1 : 0) <= z', which is a different interpretation
from that of ordinary mathematical notation.
* Storage-class specifiers like `static' are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.
* An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for `x.h':
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };
`-Wimplicit'
Warn whenever a function or parameter is implicitly declared.
`-Wreturn-type'
Warn whenever a function is defined with a return-type that
defaults to `int'. Also warn about any `return' statement with no
return-value in a function whose return-type is not `void'.
`-Wunused'
Warn whenever a local variable is unused aside from its
declaration, whenever a function is declared static but never
defined, and whenever a statement computes a result that is
explicitly not used.
If you want to prevent a warning for a particular variable, you
can use this macro:
#define USE(var) \
static void * use_##var = (&use_##var, (void *) &var)
USE (string);
`-Wswitch'
Warn whenever a `switch' statement has an index of enumeral type
and lacks a `case' for one or more of the named codes of that
enumeration. (The presence of a `default' label prevents this
warning.) `case' labels outside the enumeration range also
provoke warnings when this option is used.
`-Wcomment'
Warn whenever a comment-start sequence `/*' appears in a comment.
`-Wtrigraphs'
Warn if any trigraphs are encountered (assuming they are enabled).
`-Wformat'
Check calls to `printf' and `scanf', etc., to make sure that the
arguments supplied have types appropriate to the format string
specified.
`-Wchar-subscripts'
Warn if an array subscript has type `char'. This is a common cause
of error, as programmers often forget that this type is signed on
some machines.
`-Wuninitialized'
An automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation,
because they require data flow information that is computed only
when optimizing. If you don't specify `-O', you simply won't get
these warnings.
These warnings occur only for variables that are candidates for
register allocation. Therefore, they do not occur for a variable
that is declared `volatile', or whose address is taken, or whose
size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used
only to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the
warnings are printed.
These warnings are made optional because GNU CC is not smart
enough to see all the reasons why the code might be correct
despite appearing to have an error. Here is one example of how
this can happen:
{
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}
If the value of `y' is always 1, 2 or 3, then `x' is always
initialized, but GNU CC doesn't know this. Here is another common
case:
{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;
}
This has no bug because `save_y' is used only if it is set.
Some spurious warnings can be avoided if you declare all the
functions you use that never return as `volatile'. *Note Function
Attributes::.
`-Wparentheses'
Warn if parentheses are omitted in certain contexts, such as when
there is an assignment in a context where a truth value is
expected, or when operators are nested whose precedence people
often get confused about.
`-Wenum-clash'
Warn about conversion between different enumeration types. (C++
only).
`-Wtemplate-debugging'
When using templates in a C++ program, warn if debugging is not yet
fully available (C++ only).
`-Wall'
All of the above `-W' options combined. These are all the options
which pertain to usage that we recommend avoiding and that we
believe is easy to avoid, even in conjunction with macros.
The remaining `-W...' options are not implied by `-Wall' because
they warn about constructions that we consider reasonable to use, on
occasion, in clean programs.
`-Wtraditional'
Warn about certain constructs that behave differently in
traditional and ANSI C.
* Macro arguments occurring within string constants in the
macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.
* A function declared external in one block and then used after
the end of the block.
* A `switch' statement has an operand of type `long'.
`-Wshadow'
Warn whenever a local variable shadows another local variable.
`-Wid-clash-LEN'
Warn whenever two distinct identifiers match in the first LEN
characters. This may help you prepare a program that will compile
with certain obsolete, brain-damaged compilers.
`-Wpointer-arith'
Warn about anything that depends on the "size of" a function type
or of `void'. GNU C assigns these types a size of 1, for
convenience in calculations with `void *' pointers and pointers to
functions.
`-Wcast-qual'
Warn whenever a pointer is cast so as to remove a type qualifier
from the target type. For example, warn if a `const char *' is
cast to an ordinary `char *'.
`-Wcast-align'
Warn whenever a pointer is cast such that the required alignment
of the target is increased. For example, warn if a `char *' is
cast to an `int *' on machines where integers can only be accessed
at two- or four-byte boundaries.
`-Wwrite-strings'
Give string constants the type `const char[LENGTH]' so that
copying the address of one into a non-`const' `char *' pointer
will get a warning. These warnings will help you find at compile
time code that can try to write into a string constant, but only
if you have been very careful about using `const' in declarations
and prototypes. Otherwise, it will just be a nuisance; this is
why we did not make `-Wall' request these warnings.
`-Wconversion'
Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the absence of a
prototype. This includes conversions of fixed point to floating
and vice versa, and conversions changing the width or signedness
of a fixed point argument except when the same as the default
promotion.
Also, warn if a negative integer constant expression is implicitly
converted to an unsigned type. For example, warn about the
assignment `x = -1' if `x' is unsigned. But do not warn about
explicit casts like `(unsigned) -1'.
`-Waggregate-return'
Warn if any functions that return structures or unions are defined
or called. (In languages where you can return an array, this also
elicits a warning.)
`-Wstrict-prototypes'
Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies the
argument types.)
`-Wmissing-prototypes'
Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. The aim is to detect global functions that
fail to be declared in header files.
`-Wredundant-decls'
Warn if anything is declared more than once in the same scope,
even in cases where multiple declaration is valid and changes
nothing.
`-Wnested-externs'
Warn if an `extern' declaration is encountered within an function.
`-Winline'
Warn if a function can not be inlined, and either it was declared
as inline, or else the `-finline-functions' option was given.
`-Woverloaded-virtual'
Warn when a derived class function declaration may be an error in
defining a virtual function (C++ only). In a derived class, the
definitions of virtual functions must match the type signature of a
virtual function declared in the base class. With this option, the
compiler warns when you define a function with the same name as a
virtual function, but with a type signature that does not match any
declarations from the base class.
`-Werror'
Make all warnings into errors.
File: @.Distr.UsingGCC, Node: Debugging Options, Next: Optimize Options, Prev: Warning Options, Up: Invoking GCC
Options for Debugging Your Program or GNU CC
============================================
GNU CC has various special options that are used for debugging
either your program or GCC:
`-g'
Produce debugging information in the operating system's native
format (stabs, COFF, XCOFF, or DWARF). GDB can work with this
debugging information.
On most systems that use stabs format, `-g' enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but will probably make other
debuggers crash or refuse to read the program. If you want to
control for certain whether to generate the extra information, use
`-gstabs+', `-gstabs', `-gxcoff+', `-gxcoff', `-gdwarf+', or
`-gdwarf' (see below).
Unlike most other C compilers, GNU CC allows you to use `-g' with
`-O'. The shortcuts taken by optimized code may occasionally
produce surprising results: some variables you declared may not
exist at all; flow of control may briefly move where you did not
expect it; some statements may not be executed because they
compute constant results or their values were already at hand;
some statements may execute in different places because they were
moved out of loops.
Nevertheless it proves possible to debug optimized output. This
makes it reasonable to use the optimizer for programs that might
have bugs.
The following options are useful when GNU CC is generated with the
capability for more than one debugging format.
`-ggdb'
Produce debugging information in the native format (if that is
supported), including GDB extensions if at all possible.
`-gstabs'
Produce debugging information in stabs format (if that is
supported), without GDB extensions. This is the format used by
DBX on most BSD systems.
`-gstabs+'
Produce debugging information in stabs format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.
`-gcoff'
Produce debugging information in COFF format (if that is
supported). This is the format used by SDB on most System V
systems prior to System V Release 4.
`-gxcoff'
Produce debugging information in XCOFF format (if that is
supported). This is the format used by the DBX debugger on IBM
RS/6000 systems.
`-gxcoff+'
Produce debugging information in XCOFF format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.
`-gdwarf'
Produce debugging information in DWARF format (if that is
supported). This is the format used by SDB on most System V
Release 4 systems.
`-gdwarf+'
Produce debugging information in DWARF format (if that is
supported), using GNU extensions understood only by the GNU
debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.
`-gLEVEL'
`-ggdbLEVEL'
`-gstabsLEVEL'
`-gcoffLEVEL'
`-gxcoffLEVEL'
`-gdwarfLEVEL'
Request debugging information and also use LEVEL to specify how
much information. The default level is 2.
Level 1 produces minimal information, enough for making backtraces
in parts of the program that you don't plan to debug. This
includes descriptions of functions and external variables, but no
information about local variables and no line numbers.
Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support macro
expansion when you use `-g3'.
`-p'
Generate extra code to write profile information suitable for the
analysis program `prof'. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
`-pg'
Generate extra code to write profile information suitable for the
analysis program `gprof'. You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
`-a'
Generate extra code to write profile information for basic blocks,
which will record the number of times each basic block is executed.
This data could be analyzed by a program like `tcov'. Note,
however, that the format of the data is not what `tcov' expects.
Eventually GNU `gprof' should be extended to process this data.
`-dLETTERS'
Says to make debugging dumps during compilation at times specified
by LETTERS. This is used for debugging the compiler. The file
names for most of the dumps are made by appending a word to the
source file name (e.g. `foo.c.rtl' or `foo.c.jump'). Here are the
possible letters for use in LETTERS, and their meanings:
`M'
Dump all macro definitions, at the end of preprocessing, and
write no output.
`N'
Dump all macro names, at the end of preprocessing.
`D'
Dump all macro definitions, at the end of preprocessing, in
addition to normal output.
`y'
Dump debugging information during parsing, to standard error.
`r'
Dump after RTL generation, to `FILE.rtl'.
`x'
Just generate RTL for a function instead of compiling it.
Usually used with `r'.
`j'
Dump after first jump optimization, to `FILE.jump'.
`s'
Dump after CSE (including the jump optimization that sometimes
follows CSE), to `FILE.cse'.
`L'
Dump after loop optimization, to `FILE.loop'.
`t'
Dump after the second CSE pass (including the jump
optimization that sometimes follows CSE), to `FILE.cse2'.
`f'
Dump after flow analysis, to `FILE.flow'.
`c'
Dump after instruction combination, to the file
`FILE.combine'.
`S'
Dump after the first instruction scheduling pass, to
`FILE.sched'.
`l'
Dump after local register allocation, to `FILE.lreg'.
`g'
Dump after global register allocation, to `FILE.greg'.
`R'
Dump after the second instruction scheduling pass, to
`FILE.sched2'.
`J'
Dump after last jump optimization, to `FILE.jump2'.
`d'
Dump after delayed branch scheduling, to `FILE.dbr'.
`k'
Dump after conversion from registers to stack, to
`FILE.stack'.
`a'
Produce all the dumps listed above.
`m'
Print statistics on memory usage, at the end of the run, to
standard error.
`p'
Annotate the assembler output with a comment indicating which
pattern and alternative was used.
`-fpretend-float'
When running a cross-compiler, pretend that the target machine
uses the same floating point format as the host machine. This
causes incorrect output of the actual floating constants, but the
actual instruction sequence will probably be the same as GNU CC
would make when running on the target machine.
`-save-temps'
Store the usual "temporary" intermediate files permanently; place
them in the current directory and name them based on the source
file. Thus, compiling `foo.c' with `-c -save-temps' would produce
files `foo.i' and `foo.s', as well as `foo.o'.
`-print-libgcc-file-name'
Print the full absolute name of the library file `libgcc.a' that
would be used when linking--and don't do anything else. With this
option, GNU CC does not compile or link anything; it just prints
the file name.
This is useful when you use `-nostdlib' but you do want to link
with `libgcc.a'. You can do
gcc -nostdlib FILES... `gcc -print-libgcc-file-name`
File: @.Distr.UsingGCC, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC
Options That Control Optimization
=================================
These options control various sorts of optimizations:
`-O'
`-O1'
Optimize. Optimizing compilation takes somewhat more time, and a
lot more memory for a large function.
Without `-O', the compiler's goal is to reduce the cost of
compilation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to
any variable or change the program counter to any other statement
in the function and get exactly the results you would expect from
the source code.
Without `-O', only variables declared `register' are allocated in
registers. The resulting compiled code is a little worse than
produced by PCC without `-O'.
With `-O', the compiler tries to reduce code size and execution
time.
When `-O' is specified, the two options `-fthread-jumps' and
`-fdelayed-branch' are turned on. On some machines other flags may
also be turned on.
`-O2'
Optimize even more. Nearly all supported optimizations that do not
involve a space-speed tradeoff are performed. As compared to `-O',
this option increases both compilation time and the performance of
the generated code.
`-O2' turns on all optional optimizations except for loop unrolling
and frame pointer elimination.
`-O0'
Do not optimize.
If you use multiple `-O' options, with or without level numbers,
the last such option is the one that is effective.
Options of the form `-fFLAG' specify machine-independent flags.
Most flags have both positive and negative forms; the negative form of
`-ffoo' would be `-fno-foo'. In the table below, only one of the forms
is listed--the one which is not the default. You can figure out the
other form by either removing `no-' or adding it.
`-ffloat-store'
Do not store floating point variables in registers, and inhibit
other options that might change whether a floating point value is
taken from a register or memory.
This option prevents undesirable excess precision on machines such
as the 68000 where the floating registers (of the 68881) keep more
precision than a `double' is supposed to have. For most programs,
the excess precision does only good, but a few programs rely on the
precise definition of IEEE floating point. Use `-ffloat-store' for
such programs.
`-fno-default-inline'
Do not make member functions inline by default merely because they
are defined inside the class scope (C++ only). Otherwise, when
you specify `-O', member functions defined inside class scope are
compiled inline by default; i.e., you don't need to add `inline'
in front of the member function name.
`-fno-defer-pop'
Always pop the arguments to each function call as soon as that
function returns. For machines which must pop arguments after a
function call, the compiler normally lets arguments accumulate on
the stack for several function calls and pops them all at once.
`-fforce-mem'
Force memory operands to be copied into registers before doing
arithmetic on them. This may produce better code by making all
memory references potential common subexpressions. When they are
not common subexpressions, instruction combination should
eliminate the separate register-load. I am interested in hearing
about the difference this makes.
`-fforce-addr'
Force memory address constants to be copied into registers before
doing arithmetic on them. This may produce better code just as
`-fforce-mem' may. I am interested in hearing about the
difference this makes.
`-fomit-frame-pointer'
Don't keep the frame pointer in a register for functions that
don't need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available
in many functions. *It also makes debugging impossible on some
machines.*
On some machines, such as the Vax, this flag has no effect, because
the standard calling sequence automatically handles the frame
pointer and nothing is saved by pretending it doesn't exist. The
machine-description macro `FRAME_POINTER_REQUIRED' controls
whether a target machine supports this flag. *Note Register
Usage: (gcc.info)Registers.
`-fno-inline'
Don't pay attention to the `inline' keyword. Normally this option
is used to keep the compiler from expanding any functions inline.
Note that if you are not optimizing, no functions can be expanded
inline.
`-finline-functions'
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be worth
integrating in this way.
If all calls to a given function are integrated, and the function
is declared `static', then the function is normally not output as
assembler code in its own right.
`-fkeep-inline-functions'
Even if all calls to a given function are integrated, and the
function is declared `static', nevertheless output a separate
run-time callable version of the function.
`-fno-function-cse'
Do not put function addresses in registers; make each instruction
that calls a constant function contain the function's address
explicitly.
This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the
optimizations performed when this option is not used.
`-ffast-math'
This option allows GCC to violate some ANSI or IEEE rules and/or
specifications in the interest of optimizing code for speed. For
example, it allows the compiler to assume arguments to the `sqrt'
function are non-negative numbers.
This option should never be turned on by any `-O' option since it
can result in incorrect output for programs which depend on an
exact implementation of IEEE or ANSI rules/specifications for math
functions.
The following options control specific optimizations. The `-O2'
option turns on all of these optimizations except `-funroll-loops' and
`-funroll-all-loops'. On most machines, the `-O' option turns on the
`-fthread-jumps' and `-fdelayed-branch' options, but specific machines
may handle it differently.
You can use the following flags in the rare cases when "fine-tuning"
of optimizations to be performed is desired.
`-fstrength-reduce'
Perform the optimizations of loop strength reduction and
elimination of iteration variables.
`-fthread-jumps'
Perform optimizations where we check to see if a jump branches to a
location where another comparison subsumed by the first is found.
If so, the first branch is redirected to either the destination of
the second branch or a point immediately following it, depending
on whether the condition is known to be true or false.
`-fcse-follow-jumps'
In common subexpression elimination, scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an `if' statement with an `else'
clause, CSE will follow the jump when the condition tested is
false.
`-fcse-skip-blocks'
This is similar to `-fcse-follow-jumps', but causes CSE to follow
jumps which conditionally skip over blocks. When CSE encounters a
simple `if' statement with no else clause, `-fcse-skip-blocks'
causes CSE to follow the jump around the body of the `if'.
`-frerun-cse-after-loop'
Re-run common subexpression elimination after loop optimizations
has been performed.
`-fexpensive-optimizations'
Perform a number of minor optimizations that are relatively
expensive.
`-fdelayed-branch'
If supported for the target machine, attempt to reorder
instructions to exploit instruction slots available after delayed
branch instructions.
`-fschedule-insns'
If supported for the target machine, attempt to reorder
instructions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow floating
point or memory load instructions by allowing other instructions
to be issued until the result of the load or floating point
instruction is required.
`-fschedule-insns2'
Similar to `-fschedule-insns', but requests an additional pass of
instruction scheduling after register allocation has been done.
This is especially useful on machines with a relatively small
number of registers and where memory load instructions take more
than one cycle.
`-fcaller-saves'
Enable values to be allocated in registers that will be clobbered
by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is done
only when it seems to result in better code than would otherwise
be produced.
This option is enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
`-funroll-loops'
Perform the optimization of loop unrolling. This is only done for
loops whose number of iterations can be determined at compile time
or run time. `-funroll-loop' implies both `-fstrength-reduce' and
`-frerun-cse-after-loop'.
`-funroll-all-loops'
Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
`-funroll-all-loops' implies `-fstrength-reduce' as well as
`-frerun-cse-after-loop'.
`-fno-peephole'
Disable any machine-specific peephole optimizations.
File: @.Distr.UsingGCC, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC
Options Controlling the Preprocessor
====================================
These options control the C preprocessor, which is run on each C
source file before actual compilation.
If you use the `-E' option, nothing is done except preprocessing.
Some of these options make sense only together with `-E' because they
cause the preprocessor output to be unsuitable for actual compilation.
`-include FILE'
Process FILE as input before processing the regular input file.
In effect, the contents of FILE are compiled first. Any `-D' and
`-U' options on the command line are always processed before
`-include FILE', regardless of the order in which they are
written. All the `-include' and `-imacros' options are processed
in the order in which they are written.
`-imacros FILE'
Process FILE as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from FILE is discarded, the only effect of `-imacros FILE' is to
make the macros defined in FILE available for use in the main
input.
Any `-D' and `-U' options on the command line are always processed
before `-imacros FILE', regardless of the order in which they are
written. All the `-include' and `-imacros' options are processed
in the order in which they are written.
`-idirafter DIR'
Add the directory DIR to the second include path. The directories
on the second include path are searched when a header file is not
found in any of the directories in the main include path (the one
that `-I' adds to).
`-iprefix PREFIX'
Specify PREFIX as the prefix for subsequent `-iwithprefix' options.
`-iwithprefix DIR'
Add a directory to the second include path. The directory's name
is made by concatenating PREFIX and DIR, where PREFIX was
specified previously with `-iprefix'.
`-nostdinc'
Do not search the standard system directories for header files.
Only the directories you have specified with `-I' options (and the
current directory, if appropriate) are searched. *Note Directory
Options::, for information on `-I'.
By using both `-nostdinc' and `-I-', you can limit the include-file
search path to only those directories you specify explicitly.
`-undef'
Do not predefine any nonstandard macros. (Including architecture
flags).
`-E'
Run only the C preprocessor. Preprocess all the C source files
specified and output the results to standard output or to the
specified output file.
`-C'
Tell the preprocessor not to discard comments. Used with the `-E'
option.
`-P'
Tell the preprocessor not to generate `#line' commands. Used with
the `-E' option.
`-M'
Tell the preprocessor to output a rule suitable for `make'
describing the dependencies of each object file. For each source
file, the preprocessor outputs one `make'-rule whose target is the
object file name for that source file and whose dependencies are
all the `#include' header files it uses. This rule may be a
single line or may be continued with `\'-newline if it is long.
The list of rules is printed on standard output instead of the
preprocessed C program.
`-M' implies `-E'.
Another way to specify output of a `make' rule is by setting the
environment variable `DEPENDENCIES_OUTPUT' (*note Environment
Variables::.).
`-MM'
Like `-M' but the output mentions only the user header files
included with `#include "FILE"'. System header files included
with `#include <FILE>' are omitted.
`-MD'
Like `-M' but the dependency information is written to files with
names made by replacing `.o' with `.d' at the end of the output
file names. This is in addition to compiling the input files as
specified--`-MD' does not inhibit ordinary compilation the way
`-M' does.
The Mach utility `md' can be used to merge the `.d' files into a
single dependency file suitable for using with the `make' command.
`-MMD'
Like `-MD' except mention only user header files, not system
header files.
`-H'
Print the name of each header file used, in addition to other
normal activities.
`-AQUESTION(ANSWER)'
Assert the answer ANSWER for QUESTION, in case it is tested with a
preprocessor conditional such as `#if #QUESTION(ANSWER)'. `-A-'
disables the standard assertions that normally describe the target
machine.
`-DMACRO'
Define macro MACRO with the string `1' as its definition.
`-DMACRO=DEFN'
Define macro MACRO as DEFN. All instances of `-D' on the command
line are processed before any `-U' options.
`-UMACRO'
Undefine macro MACRO. `-U' options are evaluated after all `-D'
options, but before any `-include' and `-imacros' options.
`-dM'
Tell the preprocessor to output only a list of the macro
definitions that are in effect at the end of preprocessing. Used
with the `-E' option.
`-dD'
Tell the preprocessing to pass all macro definitions into the
output, in their proper sequence in the rest of the output.
`-dN'
Like `-dD' except that the macro arguments and contents are
omitted. Only `#define NAME' is included in the output.
`-trigraphs'
Support ANSI C trigraphs. You don't want to know about this
brain-damage. The `-ansi' option also has this effect.
File: @.Distr.UsingGCC, Node: Assembler Options, Next: Link Options, Prev: Preprocessor Options, Up: Invoking GCC
Passing Options to the Assembler
================================
`-Wa,OPTION'
Pass OPTION as an option to the assembler. If OPTION contains
commas, it is split into multiple options at the commas.
File: @.Distr.UsingGCC, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC
Options for Linking
===================
These options come into play when the compiler links object files
into an executable output file. They are meaningless if the compiler is
not doing a link step.
`OBJECT-FILE-NAME'
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as
input to the linker.
`-c'
`-S'
`-E'
If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. *Note Overall
Options::.
`-lLIBRARY'
Search the library named LIBRARY when linking.
It makes a difference where in the command you write this option;
the linker searches processes libraries and object files in the
order they are specified. Thus, `foo.o -lz bar.o' searches
library `z' after file `foo.o' but before `bar.o'. If `bar.o'
refers to functions in `z', those functions may not be loaded.
The linker searches a standard list of directories for the library,
which is actually a file named `libLIBRARY.a'. The linker then
uses this file as if it had been specified precisely by name.
The directories searched include several standard system
directories plus any that you specify with `-L'.
Normally the files found this way are library files--archive files
whose members are object files. The linker handles an archive
file by scanning through it for members which define symbols that
have so far been referenced but not defined. But if the file that
is found is an ordinary object file, it is linked in the usual
fashion. The only difference between using an `-l' option and
specifying a file name is that `-l' surrounds LIBRARY with `lib'
and `.a' and searches several directories.
`-lobjc'
You need this special case of the `-l' option in order to link an
Objective C program.
`-nostartfiles'
Do not use the standard system startup files when linking. The
standard libraries are used normally.
`-nostdlib'
Don't use the standard system libraries and startup files when
linking. Only the files you specify will be passed to the linker.
`-static'
On systems that support dynamic linking, this prevents linking
with the shared libraries. On other systems, this option has no
effect.
`-shared'
Produce a shared object which can then be linked with other
objects to form an executable. Only a few systems support this
option.
`-symbolic'
Bind references to global symbols when building a shared object.
Warn about any unresolved references (unless overridden by the
link editor option `-Xlinker -z -Xlinker defs'). Only a few
systems support this option.
`-Xlinker OPTION'
Pass OPTION as an option to the linker. You can use this to
supply system-specific linker options which GNU CC does not know
how to recognize.
If you want to pass an option that takes an argument, you must use
`-Xlinker' twice, once for the option and once for the argument.
For example, to pass `-assert definitions', you must write
`-Xlinker -assert -Xlinker definitions'. It does not work to write
`-Xlinker "-assert definitions"', because this passes the entire
string as a single argument, which is not what the linker expects.
`-Wl,OPTION'
Pass OPTION as an option to the linker. If OPTION contains
commas, it is split into multiple options at the commas.
`-u SYMBOL'
Pretend the symbol SYMBOL is undefined, to force linking of
library modules to define it. You can use `-u' multiple times with
different symbols to force loading of additional library modules.
File: @.Distr.UsingGCC, Node: Directory Options, Next: Target Options, Prev: Link Options, Up: Invoking GCC
Options for Directory Search
============================
These options specify directories to search for header files, for
libraries and for parts of the compiler:
`-IDIR'
Append directory DIR to the list of directories searched for
include files.
`-I-'
Any directories you specify with `-I' options before the `-I-'
option are searched only for the case of `#include "FILE"'; they
are not searched for `#include <FILE>'.
If additional directories are specified with `-I' options after
the `-I-', these directories are searched for all `#include'
directives. (Ordinarily *all* `-I' directories are used this way.)
In addition, the `-I-' option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for `#include "FILE"'. There is no way to
override this effect of `-I-'. With `-I.' you can specify
searching the directory which was current when the compiler was
invoked. That is not exactly the same as what the preprocessor
does by default, but it is often satisfactory.
`-I-' does not inhibit the use of the standard system directories
for header files. Thus, `-I-' and `-nostdinc' are independent.
`-LDIR'
Add directory DIR to the list of directories to be searched for
`-l'.
`-BPREFIX'
This option specifies where to find the executables, libraries and
data files of the compiler itself.
The compiler driver program runs one or more of the subprograms
`cpp', `cc1', `as' and `ld'. It tries PREFIX as a prefix for each
program it tries to run, both with and without `MACHINE/VERSION/'
(*note Target Options::.).
For each subprogram to be run, the compiler driver first tries the
`-B' prefix, if any. If that name is not found, or if `-B' was
not specified, the driver tries two standard prefixes, which are
`/usr/lib/gcc/' and `/usr/local/lib/gcc-lib/'. If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
`PATH' environment variable.
`-B' prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into `-L' options for the linker.
The run-time support file `libgcc.a' can also be searched for using
the `-B' prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is
left out of the link if it is not found by those means.
Another way to specify a prefix much like the `-B' prefix is to use
the environment variable `GCC_EXEC_PREFIX'. *Note Environment
Variables::.
File: @.Distr.UsingGCC, Node: Target Options, Next: Submodel Options, Prev: Directory Options, Up: Invoking GCC
Specifying Target Machine and Compiler Version
==============================================
By default, GNU CC compiles code for the same type of machine that
you are using. However, it can also be installed as a cross-compiler,
to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be
installed side by side. Then you specify which one to use with the
`-b' option.
In addition, older and newer versions of GNU CC can be installed side
by side. One of them (probably the newest) will be the default, but
you may sometimes wish to use another.
`-b MACHINE'
The argument MACHINE specifies the target machine for compilation.
This is useful when you have installed GNU CC as a cross-compiler.
The value to use for MACHINE is the same as was specified as the
machine type when configuring GNU CC as a cross-compiler. For
example, if a cross-compiler was configured with `configure
i386v', meaning to compile for an 80386 running System V, then you
would specify `-b i386v' to run that cross compiler.
When you do not specify `-b', it normally means to compile for the
same type of machine that you are using.
`-V VERSION'
The argument VERSION specifies which version of GNU CC to run.
This is useful when multiple versions are installed. For example,
VERSION might be `2.0', meaning to run GNU CC version 2.0.
The default version, when you do not specify `-V', is controlled
by the way GNU CC is installed. Normally, it will be a version
that is recommended for general use.
The `-b' and `-V' options actually work by controlling part of the
file name used for the executable files and libraries used for
compilation. A given version of GNU CC, for a given target machine, is
normally kept in the directory `/usr/local/lib/gcc-lib/MACHINE/VERSION'.
Thus, sites can customize the effect of `-b' or `-V' either by
changing the names of these directories or adding alternate names (or
symbolic links). If in directory `/usr/local/lib/gcc-lib/' the file
`80386' is a link to the file `i386v', then `-b 80386' becomes an alias
for `-b i386v'.
In one respect, the `-b' or `-V' do not completely change to a
different compiler: the top-level driver program `gcc' that you
originally invoked continues to run and invoke the other executables
(preprocessor, compiler per se, assembler and linker) that do the real
work. However, since no real work is done in the driver program, it
usually does not matter that the driver program in use is not the one
for the specified target and version.
The only way that the driver program depends on the target machine is
in the parsing and handling of special machine-specific options.
However, this is controlled by a file which is found, along with the
other executables, in the directory for the specified version and
target machine. As a result, a single installed driver program adapts
to any specified target machine and compiler version.
The driver program executable does control one significant thing,
however: the default version and target machine. Therefore, you can
install different instances of the driver program, compiled for
different targets or versions, under different names.
For example, if the driver for version 2.0 is installed as `ogcc'
and that for version 2.1 is installed as `gcc', then the command `gcc'
will use version 2.1 by default, while `ogcc' will use 2.0 by default.
However, you can choose either version with either command with the
`-V' option.
File: @.Distr.UsingGCC, Node: Submodel Options, Next: Code Gen Options, Prev: Target Options, Up: Invoking GCC
Hardware Models and Configurations
==================================
Earlier we discussed the standard option `-b' which chooses among
different installed compilers for completely different target machines,
such as Vax vs. 68000 vs. 80386.
In addition, each of these target machine types can have its own
special options, starting with `-m', to choose among various hardware
models or configurations--for example, 68010 vs 68020, floating
coprocessor or none. A single installed version of the compiler can
compile for any model or configuration, according to the options
specified.
Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same
platform.
* Menu:
* M680x0 Options::
* VAX Options::
* SPARC Options::
* Convex Options::
* AMD29K Options::
* M88K Options::
* RS/6000 Options::
* RT Options::
* MIPS Options::
* i386 Options::
* HPPA Options::
* Intel 960 Options::
* DEC Alpha Options::
* System V Options::
File: @.Distr.UsingGCC, Node: M680x0 Options, Next: VAX Options, Up: Submodel Options
M680x0 Options
--------------
These are the `-m' options defined for the 68000 series. The default
values for these options depends on which style of 68000 was selected
when the compiler was configured; the defaults for the most common
choices are given below.
`-m68000'
`-mc68000'
Generate output for a 68000. This is the default when the
compiler is configured for 68000-based systems.
`-m68020'
`-mc68020'
Generate output for a 68020. This is the default when the
compiler is configured for 68020-based systems.
`-m68881'
Generate output containing 68881 instructions for floating point.
This is the default for most 68020 systems unless `-nfp' was
specified when the compiler was configured.
`-m68030'
Generate output for a 68030. This is the default when the
compiler is configured for 68030-based systems.
`-m68040'
Generate output for a 68040. This is the default when the
compiler is configured for 68040-based systems.
`-m68020-40'
Generate output for a 68040, without using any of the new
instructions. This results in code which can run relatively
efficiently on either a 68020/68881 or a 68030 or a 68040.
`-mfpa'
Generate output containing Sun FPA instructions for floating point.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not part of GNU CC.
Normally the facilities of the machine's usual C compiler are
used, but this can't be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
`-mshort'
Consider type `int' to be 16 bits wide, like `short int'.
`-mnobitfield'
Do not use the bit-field instructions. The `-m68000' option
implies `-mnobitfield'.
`-mbitfield'
Do use the bit-field instructions. The `-m68020' option implies
`-mbitfield'. This is the default if you use a configuration
designed for a 68020.
`-mrtd'
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the `rtd'
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
This calling convention is incompatible with the one normally used
on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including `printf'); otherwise
incorrect code will be generated for calls to those functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
The `rtd' instruction is supported by the 68010 and 68020
processors, but not by the 68000.
File: @.Distr.UsingGCC, Node: VAX Options, Next: SPARC Options, Prev: M680x0 Options, Up: Submodel Options
VAX Options
-----------
These `-m' options are defined for the Vax:
`-munix'
Do not output certain jump instructions (`aobleq' and so on) that
the Unix assembler for the Vax cannot handle across long ranges.
`-mgnu'
Do output those jump instructions, on the assumption that you will
assemble with the GNU assembler.
`-mg'
Output code for g-format floating point numbers instead of
d-format.
File: @.Distr.UsingGCC, Node: SPARC Options, Next: Convex Options, Prev: VAX Options, Up: Submodel Options
SPARC Options
-------------
These `-m' switches are supported on the SPARC:
`-mfpu'
`-mhard-float'
Generate output containing floating point instructions. This is
the default.
`-mno-fpu'
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* there is no GNU floating-point library for SPARC.
Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
`-msoft-float' changes the calling convention in the output file;
therefore, it is only useful if you compile *all* of a program with
this option. In particular, you need to compile `libgcc.a', the
library that comes with GNU CC, with `-msoft-float' in order for
this to work.
`-mno-epilogue'
`-mepilogue'
With `-mepilogue' (the default), the compiler always emits code for
function exit at the end of each function. Any function exit in
the middle of the function (such as a return statement in C) will
generate a jump to the exit code at the end of the function.
With `-mno-epilogue', the compiler tries to emit exit code inline
at every function exit.
`-mv8'
`-msparclite'
These two options select variations on the SPARC architecture.
By default (unless specifically configured for the Fujitsu
SPARClite), GCC generates code for the v7 variant of the SPARC
architecture.
`-mv8' will give you SPARC v8 code. The only difference from v7
code is that the compiler emits the integer multiply and integer
divide instructions which exist in SPARC v8 but not in SPARC v7.
`-msparclite' will give you SPARClite code. This adds the integer
multiply, integer divide step and scan (`ffs') instructions which
exist in SPARClite but not in SPARC v7.
File: @.Distr.UsingGCC, Node: Convex Options, Next: AMD29K Options, Prev: SPARC Options, Up: Submodel Options
Convex Options
--------------
These `-m' options are defined for Convex:
`-mc1'
Generate output for C1. The code will run on any Convex machine.
The preprocessor symbol `__convex__c1__' is defined.
`-mc2'
Generate output for C2. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C2. The preprocessor symbol `__convex_c2__' is defined.
`-mc32'
Generate output for C32xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C32. The preprocessor symbol `__convex_c32__' is defined.
`-mc34'
Generate output for C34xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C34. The preprocessor symbol `__convex_c34__' is defined.
`-mc38'
Generate output for C38xx. Uses instructions not available on C1.
Scheduling and other optimizations are chosen for max performance
on C38. The preprocessor symbol `__convex_c38__' is defined.
`-margcount'
Generate code which puts an argument count in the word preceding
each argument list. This is compatible with regular CC, and a few
programs may need the argument count word. GDB and other
source-level debuggers do not need it; this info is in the symbol
table.
`-mnoargcount'
Omit the argument count word. This is the default.
`-mvolatile-cache'
Allow volatile references to be cached. This is the default.
`-mvolatile-nocache'
Volatile references bypass the data cache, going all the way to
memory. This is only needed for multi-processor code that does
not use standard synchronization instructions. Making
non-volatile references to volatile locations will not necessarily
work.
`-mlong32'
Type long is 32 bits, the same as type int. This is the default.
`-mlong64'
Type long is 64 bits, the same as type long long. This option is
useless, because no library support exists for it.
File: @.Distr.UsingGCC, Node: AMD29K Options, Next: M88K Options, Prev: Convex Options, Up: Submodel Options
AMD29K Options
--------------
These `-m' options are defined for the AMD Am29000:
`-mdw'
Generate code that assumes the `DW' bit is set, i.e., that byte and
halfword operations are directly supported by the hardware. This
is the default.
`-mnodw'
Generate code that assumes the `DW' bit is not set.
`-mbw'
Generate code that assumes the system supports byte and halfword
write operations. This is the default.
`-mnbw'
Generate code that assumes the systems does not support byte and
halfword write operations. `-mnbw' implies `-mnodw'.
`-msmall'
Use a small memory model that assumes that all function addresses
are either within a single 256 KB segment or at an absolute
address of less than 256k. This allows the `call' instruction to
be used instead of a `const', `consth', `calli' sequence.
`-mlarge'
Do not assume that the `call' instruction can be used; this is the
default.
`-m29050'
Generate code for the Am29050.
`-m29000'
Generate code for the Am29000. This is the default.
`-mkernel-registers'
Generate references to registers `gr64-gr95' instead of to
registers `gr96-gr127'. This option can be used when compiling
kernel code that wants a set of global registers disjoint from
that used by user-mode code.
Note that when this option is used, register names in `-f' flags
must use the normal, user-mode, names.
`-muser-registers'
Use the normal set of global registers, `gr96-gr127'. This is the
default.
`-mstack-check'
Insert a call to `__msp_check' after each stack adjustment. This
is often used for kernel code.
File: @.Distr.UsingGCC, Node: M88K Options, Next: RS/6000 Options, Prev: AMD29K Options, Up: Submodel Options
M88K Options
------------
These `-m' options are defined for Motorola 88k architectures:
`-m88000'
Generate code that works well on both the m88100 and the m88110.
`-m88100'
Generate code that works best for the m88100, but that also runs
on the m88110.
`-m88110'
Generate code that works best for the m88110, and may not run on
the m88100.
`-mbig-pic'
Obsolete option to be removed from the next revision. Use `-fPIC'.
`-midentify-revision'
Include an `ident' directive in the assembler output recording the
source file name, compiler name and version, timestamp, and
compilation flags used.
`-mno-underscores'
In assembler output, emit symbol names without adding an underscore
character at the beginning of each name. The default is to use an
underscore as prefix on each name.
`-mocs-debug-info'
`-mno-ocs-debug-info'
Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open
Object Compatibility Standard, "OCS". This extra information
allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is
to include this information; other 88k configurations omit this
information by default.
`-mocs-frame-position'
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the
canonical frame address, which is the stack pointer (register 31)
on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and
BCS configurations use `-mocs-frame-position'; other 88k
configurations have the default `-mno-ocs-frame-position'.
`-mno-ocs-frame-position'
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the frame
pointer register (register 30). When this option is in effect,
the frame pointer is not eliminated when debugging information is
selected by the -g switch.
`-moptimize-arg-area'
`-mno-optimize-arg-area'
Control how function arguments are stored in stack frames.
`-moptimize-arg-area' saves space by optimizing them, but this
conflicts with the 88open specifications. The opposite
alternative, `-mno-optimize-arg-area', agrees with 88open
standards. By default GNU CC does not optimize the argument area.
`-mshort-data-NUM'
Generate smaller data references by making them relative to `r0',
which allows loading a value using a single instruction (rather
than the usual two). You control which data references are
affected by specifying NUM with this option. For example, if you
specify `-mshort-data-512', then the data references affected are
those involving displacements of less than 512 bytes.
`-mshort-data-NUM' is not effective for NUM greater than 64k.
`-mserialize-volatile'
`-mno-serialize-volatile'
Do, or do not, generate code to guarantee sequential consistency of
volatile memory references.
GNU CC always guarantees consistency by default, for the preferred
processor submodel. How this is done depends on the submodel.
The m88100 processor does not reorder memory references and so
always provides sequential consistency. If you use `-m88100', GNU
CC does not generate any special instructions for sequential
consistency.
The order of memory references made by the m88110 processor does
not always match the order of the instructions requesting those
references. In particular, a load instruction may execute before
a preceding store instruction. Such reordering violates
sequential consistency of volatile memory references, when there
are multiple processors. When you use `-m88000' or `-m88110', GNU
CC generates special instructions when appropriate, to force
execution in the proper order.
The extra code generated to guarantee consistency may affect the
performance of your application. If you know that you can safely
forgo this guarantee, you may use the option
`-mno-serialize-volatile'.
If you use the `-m88100' option but require sequential consistency
when running on the m88110 processor, you should use
`-mserialize-volatile'.
`-msvr4'
`-msvr3'
Turn on (`-msvr4') or off (`-msvr3') compiler extensions related
to System V release 4 (SVr4). This controls the following:
1. Which variant of the assembler syntax to emit (which you can
select independently using `-mversion-03.00').
2. `-msvr4' makes the C preprocessor recognize `#pragma weak'
that is used on System V release 4.
3. `-msvr4' makes GNU CC issue additional declaration directives
used in SVr4.
`-msvr3' is the default for all m88k configurations except the
SVr4 configuration.
`-mversion-03.00'
In the DG/UX configuration, there are two flavors of SVr4. This
option modifies `-msvr4' to select whether the hybrid-COFF or
real-ELF flavor is used. All other configurations ignore this
option.
`-mno-check-zero-division'
`-mcheck-zero-division'
Early models of the 88k architecture had problems with division by
zero; in particular, many of them didn't trap. Use these options
to avoid including (or to include explicitly) additional code to
detect division by zero and signal an exception. All GNU CC
configurations for the 88k use `-mcheck-zero-division' by default.
`-muse-div-instruction'
Do not emit code to check both the divisor and dividend when doing
signed integer division to see if either is negative, and adjust
the signs so the divide is done using non-negative numbers.
Instead, rely on the operating system to calculate the correct
value when the `div' instruction traps. This results in different
behavior when the most negative number is divided by -1, but is
useful when most or all signed integer divisions are done with
positive numbers.
`-mtrap-large-shift'
`-mhandle-large-shift'
Include code to detect bit-shifts of more than 31 bits;
respectively, trap such shifts or emit code to handle them
properly. By default GNU CC makes no special provision for large
bit shifts.
`-mwarn-passed-structs'
Warn when a function passes a struct as an argument or result.
Structure-passing conventions have changed during the evolution of
the C language, and are often the source of portability problems.
By default, GNU CC issues no such warning.
File: @.Distr.UsingGCC, Node: RS/6000 Options, Next: RT Options, Prev: M88K Options, Up: Submodel Options
IBM RS/6000 Options
-------------------
Only one pair of `-m' options is defined for the IBM RS/6000:
`-mfp-in-toc'
`-mno-fp-in-toc'
Control whether or not floating-point constants go in the Table of
Contents (TOC), a table of all global variable and function
addresses. By default GNU CC puts floating-point constants there;
if the TOC overflows, `-mno-fp-in-toc' will reduce the size of the
TOC, which may avoid the overflow.
File: @.Distr.UsingGCC, Node: RT Options, Next: MIPS Options, Prev: RS/6000 Options, Up: Submodel Options
IBM RT Options
--------------
These `-m' options are defined for the IBM RT PC:
`-min-line-mul'
Use an in-line code sequence for integer multiplies. This is the
default.
`-mcall-lib-mul'
Call `lmul$$' for integer multiples.
`-mfull-fp-blocks'
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM. This is the
default.
`-mminimum-fp-blocks'
Do not include extra scratch space in floating point data blocks.
This results in smaller code, but slower execution, since scratch
space must be allocated dynamically.
`-mfp-arg-in-fpregs'
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in
floating point registers. Note that `varargs.h' and `stdargs.h'
will not work with floating point operands if this option is
specified.
`-mfp-arg-in-gregs'
Use the normal calling convention for floating point arguments.
This is the default.
`-mhc-struct-return'
Return structures of more than one word in memory, rather than in a
register. This provides compatibility with the MetaWare HighC (hc)
compiler. Use the option `-fpcc-struct-return' for compatibility
with the Portable C Compiler (pcc).
`-mnohc-struct-return'
Return some structures of more than one word in registers, when
convenient. This is the default. For compatibility with the
IBM-supplied compilers, use the option `-fpcc-struct-return' or the
option `-mhc-struct-return'.
File: @.Distr.UsingGCC, Node: MIPS Options, Next: i386 Options, Prev: RT Options, Up: Submodel Options
MIPS Options
------------
These `-m' options are defined for the MIPS family of computers:
`-mcpu=CPU TYPE'
Assume the defaults for the machine type CPU TYPE when scheduling
instructions. The default CPU TYPE is `default', which picks the
longest cycles times for any of the machines, in order that the
code run at reasonable rates on all MIPS cpu's. Other choices for
CPU TYPE are `r2000', `r3000', `r4000', and `r6000'. While
picking a specific CPU TYPE will schedule things appropriately for
that particular chip, the compiler will not generate any code that
does not meet level 1 of the MIPS ISA (instruction set
architecture) without the `-mips2' or `-mips3' switches being used.
`-mips2'
Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). The `-mcpu=r4000' or `-mcpu=r6000'
switch must be used in conjunction with `-mips2'.
`-mips3'
Issue instructions from level 3 of the MIPS ISA (64 bit
instructions). You must use the `-mcpu=r4000' switch along with
`-mips3'.
`-mint64'
`-mlong64'
`-mlonglong128'
These options don't work at present.
`-mmips-as'
Generate code for the MIPS assembler, and invoke `mips-tfile' to
add normal debug information. This is the default for all
platforms except for the OSF/1 reference platform, using the
OSF/rose object format. If the either of the `-gstabs' or
`-gstabs+' switches are used, the `mips-tfile' program will
encapsulate the stabs within MIPS ECOFF.
`-mgas'
Generate code for the GNU assembler. This is the default on the
OSF/1 reference platform, using the OSF/rose object format.
`-mrnames'
`-mno-rnames'
The `-mrnames' switch says to output code using the MIPS software
names for the registers, instead of the hardware names (ie, A0
instead of $4). The GNU assembler does not support the `-mrnames'
switch, and the MIPS assembler will be instructed to run the MIPS
C preprocessor over the source file. The `-mno-rnames' switch is
default.
`-mgpopt'
`-mno-gpopt'
The `-mgpopt' switch says to write all of the data declarations
before the instructions in the text section, this allows the MIPS
assembler to generate one word memory references instead of using
two words for short global or static data items. This is on by
default if optimization is selected.
`-mstats'
`-mno-stats'
For each non-inline function processed, the `-mstats' switch
causes the compiler to emit one line to the standard error file to
print statistics about the program (number of registers saved,
stack size, etc.).
`-mmemcpy'
`-mno-memcpy'
The `-mmemcpy' switch makes all block moves call the appropriate
string function (`memcpy' or `bcopy') instead of possibly
generating inline code.
`-mmips-tfile'
`-mno-mips-tfile'
The `-mno-mips-tfile' switch causes the compiler not postprocess
the object file with the `mips-tfile' program, after the MIPS
assembler has generated it to add debug support. If `mips-tfile'
is not run, then no local variables will be available to the
debugger. In addition, `stage2' and `stage3' objects will have
the temporary file names passed to the assembler embedded in the
object file, which means the objects will not compare the same.
The `-mno-mips-tfile' switch should only be used when there are
bugs in the `mips-tfile' program that prevents compilation.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not part of GNU CC.
Normally the facilities of the machine's usual C compiler are
used, but this can't be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
`-mhard-float'
Generate output containing floating point instructions. This is
the default if you use the unmodified sources.
`-mfp64'
Assume that the FR bit in the status word is on, and that there
are 32 64-bit floating point registers, instead of 32 32-bit
floating point registers. You must also specify the `-mcpu=r4000'
and `-mips3' switches.
`-mfp32'
Assume that there are 32 32-bit floating point registers. This is
the default.
`-mabicalls'
`-mno-abicalls'
Emit (or do not emit) the pseudo operations `.abicalls',
`.cpload', and `.cprestore' that some System V.4 ports use for
position independent code.
`-mlong-calls'
`-mlong-calls'
Do all calls with the `JALR' instruction, which requires loading
up a function's address into a register before the call. You need
to use this switch, if you call outside of the current 512
megabyte segment to functions that are not through pointers.
`-mhalf-pic'
`-mno-half-pic'
Put pointers to extern references into the data section and load
them up, rather than put the references in the text section.
`-G NUM'
Put global and static items less than or equal to NUM bytes into
the small data or bss sections instead of the normal data or bss
section. This allows the assembler to emit one word memory
reference instructions based on the global pointer (GP or $28),
instead of the normal two words used. By default, NUM is 8 when
the MIPS assembler is used, and 0 when the GNU assembler is used.
The `-G NUM' switch is also passed to the assembler and linker.
All modules should be compiled with the same `-G NUM' value.
`-nocpp'
Tell the MIPS assembler to not run it's preprocessor over user
assembler files (with a `.s' suffix) when assembling them.
File: @.Distr.UsingGCC, Node: i386 Options, Next: HPPA Options, Prev: MIPS Options, Up: Submodel Options
Intel 386 Options
-----------------
These `-m' options are defined for the i386 family of computers:
`-m486'
`-mno-486'
Control whether or not code is optimized for a 486 instead of an
386. Code generated for an 486 will run on a 386 and vice versa.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not part of GNU CC.
Normally the facilities of the machine's usual C compiler are
used, but this can't be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
On machines where a function returns floating point results in the
80387 register stack, some floating point opcodes may be emitted
even if `-msoft-float' is used.
`-mno-fp-ret-in-387'
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types
`float' and `double' in an FPU register, even if there is no FPU.
The idea is that the operating system should emulate an FPU.
The option `-mno-fp-ret-in-387' causes such values to be returned
in ordinary CPU registers instead.
File: @.Distr.UsingGCC, Node: HPPA Options, Next: Intel 960 Options, Prev: i386 Options, Up: Submodel Options
HPPA Options
------------
These `-m' options are defined for the HPPA family of computers:
`-mpa-risc-1-0'
Generate code for a PA 1.0 processor.
`-mpa-risc-1-1'
Generate code for a PA 1.1 processor.
`-mkernel'
Generate code which is suitable for use in kernels. Specifically,
avoid `add' instructions in which one of the arguments is the DP
register; generate `addil' instructions instead. This avoids a
rather serious bug in the HP-UX linker.
`-mshared-libs'
Generate code that can be linked against HP-UX shared libraries.
This option is not fully function yet, and is not on by default
for any PA target. Using this option can cause incorrect code to
be generated by the compiler.
`-mno-shared-libs'
Don't generate code that will be linked against shared libraries.
This is the default for all PA targets.
`-mlong-calls'
Generate code which allows calls to functions greater than 256k
away from the caller when the caller and callee are in the same
source file. Do not turn this option on unless code refuses to
link with "branch out of range errors" from the linker.
`-mdisable-fpregs'
Prevent floating point registers from being used in any manner.
This is necessary for compiling kernels which perform lazy context
switching of floating point registers. If you use this option and
attempt to perform floating point operations, the compiler will
abort.
`-mdisable-indexing'
Prevent the compiler from using indexing address modes. This
avoids some rather obscure problems when compiling MIG generated
code under MACH.
`-mtrailing-colon'
Add a colon to the end of label definitions (for ELF assemblers).
File: @.Distr.UsingGCC, Node: Intel 960 Options, Next: DEC Alpha Options, Prev: HPPA Options, Up: Submodel Options
Intel 960 Options
-----------------
These `-m' options are defined for the Intel 960 implementations:
`-mCPU TYPE'
Assume the defaults for the machine type CPU TYPE for some of the
other options, including instruction scheduling, floating point
support, and addressing modes. The choices for CPU TYPE are `ka',
`kb', `mc', `ca', `cf', `sa', and `sb'. The default is `kb'.
`-mnumerics'
`-msoft-float'
The `-mnumerics' option indicates that the processor does support
floating-point instructions. The `-msoft-float' option indicates
that floating-point support should not be assumed.
`-mleaf-procedures'
`-mno-leaf-procedures'
Do (or do not) attempt to alter leaf procedures to be callable
with the `bal' instruction as well as `call'. This will result in
more efficient code for explicit calls when the `bal' instruction
can be substituted by the assembler or linker, but less efficient
code in other cases, such as calls via function pointers, or using
a linker that doesn't support this optimization.
`-mtail-call'
`-mno-tail-call'
Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do this
because the detection of cases where this is not valid is not
totally complete. The default is `-mno-tail-call'.
`-mcomplex-addr'
`-mno-complex-addr'
Assume (or do not assume) that the use of a complex addressing
mode is a win on this implementation of the i960. Complex
addressing modes may not be worthwhile on the K-series, but they
definitely are on the C-series. The default is currently
`-mcomplex-addr' for all processors except the CB and CC.
`-mcode-align'
`-mno-code-align'
Align code to 8-byte boundaries for faster fetching (or don't
bother). Currently turned on by default for C-series
implementations only.
`-mic-compat'
`-mic2.0-compat'
`-mic3.0-compat'
Enable compatibility with iC960 v2.0 or v3.0.
`-masm-compat'
`-mintel-asm'
Enable compatibility with the iC960 assembler.
`-mstrict-align'
`-mno-strict-align'
Do not permit (do permit) unaligned accesses.
`-mold-align'
Enable structure-alignment compatibility with Intel's gcc release
version 1.3 (based on gcc 1.37). Currently this is buggy in that
`#pragma align 1' is always assumed as well, and cannot be turned
off.
File: @.Distr.UsingGCC, Node: DEC Alpha Options, Next: System V Options, Prev: Intel 960 Options, Up: Submodel Options
DEC Alpha Options
-----------------
These `-m' options are defined for the DEC Alpha implementations:
`-mno-soft-float'
`-msoft-float'
Use (do not use) the hardware floating-point instructions for
floating-point operations. When `-msoft-float' is specified,
functions in `libgcc1.c' will be used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call
such emulations routines, these routines will issue floating-point
operations. If you are compiling for an Alpha without
floating-point operations, you must ensure that the library is
built so as not to call them.
Note that Alpha implementations without floating-point operations
are required to have floating-point registers.
`-mfp-reg'
`-mno-fp-regs'
Generate code that uses (does not use) the floating-point register
set. `-mno-fp-regs' implies `-msoft-float'. If the floating-point
register set is not used, floating point operands are passed in
integer registers as if they were integers and floating-point
results are passed in $0 instead of $f0. This is a non-standard
calling sequence, so any function with a floating-point argument
or return value called by code compiled with `-mno-fp-regs' must
also be compiled with that option.
A typical use of this option is building a kernel that does not
use, and hence need not save and restore, any floating-point
registers.
File: @.Distr.UsingGCC, Node: System V Options, Prev: DEC Alpha Options, Up: Submodel Options
Options for System V
--------------------
These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:
`-Qy'
Identify the versions of each tool used by the compiler, in a
`.ident' assembler directive in the output.
`-Qn'
Refrain from adding `.ident' directives to the output file (this is
the default).
`-YP,DIRS'
Search the directories DIRS, and no others, for libraries
specified with `-l'.
`-Ym,DIR'
Look in the directory DIR to find the M4 preprocessor. The
assembler uses this option.
File: @.Distr.UsingGCC, Node: Code Gen Options, Next: Environment Variables, Prev: Submodel Options, Up: Invoking GCC
Options for Code Generation Conventions
=======================================
These machine-independent options control the interface conventions
used in code generation.
Most of them have both positive and negative forms; the negative form
of `-ffoo' would be `-fno-foo'. In the table below, only one of the
forms is listed--the one which is not the default. You can figure out
the other form by either removing `no-' or adding it.
`-fpcc-struct-return'
Return "short" `struct' and `union' values in memory like longer
ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallability
between GNU CC-compiled files and files compiled with other
compilers.
The precise convention for returning structures in memory depends
on the target configuration macros.
Short structures and unions are those whose size and alignment
match that of some integer type.
`-freg-struct-return'
Use the convention that `struct' and `union' values are returned
in registers when possible. This is more efficient for small
structures than `-fpcc-struct-return'.
If you specify neither `-fpcc-struct-return' nor its contrary
`-freg-struct-return', GNU CC defaults to whichever convention is
standard for the target. If there is no standard convention, GNU
CC defaults to `-fpcc-struct-return', except on targets where GNU
CC is the principal compiler. In those cases, we can choose the
standard, and we chose the more efficient register return
alternative.
`-fshort-enums'
Allocate to an `enum' type only as many bytes as it needs for the
declared range of possible values. Specifically, the `enum' type
will be equivalent to the smallest integer type which has enough
room.
`-fshort-double'
Use the same size for `double' as for `float'.
`-fshared-data'
Requests that the data and non-`const' variables of this
compilation be shared data rather than private data. The
distinction makes sense only on certain operating systems, where
shared data is shared between processes running the same program,
while private data exists in one copy per process.
`-fno-common'
Allocate even uninitialized global variables in the bss section of
the object file, rather than generating them as common blocks.
This has the effect that if the same variable is declared (without
`extern') in two different compilations, you will get an error
when you link them. The only reason this might be useful is if
you wish to verify that the program will work on other systems
which always work this way.
`-fno-ident'
Ignore the `#ident' directive.
`-fno-gnu-linker'
Do not output global initializations (such as C++ constructors and
destructors) in the form used by the GNU linker (on systems where
the GNU linker is the standard method of handling them). Use this
option when you want to use a non-GNU linker, which also requires
using the `collect2' program to make sure the system linker
includes constructors and destructors. (`collect2' is included in
the GNU CC distribution.) For systems which *must* use
`collect2', the compiler driver `gcc' is configured to do this
automatically.
`-finhibit-size-directive'
Don't output a `.size' assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This
option is used when compiling `crtstuff.c'; you should not need to
use it for anything else.
`-fverbose-asm'
Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to
those who actually need to read the generated assembly code
(perhaps while debugging the compiler itself).
`-fvolatile'
Consider all memory references through pointers to be volatile.
`-fvolatile-global'
Consider all memory references to extern and global data items to
be volatile.
`-fpic'
Generate position-independent code (PIC) suitable for use in a
shared library, if supported for the target machine. Such code
accesses all constant addresses through a global offset table
(GOT). If the GOT size for the linked executable exceeds a
machine-specific maximum size, you get an error message from the
linker indicating that `-fpic' does not work; in that case,
recompile with `-fPIC' instead. (These maximums are 16k on the
m88k, 8k on the Sparc, and 32k on the m68k and RS/6000. The 386
has no such limit.)
Position-independent code requires special support, and therefore
works only on certain machines. For the 386, GNU CC supports PIC
for System V but not for the Sun 386i. Code generated for the IBM
RS/6000 is always position-independent.
The GNU assembler does not fully support PIC. Currently, you must
use some other assembler in order for PIC to work. We would
welcome volunteers to upgrade GAS to handle this; the first part
of the job is to figure out what the assembler must do differently.
`-fPIC'
If supported for the target machine, emit position-independent
code, suitable for dynamic linking and avoiding any limit on the
size of the global offset table. This option makes a difference
on the m68k, m88k and the Sparc.
Position-independent code requires special support, and therefore
works only on certain machines.
`-ffixed-REG'
Treat the register named REG as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
REG must be the name of a register. The register names accepted
are machine-specific and are defined in the `REGISTER_NAMES' macro
in the machine description macro file.
This flag does not have a negative form, because it specifies a
three-way choice.
`-fcall-used-REG'
Treat the register named REG as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries
or variables that do not live across a call. Functions compiled
this way will not save and restore the register REG.
Use of this flag for a register that has a fixed pervasive role in
the machine's execution model, such as the stack pointer or frame
pointer, will produce disastrous results.
This flag does not have a negative form, because it specifies a
three-way choice.
`-fcall-saved-REG'
Treat the register named REG as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way will save
and restore the register REG if they use it.
Use of this flag for a register that has a fixed pervasive role in
the machine's execution model, such as the stack pointer or frame
pointer, will produce disastrous results.
A different sort of disaster will result from the use of this flag
for a register in which function values may be returned.
This flag does not have a negative form, because it specifies a
three-way choice.
`+e0'
`+e1'
Control whether virtual function definitions in classes are used to
generate code, or only to define interfaces for their callers.
(C++ only).
These options are provided for compatibility with `cfront' 1.x
usage; the recommended alternative GNU C++ usage is in flux.
*Note Declarations and Definitions in One Header: C++ Interface.
With `+e0', virtual function definitions in classes are declared
`extern'; the declaration is used only as an interface
specification, not to generate code for the virtual functions (in
this compilation).
With `+e1', G++ actually generates the code implementing virtual
functions defined in the code, and makes them publicly visible.
File: @.Distr.UsingGCC, Node: Environment Variables, Next: Running Protoize, Prev: Code Gen Options, Up: Invoking GCC
Environment Variables Affecting GNU CC
======================================
This section describes several environment variables that affect how
GNU CC operates. They work by specifying directories or prefixes to use
when searching for various kinds of files.
Note that you can also specify places to search using options such as
`-B', `-I' and `-L' (*note Directory Options::.). These take
precedence over places specified using environment variables, which in
turn take precedence over those specified by the configuration of GNU
CC.
`TMPDIR'
If `TMPDIR' is set, it specifies the directory to use for temporary
files. GNU CC uses temporary files to hold the output of one
stage of compilation which is to be used as input to the next
stage: for example, the output of the preprocessor, which is the
input to the compiler proper.
`GCC_EXEC_PREFIX'
If `GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is
added when this prefix is combined with the name of a subprogram,
but you can specify a prefix that ends with a slash if you wish.
If GNU CC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.
Other prefixes specified with `-B' take precedence over this
prefix.
This prefix is also used for finding files such as `crt0.o' that
are used for linking.
In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with
`/usr/local/lib/gcc-lib' (more precisely, with the value of
`GCC_INCLUDE_DIR'), GNU CC tries replacing that beginning with the
specified prefix to produce an alternate directory name. Thus,
with `-Bfoo/', GNU CC will search `foo/bar' where it would
normally search `/usr/local/lib/bar'. These alternate directories
are searched first; the standard directories come next.
`COMPILER_PATH'
The value of `COMPILER_PATH' is a colon-separated list of
directories, much like `PATH'. GNU CC tries the directories thus
specified when searching for subprograms, if it can't find the
subprograms using `GCC_EXEC_PREFIX'.
`LIBRARY_PATH'
The value of `LIBRARY_PATH' is a colon-separated list of
directories, much like `PATH'. GNU CC tries the directories thus
specified when searching for special linker files, if it can't
find them using `GCC_EXEC_PREFIX'. Linking using GNU CC also uses
these directories when searching for ordinary libraries for the
`-l' option (but directories specified with `-L' come first).
`C_INCLUDE_PATH'
`CPLUS_INCLUDE_PATH'
`OBJC_INCLUDE_PATH'
These environment variables pertain to particular languages. Each
variable's value is a colon-separated list of directories, much
like `PATH'. When GNU CC searches for header files, it tries the
directories listed in the variable for the language you are using,
after the directories specified with `-I' but before the standard
header file directories.
`DEPENDENCIES_OUTPUT'
If this variable is set, its value specifies how to output
dependencies for Make based on the header files processed by the
compiler. This output looks much like the output from the `-M'
option (*note Preprocessor Options::.), but it goes to a separate
file, and is in addition to the usual results of compilation.
The value of `DEPENDENCIES_OUTPUT' can be just a file name, in
which case the Make rules are written to that file, guessing the
target name from the source file name. Or the value can have the
form `FILE TARGET', in which case the rules are written to file
FILE using TARGET as the target name.
File: @.Distr.UsingGCC, Node: Running Protoize, Prev: Environment Variables, Up: Invoking GCC
Running Protoize
================
The program `protoize' is an optional part of GNU C. You can use it
to add prototypes to a program, thus converting the program to ANSI C
in one respect. The companion program `unprotoize' does the reverse:
it removes argument types from any prototypes that are found.
When you run these programs, you must specify a set of source files
as command line arguments. The conversion programs start out by
compiling these files to see what functions they define. The
information gathered about a file FOO is saved in a file named `FOO.X'.
After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or
just headers) are eligible as well.
But not all the eligible files are converted. By default,
`protoize' and `unprotoize' convert only source and header files in the
current directory. You can specify additional directories whose files
should be converted with the `-d DIRECTORY' option. You can also
specify particular files to exclude with the `-x FILE' option. A file
is converted if it is eligible, its directory name matches one of the
specified directory names, and its name within the directory has not
been excluded.
Basic conversion with `protoize' consists of rewriting most function
definitions and function declarations to specify the types of the
arguments. The only ones not rewritten are those for varargs functions.
`protoize' optionally inserts prototype declarations at the
beginning of the source file, to make them available for any calls that
precede the function's definition. Or it can insert prototype
declarations with block scope in the blocks where undeclared functions
are called.
Basic conversion with `unprotoize' consists of rewriting most
function declarations to remove any argument types, and rewriting
function definitions to the old-style pre-ANSI form.
Both conversion programs print a warning for any function
declaration or definition that they can't convert. You can suppress
these warnings with `-q'.
The output from `protoize' or `unprotoize' replaces the original
source file. The original file is renamed to a name ending with
`.save'. If the `.save' file already exists, then the source file is
simply discarded.
`protoize' and `unprotoize' both depend on GNU CC itself to scan the
program and collect information about the functions it uses. So
neither of these programs will work until GNU CC is installed.
Here is a table of the options you can use with `protoize' and
`unprotoize'. Each option works with both programs unless otherwise
stated.
`-B DIRECTORY'
Look for the file `SYSCALLS.c.X' in DIRECTORY, instead of the
usual directory (normally `/usr/local/lib'). This file contains
prototype information about standard system functions. This option
applies only to `protoize'.
`-c COMPILATION-OPTIONS'
Use COMPILATION-OPTIONS as the options when running `gcc' to
produce the `.X' files. The special option `-aux-info' is always
passed in addition, to tell `gcc' to write a `.X' file.
Note that the compilation options must be given as a single
argument to `protoize' or `unprotoize'. If you want to specify
several `gcc' options, you must quote the entire set of
compilation options to make them a single word in the shell.
There are certain `gcc' arguments that you cannot use, because they
would produce the wrong kind of output. These include `-g', `-O',
`-c', `-S', and `-o' If you include these in the
COMPILATION-OPTIONS, they are ignored.
`-C'
Rename files to end in `.C' instead of `.c'. This is convenient
if you are converting a C program to C++. This option applies
only to `protoize'.
`-g'
Add explicit global declarations. This means inserting explicit
declarations at the beginning of each source file for each function
that is called in the file and was not declared. These
declarations precede the first function definition that contains a
call to an undeclared function. This option applies only to
`protoize'.
`-i STRING'
Indent old-style parameter declarations with the string STRING.
This option applies only to `protoize'.
`unprotoize' converts prototyped function definitions to old-style
function definitions, where the arguments are declared between the
argument list and the initial `{'. By default, `unprotoize' uses
five spaces as the indentation. If you want to indent with just
one space instead, use `-i " "'.
`-k'
Keep the `.X' files. Normally, they are deleted after conversion
is finished.
`-l'
Add explicit local declarations. `protoize' with `-l' inserts a
prototype declaration for each function in each block which calls
the function without any declaration. This option applies only to
`protoize'.
`-n'
Make no real changes. This mode just prints information about the
conversions that would have been done without `-n'.
`-N'
Make no `.save' files. The original files are simply deleted.
Use this option with caution.
`-p PROGRAM'
Use the program PROGRAM as the compiler. Normally, the name `gcc'
is used.
`-q'
Work quietly. Most warnings are suppressed.
`-v'
Print the version number, just like `-v' for `gcc'.
If you need special compiler options to compile one of your program's
source files, then you should generate that file's `.X' file specially,
by running `gcc' on that source file with the appropriate options and
the option `-aux-info'. Then run `protoize' on the entire set of
files. `protoize' will use the existing `.X' file because it is newer
than the source file. For example:
gcc -Dfoo=bar file1.c -aux-info
protoize *.c
You need to include the special files along with the rest in the
`protoize' command, even though their `.X' files already exist, because
otherwise they won't get converted.
*Note Protoize Caveats::, for more information on how to use
`protoize' successfully.
File: @.Distr.UsingGCC, Node: Installation, Next: C Extensions, Prev: Invoking GCC, Up: Top
Installing GNU CC
*****************
Here is the procedure for installing GNU CC on a Unix system.
* Menu:
* Other Dir:: Compiling in a separate directory (not where the source is).
* Cross-Compiler:: Building and installing a cross-compiler.
* PA Install:: See below for installation on the HP Precision Architecture.
* Sun Install:: See below for installation on the Sun.
* 3b1 Install:: See below for installation on the 3b1.
* Unos Install:: See below for installation on Unos (from CRDS).
* VMS Install:: See below for installation on VMS.
* WE32K Install:: See below for installation on the 3b* aside from the 3b1.
* MIPS Install:: See below for installation on the MIPS Architecture.
* Collect2:: How `collect2' works; how it finds `ld'.
* Header Dirs:: Understanding the standard header file directories.
You cannot install GNU C by itself on MSDOS; it will not compile
under any MSDOS compiler except itself. You need to get the complete
compilation package DJGPP, which includes binaries as well as sources,
and includes all the necessary compilation tools and libraries.
1. If you have built GNU CC previously in the same directory for a
different target machine, do `make distclean' to delete all files
that might be invalid. One of the files this deletes is
`Makefile'; if `make distclean' complains that `Makefile' does not
exist, it probably means that the directory is already suitably
clean.
2. On a System V release 4 system, make sure `/usr/bin' precedes
`/usr/ucb' in `PATH'. The `cc' command in `/usr/ucb' uses
libraries which have bugs.
3. Specify the host and target machine configurations. You do this by
running the file `configure' with appropriate arguments.
If you are building a compiler to produce code for the machine it
runs on, specify just one machine type, with the `--target'
option; the host type will default to be the same as the target.
(For information on building a cross-compiler, see *Note
Cross-Compiler::.) Here is an example:
configure --target=sparc-sun-sunos4.1
If you run `configure' without specifying configuration arguments,
`configure' tries to guess the type of host you are on, and uses
that configuration type for both host and target. So you don't
need to specify a configuration, for building a native compiler,
unless `configure' cannot figure out what your configuration is.
A configuration name may be canonical or it may be more or less
abbreviated.
A canonical configuration name has three parts, separated by
dashes. It looks like this: `CPU-COMPANY-SYSTEM'. (The three
parts may themselves contain dashes; `configure' can figure out
which dashes serve which purpose.) For example,
`m68k-sun-sunos4.1' specifies a Sun 3.
You can also replace parts of the configuration by nicknames or
aliases. For example, `sun3' stands for `m68k-sun', so
`sun3-sunos4.1' is another way to specify a Sun 3. You can also
use simply `sun3-sunos', since the version of SunOS is assumed by
default to be version 4. `sun3-bsd' also works, since `configure'
knows that the only BSD variant on a Sun 3 is SunOS.
You can specify a version number after any of the system types,
and some of the CPU types. In most cases, the version is
irrelevant, and will be ignored. So you might as well specify the
version if you know it.
Here are the possible CPU types:
a29k, alpha, arm, cN, clipper, elxsi, h8300, hppa1.0, hppa1.1,
i370, i386, i486, i860, i960, m68000, m68k, m88k, mips,
ns32k, pyramid, romp, rs6000, sh, sparc, sparclite, vax,
we32k.
Here are the recognized company names. As you can see, customary
abbreviations are used rather than the longer official names.
alliant, altos, apollo, att, bull, cbm, convergent, convex,
crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp,
ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron,
plexus, sequent, sgi, sony, sun, tti, unicom.
The company name is meaningful only to disambiguate when the rest
of the information supplied is insufficient. You can omit it,
writing just `CPU-SYSTEM', if it is not needed. For example,
`vax-ultrix4.2' is equivalent to `vax-dec-ultrix4.2'.
Here is a list of system types:
aix, acis, aos, bsd, clix, ctix, dgux, dynix, genix, hpux,
isc, linux, luna, lynxos, mach, minix, newsos, osf, osfrose,
riscos, sco, solaris, sunos, sysv, ultrix, unos, vms.
You can omit the system type; then `configure' guesses the
operating system from the CPU and company.
You can add a version number to the system type; this may or may
not make a difference. For example, you can write `bsd4.3' or
`bsd4.4' to distinguish versions of BSD. In practice, the version
number is most needed for `sysv3' and `sysv4', which are often
treated differently.
If you specify an impossible combination such as `i860-dg-vms',
then you may get an error message from `configure', or it may
ignore part of the information and do the best it can with the
rest. `configure' always prints the canonical name for the
alternative that it used.
Often a particular model of machine has a name. Many machine
names are recognized as aliases for CPU/company combinations.
Thus, the machine name `sun3', mentioned above, is an alias for
`m68k-sun'. Sometimes we accept a company name as a machine name,
when the name is popularly used for a particular machine. Here is
a table of the known machine names:
3300, 3b1, 3bN, 7300, altos3068, altos, apollo68, att-7300,
balance, convex-cN, crds, decstation-3100, decstation, delta,
encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN,
hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin,
miniframe, mmax, news-3600, news800, news, next, pbd, pc532,
pmax, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3,
sun4, symmetry, tower-32, tower.
Remember that a machine name specifies both the cpu type and the
company name.
There are four additional options you can specify independently to
describe variant hardware and software configurations. These are
`--with-gnu-as', `--with-gnu-ld', `--with-stabs' and `--nfp'.
`--with-gnu-as'
If you will use GNU CC with the GNU assembler (GAS), you
should declare this by using the `--with-gnu-as' option when
you run `configure'.
Using this option does not install GAS. It only modifies the
output of GNU CC to work with GAS. Building and installing
GAS is up to you.
Conversely, if you *do not* wish to use GAS and do not specify
`--with-gnu-as' when building GNU CC, it is up to you to make
sure that GAS is not installed. GNU CC searches for a
program named `as' in various directories; if the program it
finds is GAS, then it runs GAS. If you are not sure where
GNU CC finds the assembler it is using, try specifying `-v'
when you run it.
The systems where it makes a difference whether you use GAS
are
`hppa1.0-ANY-ANY', `hppa1.1-ANY-ANY', `i386-ANY-sysv',
`i386-ANY-isc',
`i860-ANY-bsd', `m68k-bull-sysv', `m68k-hp-hpux',
`m68k-sony-bsd',
`m68k-altos-sysv', `m68000-hp-hpux', `m68000-att-sysv', and
`mips-ANY'). On any other system, `--with-gnu-as' has no
effect.
On the systems listed above (except for the HP-PA and for ISC
on the 386), if you use GAS, you should also use the GNU
linker (and specify `--with-gnu-ld').
`--with-gnu-ld'
Specify the option `--with-gnu-ld' if you plan to use the GNU
linker with GNU CC.
This option does not cause the GNU linker to be installed; it
just modifies the behavior of GNU CC to work with the GNU
linker. Specifically, it inhibits the installation of
`collect2', a program which otherwise serves as a front-end
for the system's linker on most configurations.
`--with-stabs'
On MIPS based systems and on Alphas, you must specify whether
you want GNU CC to create the normal ECOFF debugging format,
or to use BSD-style stabs passed through the ECOFF symbol
table. The normal ECOFF debug format cannot fully handle
languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.
Normally, GNU CC uses the ECOFF debugging format by default;
if you prefer BSD stabs, specify `--with-stabs' when you
configure GNU CC.
No matter which default you choose when you configure GNU CC,
the user can use the `-gcoff' and `-gstabs+' options to
specify explicitly the debug format for a particular
compilation.
`--with-stabs' is meaningful on the ISC system on the 386,
also, if `--with-gas' is used. It selects use of stabs
debugging information embedded in COFF output. This kind of
debugging information supports C++ well; ordinary COFF
debugging information does not.
`--nfp'
On certain systems, you must specify whether the machine has
a floating point unit. These systems include
`m68k-sun-sunosN' and `m68k-isi-bsd'. On any other system,
`--nfp' currently has no effect, though perhaps there are
other systems where it could usefully make a difference.
If you want to install your own homemade configuration files, you
can use `local' as the company name to access them. If you use
configuration `CPU-local', the configuration name without the cpu
prefix is used to form the configuration file names.
Thus, if you specify `m68k-local', configuration uses files
`local.md', `local.h', `local.c', `xm-local.h', `t-local', and
`x-local', all in the directory `config/m68k'.
Here is a list of configurations that have special treatment or
special things you must know:
`alpha-*-osf1'
Systems using processors that implement the DEC Alpha
architecture and are running the OSF/1 operating system, for
example the DEC Alpha AXP systems. (VMS on the Alpha is not
currently supported by GNU CC.)
Objective C and C++ do not yet work on the Alpha. We hope to
support C++ in version 2.6.
GNU CC writes a `.verstamp' directive to the assembler output
file unless it is built as a cross-compiler. It gets the
version to use from the system header file
`/usr/include/stamp.h'. If you install a new version of
OSF/1, you should rebuild GCC to pick up the new version
stamp.
Note that since the Alpha is a 64-bit architecture,
cross-compilers from 32-bit machines will not generate as
efficient code as that generated when the compiler is running
on a 64-bit machine because many optimizations that depend on
being able to represent a word on the target in an integral
value on the host cannot be performed. Building
cross-compilers on the Alpha for 32-bit machines has only
been tested in a few cases and may not work properly.
`make compare' may fail on some versions of OSF/1 unless you
add `-save-temps' to `CFLAGS'. The same problem occurs on
Irix version 5.1.1. On these systems, the name of the
assembler input file is stored in the object file, and that
makes comparison fail if it differs between the `stage1' and
`stage2' compilations. The option `-save-temps' forces a
fixed name to be used for the assembler input file, instead
of a randomly chosen name in `/tmp'.
GNU CC now supports both the native (ECOFF) debugging format
used by DBX and GDB and an encapsulated STABS format for use
only with GDB. See the discussion of the `--with-stabs'
option of `configure' above for more information on these
formats and how to select them.
There is a bug in DEC's assembler that produces incorrect
line numbers for ECOFF format when the `.align' directive is
used. To work around this problem, GNU CC will not emit such
alignment directives even if optimization is being performed
if it is writing ECOFF format debugging information.
Unfortunately, this has the very undesirable side-effect that
code addresses when `-O' is specified are different depending
on whether or not `-g' is also specified.
To avoid this behavior, specify `-gstabs+' and use GDB
instead of DBX. DEC is now aware of this problem with the
assembler and hopes to provide a fix shortly.
`a29k'
AMD Am29k-family processors. These are normally used in
embedded applications. There are no standard Unix
configurations. This configuration corresponds to AMD's
standard calling sequence and binary interface and is
compatible with other 29k tools.
You may need to make a variant of the file `a29k.h' for your
particular configuration.
`a29k-*-bsd'
AMD Am29050 used in a system running a variant of BSD Unix.
`elxsi-elxsi-bsd'
The Elxsi's C compiler has known limitations that prevent it
from compiling GNU C. Please contact `mrs@cygnus.com' for
more details.
`hppa*-*-*'
Using GAS is highly recommended for all HP-PA configurations.
See *Note PA Install:: for the special procedures needed to
compile GNU CC for the HP-PA.
`i386-*-sco'
Compilation with RCC is recommended. Also, it may be a good
idea to link with GNU malloc instead of the malloc that comes
with the system.
`i386-*-sco3.2.4'
Use this configuration for SCO release 3.2 version 4.
`i386-*-isc'
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.
`i386-*-esix'
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.
`i386-ibm-aix'
You need to use GAS version 2.1 or later, and and LD from GNU
binutils version 2.2 or later.
`i386-sequent'
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named `string.h'
containing just one line: `#include <strings.h>'.
`i386-sun-sunos4'
You may find that you need another version of GNU CC to begin
bootstrapping with, since the current version when built with
the system's own compiler seems to get an infinite loop
compiling part of `libgcc2.c'. GNU CC version 2 compiled
with GNU CC (any version) seems not to have this problem.
`i860-intel-osf1'
This is the Paragon. If you have version 1.0 of the
operating system, see *Note Installation Problems::, for
special things you need to do to compensate for peculiarities
in the system.
`m68000-att'
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
compile GNU CC with this machine's standard C compiler, due
to bugs in that compiler. *Note 3b1 Install::. You can
bootstrap it more easily with previous versions of GNU CC if
you have them.
`m68000-hp-bsd'
HP 9000 series 200 running BSD. Note that the C compiler
that comes with this system cannot compile GNU CC; contact
`law@cs.utah.edu' to get binaries of GNU CC for bootstrapping.
`m68k-altos'
Altos 3068. You must use the GNU assembler, linker and
debugger. Also, you must fix a kernel bug. Details in the
file `README.ALTOS'.
`m68k-bull-sysv'
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to
BOS-2.01. GNU CC works either with native assembler or GNU
assembler. You can use GNU assembler with native coff
generation by providing `--gas' to the configure script or
use GNU assembler with dbx-in-coff encapsulation by providing
`--gas --stabs'. For any problem with native assembler or for
availability of the DPX/2 port of GAS, contact
`F.Pierresteguy@frcl.bull.fr'.
`m68k-hp-hpux'
HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0
has a bug in the assembler that prevents compilation of GNU
CC. To fix it, get patch PHCO_0800 from HP.
In addition, `--gas' does not currently work with this
configuration. Changes in HP-UX have broken the library
conversion tool and the linker.
`m68k-sun'
Sun 3. We do not provide a configuration file to use the Sun
FPA by default, because programs that establish signal
handlers for floating point traps inherently cannot work with
the FPA.
`m88k-*-svr3'
Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference
port. These systems tend to use the Green Hills C, revision
1.8.5, as the standard C compiler. There are apparently bugs
in this compiler that result in object files differences
between stage 2 and stage 3. If this happens, make the stage
4 compiler and compare it to the stage 3 compiler. If the
stage 3 and stage 4 object files are identical, this suggests
you encountered a problem with the standard C compiler; the
stage 3 and 4 compilers may be usable.
It is best, however, to use an older version of GNU CC for
bootstrapping if you have one.
`m88k-*-dgux'
Motorola m88k running DG/UX. To build native or cross
compilers on DG/UX, you must first change to the 88open BCS
software development environment. This is done by issuing
this command:
eval `sde-target m88kbcs`
`m88k-tektronix-sysv3'
Tektronix XD88 running UTekV 3.2e. Do not turn on
optimization while building stage1 if you bootstrap with the
buggy Green Hills compiler. Also, The bundled LAI System V
NFS is buggy so if you build in an NFS mounted directory,
start from a fresh reboot, or avoid NFS all together.
Otherwise you may have trouble getting clean comparisons
between stages.
`mips-mips-bsd'
MIPS machines running the MIPS operating system in BSD mode.
It's possible that some old versions of the system lack the
functions `memcpy', `memcmp', and `memset'. If your system
lacks these, you must remove or undo the definition of
`TARGET_MEM_FUNCTIONS' in `mips-bsd.h'.
`mips-sgi-*'
Silicon Graphics MIPS machines running IRIX. In order to
compile GCC on an SGI the "c.hdr.lib" option must be
installed from the CD-ROM supplied from Silicon Graphics.
This is found on the 2nd CD in release 4.0.1.
`mips-sony-sysv'
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2
(which uses ELF instead of COFF). Support for 5.0.2 will
probably be provided soon by volunteers. In particular, the
linker does not like the code generated by GCC when shared
libraries are linked in.
`ns32k-encore'
Encore ns32000 system. Encore systems are supported only
under BSD.
`ns32k-*-genix'
National Semiconductor ns32000 system. Genix has bugs in
`alloca' and `malloc'; you must get the compiled versions of
these from GNU Emacs.
`ns32k-sequent'
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named `string.h'
containing just one line: `#include <strings.h>'.
`ns32k-utek'
UTEK ns32000 system ("merlin"). The C compiler that comes
with this system cannot compile GNU CC; contact
`tektronix!reed!mason' to get binaries of GNU CC for
bootstrapping.
`romp-*-aos'
`romp-*-mach'
The only operating systems supported for the IBM RT PC are
AOS and MACH. GNU CC does not support AIX running on the RT.
We recommend you compile GNU CC with an earlier version of
itself; if you compile GNU CC with `hc', the Metaware
compiler, it will work, but you will get mismatches between
the stage 2 and stage 3 compilers in various files. These
errors are minor differences in some floating-point constants
and can be safely ignored; the stage 3 compiler is correct.
`rs6000-*-aix'
*Read the file `README.RS6000' for information on how to get
a fix for problems in the IBM assembler that interfere with
GNU CC.* You must either obtain the new assembler or avoid
using the `-g' switch. Note that `Makefile.in' uses `-g' by
default when compiling `libgcc2.c'.
The PowerPC and POWER2 architectures are now supported, but
have not been extensively tested due to lack of appropriate
systems. Only AIX is supported on the PowerPC.
Objective C does not work on this architecture.
XLC version 1.3.0.0 will miscompile `jump.c'. XLC version
1.3.0.1 or later fixes this problem. We do not yet have a
PTF number for this fix.
`vax-dec-ultrix'
Don't try compiling with Vax C (`vcc'). It produces
incorrect code in some cases (for example, when `alloca' is
used).
Meanwhile, compiling `cp-parse.c' with pcc does not work
because of an internal table size limitation in that
compiler. To avoid this problem, compile just the GNU C
compiler first, and use it to recompile building all the
languages that you want to run.
Here we spell out what files will be set up by `configure'.
Normally you need not be concerned with these files.
* A symbolic link named `config.h' is made to the top-level
config file for the machine you plan to run the compiler on
(*note The Configuration File: (gcc.info)Config.). This file
is responsible for defining information about the host
machine. It includes `tm.h'.
The top-level config file is located in the subdirectory
`config'. Its name is always `xm-SOMETHING.h'; usually
`xm-MACHINE.h', but there are some exceptions.
If your system does not support symbolic links, you might
want to set up `config.h' to contain a `#include' command
which refers to the appropriate file.
* A symbolic link named `tconfig.h' is made to the top-level
config file for your target machine. This is used for
compiling certain programs to run on that machine.
* A symbolic link named `tm.h' is made to the
machine-description macro file for your target machine. It
should be in the subdirectory `config' and its name is often
`MACHINE.h'.
* A symbolic link named `md' will be made to the machine
description pattern file. It should be in the `config'
subdirectory and its name should be `MACHINE.md'; but MACHINE
is often not the same as the name used in the `tm.h' file
because the `md' files are more general.
* A symbolic link named `aux-output.c' will be made to the
output subroutine file for your machine. It should be in the
`config' subdirectory and its name should be `MACHINE.c'.
* The command file `configure' also constructs the file
`Makefile' by adding some text to the template file
`Makefile.in'. The additional text comes from files in the
`config' directory, named `t-TARGET' and `x-HOST'. If these
files do not exist, it means nothing needs to be added for a
given target or host.
4. The standard directory for installing GNU CC is `/usr/local/lib'.
If you want to install its files somewhere else, specify
`--prefix=DIR' when you run `configure'. Here DIR is a directory
name to use instead of `/usr/local' for all purposes with one
exception: the directory `/usr/local/include' is searched for
header files no matter where you install the compiler.
5. Specify `--local-prefix=DIR' if you want the compiler to search
directory `DIR/include' for header files *instead* of
`/usr/local/include'. (This is for systems that have different
conventions for where to put site-specific things.)
Unless you have a convention other than `/usr/local' for
site-specific files, it is a bad idea to specify `--local-prefix'.
6. Make sure the Bison parser generator is installed. (This is
unnecessary if the Bison output files `c-parse.c' and `cexp.c' are
more recent than `c-parse.y' and `cexp.y' and you do not plan to
change the `.y' files.)
Bison versions older than Sept 8, 1988 will produce incorrect
output for `c-parse.c'.
7. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the build directory
under the names `as', `ld' or whatever is appropriate. This will
enable the compiler to find the proper tools for compilation of
the program `enquire'.
Alternatively, you can do subsequent compilation using a value of
the `PATH' environment variable such that the necessary GNU tools
come before the standard system tools.
8. Build the compiler. Just type `make LANGUAGES=c' in the compiler
directory.
`LANGUAGES=c' specifies that only the C compiler should be
compiled. The makefile normally builds compilers for all the
supported languages; currently, C, C++ and Objective C. However,
C is the only language that is sure to work when you build with
other non-GNU C compilers. In addition, building anything but C
at this stage is a waste of time.
In general, you can specify the languages to build by typing the
argument `LANGUAGES="LIST"', where LIST is one or more words from
the list `c', `c++', and `objective-c'.
Ignore any warnings you may see about "statement not reached" in
`insn-emit.c'; they are normal. Also, warnings about "unknown
escape sequence" are normal in `genopinit.c' and perhaps some
other files. Any other compilation errors may represent bugs in
the port to your machine or operating system, and should be
investigated and reported (*note Bugs::.).
Some commercial compilers fail to compile GNU CC because they have
bugs or limitations. For example, the Microsoft compiler is said
to run out of macro space. Some Ultrix compilers run out of
expression space; then you need to break up the statement where
the problem happens.
If you are building with a previous GNU C compiler, do not use
`CC=gcc' on the make command or by editing the Makefile. Instead,
use a full pathname to specify the compiler, such as
`CC=/usr/local/bin/gcc'. This is because make might execute the
`gcc' in the current directory before all of the compiler
components have been built.
9. If you are building a cross-compiler, stop here. *Note
Cross-Compiler::.
10. Move the first-stage object files and executables into a
subdirectory with this command:
make stage1
The files are moved into a subdirectory named `stage1'. Once
installation is complete, you may wish to delete these files with
`rm -r stage1'.
11. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the `stage1'
subdirectory under the names `as', `ld' or whatever is
appropriate. This will enable the stage 1 compiler to find the
proper tools in the following stage.
Alternatively, you can do subsequent compilation using a value of
the `PATH' environment variable such that the necessary GNU tools
come before the standard system tools.
12. Recompile the compiler with itself, with this command:
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"
This is called making the stage 2 compiler.
The command shown above builds compilers for all the supported
languages. If you don't want them all, you can specify the
languages to build by typing the argument `LANGUAGES="LIST"'. LIST
should contain one or more words from the list `c', `c++',
`objective-c', and `proto'. Separate the words with spaces.
`proto' stands for the programs `protoize' and `unprotoize'; they
are not a separate language, but you use `LANGUAGES' to enable or
disable their installation.
If you are going to build the stage 3 compiler, then you might
want to build only the C language in stage 2.
Once you have built the stage 2 compiler, if you are short of disk
space, you can delete the subdirectory `stage1'.
On a 68000 or 68020 system lacking floating point hardware, unless
you have selected a `tm.h' file that expects by default that there
is no such hardware, do this instead:
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O -msoft-float"
13. If you wish to test the compiler by compiling it with itself one
more time, install any other necessary GNU tools (such as GAS or
the GNU linker) in the `stage2' subdirectory as you did in the
`stage1' subdirectory, then do this:
make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"
This is called making the stage 3 compiler. Aside from the `-B'
option, the compiler options should be the same as when you made
the stage 2 compiler. But the `LANGUAGES' option need not be the
same. The command shown above builds compilers for all the
supported languages; if you don't want them all, you can specify
the languages to build by typing the argument `LANGUAGES="LIST"',
as described above.
Then compare the latest object files with the stage 2 object
files--they ought to be identical, aside from time stamps (if any).
On some systems, meaningful comparison of object files is
impossible; they always appear "different." This is currently
true on Solaris and probably on all systems that use ELF object
file format. Some other systems where this is so are listed below.
Use this command to compare the files:
make compare
This will mention any object files that differ between stage 2 and
stage 3. Any difference, no matter how innocuous, indicates that
the stage 2 compiler has compiled GNU CC incorrectly, and is
therefore a potentially serious bug which you should investigate
and report (*note Bugs::.).
If your system does not put time stamps in the object files, then
this is a faster way to compare them (using the Bourne shell):
for file in *.o; do
cmp $file stage2/$file
done
If you have built the compiler with the `-mno-mips-tfile' option on
MIPS machines, you will not be able to compare the files.
The Alpha stores file names of internal temporary files in the
object files and `make compare' does not know how to ignore them,
so normally you cannot compare on the Alpha. However, if you use
the `-save-temps' option when compiling *both* stage 2 and stage
3, this causes the same file names to be used in both stages; then
you can do the comparison.
14. Build the Objective C library (if you have built the Objective C
compiler). Here is the command to do this:
make objc-runtime CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"
15. Install the compiler driver, the compiler's passes and run-time
support with `make install'. Use the same value for `CC',
`CFLAGS' and `LANGUAGES' that you used when compiling the files
that are being installed. One reason this is necessary is that
some versions of Make have bugs and recompile files gratuitously
when you do this step. If you use the same variable values, those
files will be recompiled properly.
For example, if you have built the stage 2 compiler, you can use
the following command:
make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="LIST"
This copies the files `cc1', `cpp' and `libgcc.a' to files `cc1',
`cpp' and `libgcc.a' in the directory
`/usr/local/lib/gcc-lib/TARGET/VERSION', which is where the
compiler driver program looks for them. Here TARGET is the target
machine type specified when you ran `configure', and VERSION is
the version number of GNU CC. This naming scheme permits various
versions and/or cross-compilers to coexist.
This also copies the driver program `xgcc' into
`/usr/local/bin/gcc', so that it appears in typical execution
search paths.
On some systems, this command causes recompilation of some files.
This is usually due to bugs in `make'. You should either ignore
this problem, or use GNU Make.
*Warning: there is a bug in `alloca' in the Sun library. To avoid
this bug, be sure to install the executables of GNU CC that were
compiled by GNU CC. (That is, the executables from stage 2 or 3,
not stage 1.) They use `alloca' as a built-in function and never
the one in the library.*
(It is usually better to install GNU CC executables from stage 2
or 3, since they usually run faster than the ones compiled with
some other compiler.)
16. Install the Objective C library (if you are installing the
Objective C compiler). Here is the command to do this:
make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"
17. If you're going to use C++, it's likely that you need to also
install the libg++ distribution. It should be available from the
same place where you got the GNU C distribution. Just as GNU C
does not distribute a C runtime library, it also does not include
a C++ run-time library. All I/O functionality, special class
libraries, etc., are available in the libg++ distribution.
File: @.Distr.UsingGCC, Node: Other Dir, Next: Cross-Compiler, Up: Installation
Compilation in a Separate Directory
===================================
If you wish to build the object files and executables in a directory
other than the one containing the source files, here is what you must
do differently:
1. Make sure you have a version of Make that supports the `VPATH'
feature. (GNU Make supports it, as do Make versions on most BSD
systems.)
2. If you have ever run `configure' in the source directory, you must
undo the configuration. Do this by running:
make distclean
3. Go to the directory in which you want to build the compiler before
running `configure':
mkdir gcc-sun3
cd gcc-sun3
On systems that do not support symbolic links, this directory must
be on the same file system as the source code directory.
4. Specify where to find `configure' when you run it:
../gcc/configure ...
This also tells `configure' where to find the compiler sources;
`configure' takes the directory from the file name that was used to
invoke it. But if you want to be sure, you can specify the source
directory with the `--srcdir' option, like this:
../gcc/configure --srcdir=../gcc sun3
The directory you specify with `--srcdir' need not be the same as
the one that `configure' is found in.
Now, you can run `make' in that directory. You need not repeat the
configuration steps shown above, when ordinary source files change. You
must, however, run `configure' again when the configuration files
change, if your system does not support symbolic links.
File: @.Distr.UsingGCC, Node: Cross-Compiler, Next: PA Install, Prev: Other Dir, Up: Installation
Building and Installing a Cross-Compiler
========================================
GNU CC can function as a cross-compiler for many machines, but not
all.
* Cross-compilers for the Mips as target using the Mips assembler
currently do not work, because the auxiliary programs
`mips-tdump.c' and `mips-tfile.c' can't be compiled on anything
but a Mips. It does work to cross compile for a Mips if you use
the GNU assembler and linker.
* Cross-compilers between machines with different floating point
formats have not all been made to work. GNU CC now has a floating
point emulator with which these can work, but each target machine
description needs to be updated to take advantage of it.
* Cross-compilation between machines of different word sizes has not
really been addressed yet.
Since GNU CC generates assembler code, you probably need a
cross-assembler that GNU CC can run, in order to produce object files.
If you want to link on other than the target machine, you need a
cross-linker as well. You also need header files and libraries suitable
for the target machine that you can install on the host machine.
* Menu:
* Steps of Cross:: Using a cross-compiler involves several steps
that may be carried out on different machines.
* Configure Cross:: Configuring a cross-compiler.
* Tools and Libraries:: Where to put the linker and assembler, and the C library.
* Cross Headers:: Finding and installing header files
for a cross-compiler.
* Cross Runtime:: Supplying arithmetic runtime routines (`libgcc1.a').
* Build Cross:: Actually compiling the cross-compiler.
File: @.Distr.UsingGCC, Node: Steps of Cross, Next: Configure Cross, Up: Cross-Compiler
Steps of Cross-Compilation
--------------------------
To compile and run a program using a cross-compiler involves several
steps:
* Run the cross-compiler on the host machine to produce assembler
files for the target machine. This requires header files for the
target machine.
* Assemble the files produced by the cross-compiler. You can do this
either with an assembler on the target machine, or with a
cross-assembler on the host machine.
* Link those files to make an executable. You can do this either
with a linker on the target machine, or with a cross-linker on the
host machine. Whichever machine you use, you need libraries and
certain startup files (typically `crt....o') for the target
machine.
It is most convenient to do all of these steps on the same host
machine, since then you can do it all with a single invocation of GNU
CC. This requires a suitable cross-assembler and cross-linker. For
some targets, the GNU assembler and linker are available.
File: @.Distr.UsingGCC, Node: Configure Cross, Next: Tools and Libraries, Prev: Steps of Cross, Up: Cross-Compiler
Configuring a Cross-Compiler
----------------------------
To build GNU CC as a cross-compiler, you start out by running
`configure'. You must specify two different configurations, the host
and the target. Use the `--host=HOST' option for the host and
`--target=TARGET' to specify the target type. For example, here is how
to configure for a cross-compiler that runs on a hypothetical Intel 386
system and produces code for an HP 68030 system running BSD:
configure --target=m68k-hp-bsd4.3 --host=i386-bozotheclone-bsd4.3
File: @.Distr.UsingGCC, Node: Tools and Libraries, Next: Cross Headers, Prev: Configure Cross, Up: Cross-Compiler
Tools and Libraries for a Cross-Compiler
----------------------------------------
If you have a cross-assembler and cross-linker available, you should
install them now. Put them in the directory `/usr/local/TARGET/bin'.
Here is a table of the tools you should put in this directory:
`as'
This should be the cross-assembler.
`ld'
This should be the cross-linker.
`ar'
This should be the cross-archiver: a program which can manipulate
archive files (linker libraries) in the target machine's format.
`ranlib'
This should be a program to construct a symbol table in an archive
file.
The installation of GNU CC will find these programs in that
directory, and copy or link them to the proper place to for the
cross-compiler to find them when run later.
The easiest way to provide these files is to build the Binutils
package and GAS. Configure them with the same `--host' and `--target'
options that you use for configuring GNU CC, then build and install
them. They install their executables automatically into the proper
directory. Alas, they do not support all the targets that GNU CC
supports.
If you want to install libraries to use with the cross-compiler,
such as a standard C library, put them in the directory
`/usr/local/TARGET/lib'; installation of GNU CC copies all all the
files in that subdirectory into the proper place for GNU CC to find
them and link with them. Here's an example of copying some libraries
from a target machine:
ftp TARGET-MACHINE
lcd /usr/local/TARGET/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit
The precise set of libraries you'll need, and their locations on the
target machine, vary depending on its operating system.
Many targets require "start files" such as `crt0.o' and `crtn.o'
which are linked into each executable; these too should be placed in
`/usr/local/TARGET/lib'. There may be several alternatives for
`crt0.o', for use with profiling or other compilation options. Check
your target's definition of `STARTFILE_SPEC' to find out what start
files it uses. Here's an example of copying these files from a target
machine:
ftp TARGET-MACHINE
lcd /usr/local/TARGET/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit
File: @.Distr.UsingGCC, Node: Cross Runtime, Next: Build Cross, Prev: Cross Headers, Up: Cross-Compiler
`libgcc.a' and Cross-Compilers
------------------------------
Code compiled by GNU CC uses certain runtime support functions
implicitly. Some of these functions can be compiled successfully with
GNU CC itself, but a few cannot be. These problem functions are in the
source file `libgcc1.c'; the library made from them is called
`libgcc1.a'.
When you build a native compiler, these functions are compiled with
some other compiler-the one that you use for bootstrapping GNU CC.
Presumably it knows how to open code these operations, or else knows how
to call the run-time emulation facilities that the machine comes with.
But this approach doesn't work for building a cross-compiler. The
compiler that you use for building knows about the host system, not the
target system.
So, when you build a cross-compiler you have to supply a suitable
library `libgcc1.a' that does the job it is expected to do.
To compile `libgcc1.c' with the cross-compiler itself does not work.
The functions in this file are supposed to implement arithmetic
operations that GNU CC does not know how to open code, for your target
machine. If these functions are compiled with GNU CC itself, they will
compile into infinite recursion.
On any given target, most of these functions are not needed. If GNU
CC can open code an arithmetic operation, it will not call these
functions to perform the operation. It is possible that on your target
machine, none of these functions is needed. If so, you can supply an
empty library as `libgcc1.a'.
Many targets need library support only for multiplication and
division. If you are linking with a library that contains functions for
multiplication and division, you can tell GNU CC to call them directly
by defining the macros `MULSI3_LIBCALL', and the like. These macros
need to be defined in the target description macro file. For some
targets, they are defined already. This may be sufficient to avoid the
need for libgcc1.a; if so, you can supply an empty library.
Some targets do not have floating point instructions; they need other
functions in `libgcc1.a', which do floating arithmetic. Recent
versions of GNU CC have a file which emulates floating point. With a
certain amount of work, you should be able to construct a floating
point emulator that can be used as `libgcc1.a'. Perhaps future
versions will contain code to do this automatically and conveniently.
That depends on whether someone wants to implement it.
If your target system has another C compiler, you can configure GNU
CC as a native compiler on that machine, build just `libgcc1.a' with
`make libgcc1.a' on that machine, and use the resulting file with the
cross-compiler. To do this, execute the following on the target
machine:
cd TARGET-BUILD-DIR
configure --host=sparc --target=sun3
make libgcc1.a
And then this on the host machine:
ftp TARGET-MACHINE
binary
cd TARGET-BUILD-DIR
get libgcc1.a
quit
Another way to provide the functions you need in `libgcc1.a' is to
define the appropriate `perform_...' macros for those functions. If
these definitions do not use the C arithmetic operators that they are
meant to implement, you should be able to compile them with the
cross-compiler you are building. (If these definitions already exist
for your target file, then you are all set.)
To build `libgcc1.a' using the perform macros, use
`LIBGCC1=libgcc1.a OLDCC=./xgcc' when building the compiler.
Otherwise, you should place your replacement library under the name
`libgcc1.a' in the directory in which you will build the
cross-compiler, before you run `make'.
File: @.Distr.UsingGCC, Node: Cross Headers, Next: Cross Runtime, Prev: Tools and Libraries, Up: Cross-Compiler
Cross-Compilers and Header Files
--------------------------------
If you are cross-compiling a standalone program or a program for an
embedded system, then you may not need any header files except the few
that are part of GNU CC (and those of your program). However, if you
intend to link your program with a standard C library such as `libc.a',
then you probably need to compile with the header files that go with
the library you use.
The GNU C compiler does not come with these files, because (1) they
are system-specific, and (2) they belong in a C library, not in a
compiler.
If the GNU C library supports your target machine, then you can get
the header files from there (assuming you actually use the GNU library
when you link your program).
If your target machine comes with a C compiler, it probably comes
with suitable header files also. If you make these files accessible
from the host machine, the cross-compiler can use them also.
Otherwise, you're on your own in finding header files to use when
cross-compiling.
When you have found suitable header files, put them in
`/usr/local/TARGET/include', before building the cross compiler. Then
installation will run fixincludes properly and install the corrected
versions of the header files where the compiler will use them.
Provide the header files before you build the cross-compiler, because
the build stage actually runs the cross-compiler to produce parts of
`libgcc.a'. (These are the parts that *can* be compiled with GNU CC.)
Some of them need suitable header files.
Here's an example showing how to copy the header files from a target
machine. On the target machine, do this:
(cd /usr/include; tar cf - .) > tarfile
Then, on the host machine, do this:
ftp TARGET-MACHINE
lcd /usr/local/TARGET/include
get tarfile
quit
tar xf tarfile
File: @.Distr.UsingGCC, Node: Build Cross, Prev: Cross Runtime, Up: Cross-Compiler
Actually Building the Cross-Compiler
------------------------------------
Now you can proceed just as for compiling a single-machine compiler
through the step of building stage 1. If you have not provided some
sort of `libgcc1.a', then compilation will give up at the point where
it needs that file, printing a suitable error message. If you do
provide `libgcc1.a', then building the compiler will automatically
compile and link a test program called `cross-test'; if you get errors
in the linking, it means that not all of the necessary routines in
`libgcc1.a' are available.
If you are making a cross-compiler for an embedded system, and there
is no `stdio.h' header for it, then the compilation of `enquire' will
probably fail. The job of `enquire' is to run on the target machine
and figure out by experiment the nature of its floating point
representation. `enquire' records its findings in the header file
`float.h'. If you can't produce this file by running `enquire' on the
target machine, then you will need to come up with a suitable `float.h'
in some other way (or else, avoid using it in your programs).
Do not try to build stage 2 for a cross-compiler. It doesn't work to
rebuild GNU CC as a cross-compiler using the cross-compiler, because
that would produce a program that runs on the target machine, not on the
host. For example, if you compile a 386-to-68030 cross-compiler with
itself, the result will not be right either for the 386 (because it was
compiled into 68030 code) or for the 68030 (because it was configured
for a 386 as the host). If you want to compile GNU CC into 68030 code,
whether you compile it on a 68030 or with a cross-compiler on a 386, you
must specify a 68030 as the host when you configure it.
To install the cross-compiler, use `make install', as usual.
File: @.Distr.UsingGCC, Node: PA Install, Next: Sun Install, Prev: Cross-Compiler, Up: Installation
Installing on the HP Precision Architecture
===========================================
There are two variants of this CPU, called 1.0 and 1.1, which have
different machine descriptions. You must use the right one for your
machine. All 7NN machines and 8N7 machines use 1.1, while all other
8NN machines use 1.0.
The easiest way to handle this problem is to use `configure hpNNN'
or `configure hpNNN-hpux', where NNN is the model number of the
machine. Then `configure' will figure out if the machine is a 1.0 or
1.1. Use `uname -a' to find out the model number of your machine.
`-g' does not work on HP-UX, since that system uses a peculiar
debugging format which GNU CC does not know about. There are
preliminary versions of GAS and GDB for the HP-PA which do work with
GNU CC for debugging. You can get them by anonymous ftp from
`jaguar.cs.utah.edu' `dist' subdirectory. You would need to install
GAS in the file
/usr/local/lib/gcc-lib/CONFIGURATION/GCCVERSION/as
where CONFIGURATION is the configuration name (perhaps `hpNNN-hpux')
and GCCVERSION is the GNU CC version number. Do this *before* starting
the build process, otherwise you will get errors from the HPUX
assembler while building `libgcc2.a'. The command
make install-dir
will create the necessary directory hierarchy so you can install GAS
before building GCC.
If you obtained GAS before October 6, 1992 it is highly recommended
you get a new one to avoid several bugs which have been discovered
recently.
To enable debugging, configure GNU CC with the `--gas' option before
building.
It has been reported that GNU CC produces invalid assembly code for
1.1 machines running HP-UX 8.02 when using the HP assembler. Typically
the errors look like this:
as: bug.s @line#15 [err#1060]
Argument 0 or 2 in FARG upper
- lookahead = ARGW1=FR,RTNVAL=GR
as: foo.s @line#28 [err#1060]
Argument 0 or 2 in FARG upper
- lookahead = ARGW1=FR
You can check the version of HP-UX you are running by executing the
command `uname -r'. If you are indeed running HP-UX 8.02 on a PA and
using the HP assembler then configure GCC with "hpNNN-hpux8.02".
File: @.Distr.UsingGCC, Node: Sun Install, Next: 3b1 Install, Prev: PA Install, Up: Installation
Installing GNU CC on the Sun
============================
On Solaris (version 2.1), do not use the linker or other tools in
`/usr/ucb' to build GNU CC. Use `/usr/ccs/bin'.
Make sure the environment variable `FLOAT_OPTION' is not set when
you compile `libgcc.a'. If this option were set to `f68881' when
`libgcc.a' is compiled, the resulting code would demand to be linked
with a special startup file and would not link properly without special
pains.
The GNU compiler does not really support the Super SPARC processor
that is used in SPARC Station 10 and similar class machines. You can
get code that runs by specifying `sparc' as the cpu type; however, its
performance is not very good, and may vary widely according to the
compiler version and optimization options used. This is because the
instruction scheduling parameters designed for the Sparc are not correct
for the Super SPARC. Implementing scheduling parameters for the Super
SPARC might be a good project for someone who is willing to learn a
great deal about instruction scheduling in GNU CC.
There is a bug in `alloca' in certain versions of the Sun library.
To avoid this bug, install the binaries of GNU CC that were compiled by
GNU CC. They use `alloca' as a built-in function and never the one in
the library.
Some versions of the Sun compiler crash when compiling GNU CC. The
problem is a segmentation fault in cpp. This problem seems to be due to
the bulk of data in the environment variables. You may be able to avoid
it by using the following command to compile GNU CC with Sun CC:
make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"
File: @.Distr.UsingGCC, Node: 3b1 Install, Next: Unos Install, Prev: Sun Install, Up: Installation
Installing GNU CC on the 3b1
============================
Installing GNU CC on the 3b1 is difficult if you do not already have
GNU CC running, due to bugs in the installed C compiler. However, the
following procedure might work. We are unable to test it.
1. Comment out the `#include "config.h"' line on line 37 of `cccp.c'
and do `make cpp'. This makes a preliminary version of GNU cpp.
2. Save the old `/lib/cpp' and copy the preliminary GNU cpp to that
file name.
3. Undo your change in `cccp.c', or reinstall the original version,
and do `make cpp' again.
4. Copy this final version of GNU cpp into `/lib/cpp'.
5. Replace every occurrence of `obstack_free' in the file `tree.c'
with `_obstack_free'.
6. Run `make' to get the first-stage GNU CC.
7. Reinstall the original version of `/lib/cpp'.
8. Now you can compile GNU CC with itself and install it in the normal
fashion.
File: @.Distr.UsingGCC, Node: Unos Install, Next: VMS Install, Prev: 3b1 Install, Up: Installation
Installing GNU CC on Unos
=========================
Use `configure unos' for building on Unos.
The Unos assembler is named `casm' instead of `as'. For some
strange reason linking `/bin/as' to `/bin/casm' changes the behavior,
and does not work. So, when installing GNU CC, you should install the
following script as `as' in the subdirectory where the passes of GCC
are installed:
#!/bin/sh
casm $*
The default Unos library is named `libunos.a' instead of `libc.a'.
To allow GNU CC to function, either change all references to `-lc' in
`gcc.c' to `-lunos' or link `/lib/libc.a' to `/lib/libunos.a'.
When compiling GNU CC with the standard compiler, to overcome bugs in
the support of `alloca', do not use `-O' when making stage 2. Then use
the stage 2 compiler with `-O' to make the stage 3 compiler. This
compiler will have the same characteristics as the usual stage 2
compiler on other systems. Use it to make a stage 4 compiler and
compare that with stage 3 to verify proper compilation.
(Perhaps simply defining `ALLOCA' in `x-crds' as described in the
comments there will make the above paragraph superfluous. Please
inform us of whether this works.)
Unos uses memory segmentation instead of demand paging, so you will
need a lot of memory. 5 Mb is barely enough if no other tasks are
running. If linking `cc1' fails, try putting the object files into a
library and linking from that library.
File: @.Distr.UsingGCC, Node: VMS Install, Next: WE32K Install, Prev: Unos Install, Up: Installation
Installing GNU CC on VMS
========================
The VMS version of GNU CC is distributed in a backup saveset
containing both source code and precompiled binaries.
To install the `gcc' command so you can use the compiler easily, in
the same manner as you use the VMS C compiler, you must install the VMS
CLD file for GNU CC as follows:
1. Define the VMS logical names `GNU_CC' and `GNU_CC_INCLUDE' to
point to the directories where the GNU CC executables
(`gcc-cpp.exe', `gcc-cc1.exe', etc.) and the C include files are
kept respectively. This should be done with the commands:
$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc
$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include
with the appropriate disk and directory names. These commands can
be placed in your system startup file so they will be executed
whenever the machine is rebooted. You may, if you choose, do this
via the `GCC_INSTALL.COM' script in the `[GCC]' directory.
2. Install the `GCC' command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
$ install replace sys$common:[syslib]dcltables
3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp
Now you can invoke the compiler with a command like `gcc /verbose
file.c', which is equivalent to the command `gcc -v -c file.c' in
Unix.
If you wish to use GNU C++ you must first install GNU CC, and then
perform the following steps:
1. Define the VMS logical name `GNU_GXX_INCLUDE' to point to the
directory where the preprocessor will search for the C++ header
files. This can be done with the command:
$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include
with the appropriate disk and directory name. If you are going to
be using libg++, this is where the libg++ install procedure will
install the libg++ header files.
2. Obtain the file `gcc-cc1plus.exe', and place this in the same
directory that `gcc-cc1.exe' is kept.
The GNU C++ compiler can be invoked with a command like `gcc /plus
/verbose file.cc', which is equivalent to the command `g++ -v -c
file.cc' in Unix.
We try to put corresponding binaries and sources on the VMS
distribution tape. But sometimes the binaries will be from an older
version than the sources, because we don't always have time to update
them. (Use the `/version' option to determine the version number of
the binaries and compare it with the source file `version.c' to tell
whether this is so.) In this case, you should use the binaries you get
to recompile the sources. If you must recompile, here is how:
1. Execute the command procedure `vmsconfig.com' to set up the files
`tm.h', `config.h', `aux-output.c', and `md.', and to create files
`tconfig.h' and `hconfig.h'. This procedure also creates several
linker option files used by `make-cc1.com' and a data file used by
`make-l2.com'.
$ @vmsconfig.com
2. Setup the logical names and command tables as defined above. In
addition, define the VMS logical name `GNU_BISON' to point at the
to the directories where the Bison executable is kept. This
should be done with the command:
$ assign /system /translation=concealed -
disk:[bison.] gnu_bison
You may, if you choose, use the `INSTALL_BISON.COM' script in the
`[BISON]' directory.
3. Install the `BISON' command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison
$ install replace sys$common:[syslib]dcltables
4. Type `@make-gcc' to recompile everything (alternatively, submit
the file `make-gcc.com' to a batch queue). If you wish to build
the GNU C++ compiler as well as the GNU CC compiler, you must
first edit `make-gcc.com' and follow the instructions that appear
in the comments.
5. In order to use GCC, you need a library of functions which GCC
compiled code will call to perform certain tasks, and these
functions are defined in the file `libgcc2.c'. To compile this
you should use the command procedure `make-l2.com', which will
generate the library `libgcc2.olb'. `libgcc2.olb' should be built
using the compiler built from the same distribution that
`libgcc2.c' came from, and `make-gcc.com' will automatically do
all of this for you.
To install the library, use the following commands:
$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj
The first command simply removes old modules that will be replaced
with modules from `libgcc2' under different module names. The
modules `new' and `eprintf' may not actually be present in your
`gcclib.olb'--if the VMS librarian complains about those modules
not being present, simply ignore the message and continue on with
the next command. The second command removes the modules that
came from the previous version of the library `libgcc2.c'.
Whenever you update the compiler on your system, you should also
update the library with the above procedure.
6. You may wish to build GCC in such a way that no files are written
to the directory where the source files reside. An example would
be the when the source files are on a read-only disk. In these
cases, execute the following DCL commands (substituting your
actual path names):
$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build
$ set default gcc_build:[000000]
where the directory `dua1:[gcc.source_dir]' contains the source
code, and the directory `dua0:[gcc.build_dir]' is meant to contain
all of the generated object files and executables. Once you have
done this, you can proceed building GCC as described above. (Keep
in mind that `gcc_build' is a rooted logical name, and thus the
device names in each element of the search list must be an actual
physical device name rather than another rooted logical name).
7. *If you are building GNU CC with a previous version of GNU CC, you
also should check to see that you have the newest version of the
assembler*. In particular, GNU CC version 2 treats global constant
variables slightly differently from GNU CC version 1, and GAS
version 1.38.1 does not have the patches required to work with GCC
version 2. If you use GAS 1.38.1, then `extern const' variables
will not have the read-only bit set, and the linker will generate
warning messages about mismatched psect attributes for these
variables. These warning messages are merely a nuisance, and can
safely be ignored.
If you are compiling with a version of GNU CC older than 1.33,
specify `/DEFINE=("inline=")' as an option in all the
compilations. This requires editing all the `gcc' commands in
`make-cc1.com'. (The older versions had problems supporting
`inline'.) Once you have a working 1.33 or newer GNU CC, you can
change this file back.
8. If you want to build GNU CC with the VAX C compiler, you will need
to make minor changes in `make-cccp.com' and `make-cc1.com' to
choose alternate definitions of `CC', `CFLAGS', and `LIBS'. See
comments in those files. However, you must also have a working
version of the GNU assembler (GNU as, aka GAS) as it is used as
the back-end for GNU CC to produce binary object modules and is
not included in the GNU CC sources. GAS is also needed to compile
`libgcc2' in order to build `gcclib' (see above); `make-l2.com'
expects to be able to find it operational in
`gnu_cc:[000000]gnu-as.exe'.
To use GNU CC on VMS, you need the VMS driver programs `gcc.exe',
`gcc.com', and `gcc.cld'. They are distributed with the VMS
binaries (`gcc-vms') rather than the GNU CC sources. GAS is also
included in `gcc-vms', as is Bison.
Once you have successfully built GNU CC with VAX C, you should use
the resulting compiler to rebuild itself. Before doing this, be
sure to restore the `CC', `CFLAGS', and `LIBS' definitions in
`make-cccp.com' and `make-cc1.com'. The second generation
compiler will be able to take advantage of many optimizations that
must be suppressed when building with other compilers.
Under previous versions of GNU CC, the generated code would
occasionally give strange results when linked with the sharable
`VAXCRTL' library. Now this should work.
Even with this version, however, GNU CC itself should not be linked
with the sharable `VAXCRTL'. The version of `qsort' in `VAXCRTL' has a
bug (known to be present in VMS versions V4.6 through V5.5) which
causes the compiler to fail.
The executables are generated by `make-cc1.com' and `make-cccp.com'
use the object library version of `VAXCRTL' in order to make use of the
`qsort' routine in `gcclib.olb'. If you wish to link the compiler
executables with the shareable image version of `VAXCRTL', you should
edit the file `tm.h' (created by `vmsconfig.com') to define the macro
`QSORT_WORKAROUND'.
`QSORT_WORKAROUND' is always defined when GNU CC is compiled with
VAX C, to avoid a problem in case `gcclib.olb' is not yet available.
File: @.Distr.UsingGCC, Node: WE32K Install, Next: MIPS Install, Prev: VMS Install, Up: Installation
Installing GNU CC on the WE32K
==============================
These computers are also known as the 3b2, 3b5, 3b20 and other
similar names. (However, the 3b1 is actually a 68000; see *Note 3b1
Install::.)
Don't use `-g' when compiling with the system's compiler. The
system's linker seems to be unable to handle such a large program with
debugging information.
The system's compiler runs out of capacity when compiling `stmt.c'
in GNU CC. You can work around this by building `cpp' in GNU CC first,
then use that instead of the system's preprocessor with the system's C
compiler to compile `stmt.c'. Here is how:
mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo '/lib/cpp.gnu -traditional ${1+"$@"}' > /lib/cpp
chmod +x /lib/cpp
The system's compiler produces bad code for some of the GNU CC
optimization files. So you must build the stage 2 compiler without
optimization. Then build a stage 3 compiler with optimization. That
executable should work. Here are the necessary commands:
make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"
You may need to raise the ULIMIT setting to build a C++ compiler, as
the file `cc1plus' is larger than one megabyte.
File: @.Distr.UsingGCC, Node: MIPS Install, Next: Collect2, Prev: WE32K Install, Up: Installation
Installing GNU CC on the MIPS
=============================
See *Note Installation:: about whether to use either of the options
`--with-stabs' or `--with-gnu-as'.
The MIPS C compiler needs to be told to increase its table size for
switch statements with the `-Wf,-XNg1500' option in order to compile
`cp-parse.c'. If you use the `-O2' optimization option, you also need
to use `-Olimit 3000'. Both of these options are automatically
generated in the `Makefile' that the shell script `configure' builds.
If you override the `CC' make variable and use the MIPS compilers, you
may need to add `-Wf,-XNg1500 -Olimit 3000'.
MIPS computers running RISC-OS can support four different
personalities: default, BSD 4.3, System V.3, and System V.4 (older
versions of RISC-OS don't support V.4). To configure GCC for these
platforms use the following configurations:
`mips-mips-riscos`rev''
Default configuration for RISC-OS, revision `rev'.
`mips-mips-riscos`rev'bsd'
BSD 4.3 configuration for RISC-OS, revision `rev'.
`mips-mips-riscos`rev'sysv4'
System V.4 configuration for RISC-OS, revision `rev'.
`mips-mips-riscos`rev'sysv'
System V.3 configuration for RISC-OS, revision `rev'.
The revision `rev' mentioned above is the revision of RISC-OS to
use. You must reconfigure GCC when going from a RISC-OS revision 4 to
RISC-OS revision 5. This has the effect of avoiding a linker bug (see
*Note Installation Problems:: for more details).
DECstations can support three different personalities: Ultrix, DEC
OSF/1, and OSF/rose. To configure GCC for these platforms use the
following configurations:
`decstation-ultrix'
Ultrix configuration.
`decstation-osf1'
Dec's version of OSF/1.
`decstation-osfrose'
Open Software Foundation reference port of OSF/1 which uses the
OSF/rose object file format instead of ECOFF. Normally, you would
not select this configuration.
On Irix version 4.0.5F, and perhaps on some other versions as well,
there is an assembler bug that reorders instructions incorrectly. To
work around it, specify the target configuration `mips-sgi-irix4loser'.
This configuration inhibits assembler optimization.
You can turn off assembler optimization in a compiler configured with
target `mips-sgi-irix4' using the `-noasmopt' option. This compiler
option passes the option `-O0' to the assembler, to inhibit reordering.
The `-noasmopt' option can be useful for testing whether a problem
is due to erroneous assembler reordering. Even if a problem does not go
away with `-noasmopt', it may still be due to assembler
reordering--perhaps GNU CC itself was miscompiled as a result.
We know this is inconvenient, but it's the best that can be done at
the last minute.
File: @.Distr.UsingGCC, Node: Collect2, Next: Header Dirs, Prev: MIPS Install, Up: Installation
`collect2'
==========
Many target systems do not have support in the assembler and linker
for "constructors"--initialization functions to be called before the
official "start" of `main'. On such systems, GNU CC uses a utility
called `collect2' to arrange to call these functions at start time.
The program `collect2' works by linking the program once and looking
through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it creates
a new temporary `.c' file containing a table of them, compiles it, and
links the program a second time including that file.
The actual calls to the constructors are carried out by a subroutine
called `__main', which is called (automatically) at the beginning of
the body of `main' (provided `main' was compiled with GNU CC).
The program `collect2' is installed as `ld' in the directory where
the passes of the compiler are installed. When `collect2' needs to
find the *real* `ld', it tries the following file names:
* `gld' in the directories listed in the compiler's search
directories.
* `gld' in the directories listed in the environment variable `PATH'.
* `real-ld' in the compiler's search directories.
* `real-ld' in `PATH'.
* `ld' in `PATH'.
"The compiler's search directories" means all the directories where
`gcc' searches for passes of the compiler. This includes directories
that you specify with `-B'.
Cross-compilers search a little differently:
* `gld' in the compiler's search directories.
* `TARGET-gld' in `PATH'.
* `real-ld' in the compiler's search directories.
* `TARGET-real-ld' in `PATH'.
* `TARGET-ld' in `PATH'.
`collect2' does not search for `ld' using the compiler's search
directories, because if it did, it would find itself--not the real
`ld'--and this could lead to infinite recursion. However, the
directory where `collect2' is installed might happen to be in `PATH'.
That could lead `collect2' to invoke itself anyway. when looking for
`ld'.
To prevent this, `collect2' explicitly avoids running `ld' using the
file name under which `collect2' itself was invoked. In fact, it
remembers up to two such names--in case one copy of `collect2' finds
another copy (or version) of `collect2' installed as `ld' in a second
place in the search path.
If two file names to avoid are not sufficient, you may still
encounter an infinite recursion of `collect2' processes. When this
happens. check all the files installed as `ld' in any of the
directories searched, and straighten out the situation.
(In a future version, we will probably change `collect2' to avoid
any reinvocation of a file from which any parent `collect2' was run.)
File: @.Distr.UsingGCC, Node: Header Dirs, Prev: Collect2, Up: Installation
Standard Header File Directories
================================
`GCC_INCLUDE_DIR' means the same thing for native and cross. It is
where GNU CC stores its private include files, and also where GNU CC
stores the fixed include files. A cross compiled GNU CC runs
`fixincludes' on the header files in `$(tooldir)/include'. (If the
cross compilation header files need to be fixed, they must be installed
before GNU CC is built. If the cross compilation header files are
already suitable for ANSI C and GNU CC, nothing special need be done).
`GPLUS_INCLUDE_DIR' means the same thing for native and cross. It
is where `g++' looks first for header files. `libg++' installs only
target independent header files in that directory.
`LOCAL_INCLUDE_DIR' is used only for a native compiler. It is
normally `/usr/local/include'. GNU CC searches this directory so that
users can install header files in `/usr/local/include'.
`CROSS_INCLUDE_DIR' is used only for a cross compiler. GNU CC
doesn't install anything there.
`TOOL_INCLUDE_DIR' is used for both native and cross compilers. It
is the place for other packages to install header files that GNU CC will
use. For a cross-compiler, this is the equivalent of `/usr/include'.
When you build a cross-compiler, `fixincludes' processes any header
files in this directory.
File: @.Distr.UsingGCC, Node: C Extensions, Next: C++ Extensions, Prev: Installation, Up: Top
Extensions to the C Language Family
***********************************
GNU C provides several language features not found in ANSI standard
C. (The `-pedantic' option directs GNU CC to print a warning message if
any of these features is used.) To test for the availability of these
features in conditional compilation, check for a predefined macro
`__GNUC__', which is always defined under GNU CC.
These extensions are available in C and in the languages derived from
it, C++ and Objective C. *Note Extensions to the C++ Language: C++
Extensions, for extensions that apply *only* to C++.
* Menu:
* Statement Exprs:: Putting statements and declarations inside expressions.
* Local Labels:: Labels local to a statement-expression.
* Labels as Values:: Getting pointers to labels, and computed gotos.
* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
* Constructing Calls:: Dispatching a call to another function.
* Naming Types:: Giving a name to the type of some expression.
* Typeof:: `typeof': referring to the type of an expression.
* Lvalues:: Using `?:', `,' and casts in lvalues.
* Conditionals:: Omitting the middle operand of a `?:' expression.
* Long Long:: Double-word integers--`long long int'.
* Zero Length:: Zero-length arrays.
* Variable Length:: Arrays whose length is computed at run time.
* Macro Varargs:: Macros with variable number of arguments.
* Subscripting:: Any array can be subscripted, even if not an lvalue.
* Pointer Arith:: Arithmetic on `void'-pointers and function pointers.
* Initializers:: Non-constant initializers.
* Constructors:: Constructor expressions give structures, unions
or arrays as values.
* Labeled Elements:: Labeling elements of initializers.
* Cast to Union:: Casting to union type from any member of the union.
* Case Ranges:: `case 1 ... 9' and such.
* Function Attributes:: Declaring that functions have no side effects,
or that they can never return.
* Function Prototypes:: Prototype declarations and old-style definitions.
* Dollar Signs:: Dollar sign is allowed in identifiers.
* Character Escapes:: `\e' stands for the character ESC.
* Variable Attributes:: Specifying attributes of variables.
* Alignment:: Inquiring about the alignment of a type or variable.
* Inline:: Defining inline functions (as fast as macros).
* Extended Asm:: Assembler instructions with C expressions as operands.
(With them you can define "built-in" functions.)
* Constraints:: Constraints for asm operands
* Asm Labels:: Specifying the assembler name to use for a C symbol.
* Explicit Reg Vars:: Defining variables residing in specified registers.
* Alternate Keywords:: `__const__', `__asm__', etc., for header files.
* Incomplete Enums:: `enum foo;', with details to follow.
* Function Names:: Printable strings which are the name of the current
function.
File: @.Distr.UsingGCC, Node: Statement Exprs, Next: Local Labels, Up: C Extensions
Statements and Declarations in Expressions
==========================================
A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.
Recall that a compound statement is a sequence of statements
surrounded by braces; in this construct, parentheses go around the
braces. For example:
({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })
is a valid (though slightly more complex than necessary) expression for
the absolute value of `foo ()'.
The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type `void', and thus
effectively no value.)
This feature is especially useful in making macro definitions "safe"
(so that they evaluate each operand exactly once). For example, the
"maximum" function is commonly defined as a macro in standard C as
follows:
#define max(a,b) ((a) > (b) ? (a) : (b))
But this definition computes either A or B twice, with bad results if
the operand has side effects. In GNU C, if you know the type of the
operands (here let's assume `int'), you can define the macro safely as
follows:
#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })
Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.
If you don't know the type of the operand, you can still do this,
but you must use `typeof' (*note Typeof::.) or type naming (*note
Naming Types::.).
File: @.Distr.UsingGCC, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions
Locally Declared Labels
=======================
Each statement expression is a scope in which "local labels" can be
declared. A local label is simply an identifier; you can jump to it
with an ordinary `goto' statement, but only from within the statement
expression it belongs to.
A local label declaration looks like this:
__label__ LABEL;
or
__label__ LABEL1, LABEL2, ...;
Local label declarations must come at the beginning of the statement
expression, right after the `({', before any ordinary declarations.
The label declaration defines the label *name*, but does not define
the label itself. You must do this in the usual way, with `LABEL:',
within the statements of the statement expression.
The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a `goto' can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply
defined in that function. A local label avoids this problem. For
example:
#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \
value = -1; \
found: \
value; \
})
File: @.Distr.UsingGCC, Node: Labels as Values, Next: Nested Functions, Prev: Local Labels, Up: C Extensions
Labels as Values
================
You can get the address of a label defined in the current function
(or a containing function) with the unary operator `&&'. The value has
type `void *'. This value is a constant and can be used wherever a
constant of that type is valid. For example:
void *ptr;
...
ptr = &&foo;
To use these values, you need to be able to jump to one. This is
done with the computed goto statement(1), `goto *EXP;'. For example,
goto *ptr;
Any expression of type `void *' is allowed.
One way of using these constants is in initializing a static array
that will serve as a jump table:
static void *array[] = { &&foo, &&bar, &&hack };
Then you can select a label with indexing, like this:
goto *array[i];
Note that this does not check whether the subscript is in bounds--array
indexing in C never does that.
Such an array of label values serves a purpose much like that of the
`switch' statement. The `switch' statement is cleaner, so use that
rather than an array unless the problem does not fit a `switch'
statement very well.
Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.
You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way
to avoid this is to store the label address only in automatic variables
and never pass it as an argument.
---------- Footnotes ----------
(1) The analogous feature in Fortran is called an assigned goto,
but that name seems inappropriate in C, where one can do more than
simply store label addresses in label variables.
File: @.Distr.UsingGCC, Node: Nested Functions, Next: Constructing Calls, Prev: Labels as Values, Up: C Extensions
Nested Functions
================
A "nested function" is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested function's
name is local to the block where it is defined. For example, here we
define a nested function named `square', and call it twice:
foo (double a, double b)
{
double square (double z) { return z * z; }
return square (a) + square (b);
}
The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called "lexical scoping". For example, here we show a nested function
which uses an inherited variable named `offset':
bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }
int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...
}
Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block,
before the first statement in the block.
It is possible to call the nested function from outside the scope of
its name by storing its address or passing the address to another
function:
hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }
intermediate (store, size);
}
Here, the function `intermediate' receives the address of `store' as
an argument. If `intermediate' calls `store', the arguments given to
`store' are used to store into `array'. But this technique works only
so long as the containing function (`hack', in this example) does not
exit. If you try to call the nested function through its address after
the containing function has exited, all hell will break loose.
GNU CC implements taking the address of a nested function using a
technique called "trampolines". A paper describing them is available
from `maya.idiap.ch' in directory `pub/tmb', file `usenix88-lexic.ps.Z'.
A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (*note Local Labels::.). Such a jump returns instantly to the
containing function, exiting the nested function which did the `goto'
and any intermediate functions as well. Here is an example:
bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...
...
return 0;
/* Control comes here from `access'
if it detects an error. */
failure:
return -1;
}
A nested function always has internal linkage. Declaring one with
`extern' is erroneous. If you need to declare the nested function
before its definition, use `auto' (which is otherwise meaningless for
function declarations).
bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
...
}
File: @.Distr.UsingGCC, Node: Constructing Calls, Next: Naming Types, Prev: Nested Functions, Up: C Extensions
Constructing Function Calls
===========================
Using the built-in functions described below, you can record the
arguments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.
You can also record the return value of that function call, and
later return that value, without knowing what data type the function
tried to return (as long as your caller expects that data type).
`__builtin_apply_args ()'
This built-in function returns a pointer of type `void *' to data
describing how to perform a call with the same arguments as were
passed to the current function.
The function saves the arg pointer register, structure value
address, and all registers that might be used to pass arguments to
a function into a block of memory allocated on the stack. Then it
returns the address of that block.
`__builtin_apply (FUNCTION, ARGUMENTS, SIZE)'
This built-in function invokes FUNCTION (type `void (*)()') with a
copy of the parameters described by ARGUMENTS (type `void *') and
SIZE (type `int').
The value of ARGUMENTS should be the value returned by
`__builtin_apply_args'. The argument SIZE specifies the size of
the stack argument data, in bytes.
This function returns a pointer of type `void *' to data describing
how to return whatever value was returned by FUNCTION. The data
is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for SIZE. The
value is used by `__builtin_apply' to compute the amount of data
that should be pushed on the stack and copied from the incoming
argument area.
`__builtin_return (RESULT)'
This built-in function returns the value described by RESULT from
the containing function. You should specify, for RESULT, a value
returned by `__builtin_apply'.
File: @.Distr.UsingGCC, Node: Naming Types, Next: Typeof, Prev: Constructing Calls, Up: C Extensions
Naming an Expression's Type
===========================
You can give a name to the type of an expression using a `typedef'
declaration with an initializer. Here is how to define NAME as a type
name for the type of EXP:
typedef NAME = EXP;
This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
"maximum" macro that operates on any arithmetic type:
#define max(a,b) \
({typedef _ta = (a), _tb = (b); \
_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for `a' and `b'. Eventually we
hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers;
this will be a more reliable way to prevent such conflicts.
File: @.Distr.UsingGCC, Node: Typeof, Next: Lvalues, Prev: Naming Types, Up: C Extensions
Referring to a Type with `typeof'
=================================
Another way to refer to the type of an expression is with `typeof'.
The syntax of using of this keyword looks like `sizeof', but the
construct acts semantically like a type name defined with `typedef'.
There are two ways of writing the argument to `typeof': with an
expression or with a type. Here is an example with an expression:
typeof (x[0](1))
This assumes that `x' is an array of functions; the type described is
that of the values of the functions.
Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointers to `int'.
If you are writing a header file that must work when included in
ANSI C programs, write `__typeof__' instead of `typeof'. *Note
Alternate Keywords::.
A `typeof'-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or
inside of `sizeof' or `typeof'.
* This declares `y' with the type of what `x' points to.
typeof (*x) y;
* This declares `y' as an array of such values.
typeof (*x) y[4];
* This declares `y' as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration using `typeof', and why it
might be a useful way to write, let's rewrite it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) y;
Thus, `array (pointer (char), 4)' is the type of arrays of 4
pointers to `char'.
File: @.Distr.UsingGCC, Node: Lvalues, Next: Conditionals, Prev: Typeof, Up: C Extensions
Generalized Lvalues
===================
Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you
can take their addresses or store values into them.
For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:
(a, b) += 5
a, (b += 5)
Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:
&(a, b)
a, &b
A conditional expression is a valid lvalue if its type is not void
and the true and false branches are both valid lvalues. For example,
these two expressions are equivalent:
(a ? b : c) = 5
(a ? b = 5 : (c = 5))
A cast is a valid lvalue if its operand is an lvalue. A simple
assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the
inner left-hand side expression. After this is stored, the value is
converted back to the specified type to become the value of the
assignment. Thus, if `a' has type `char *', the following two
expressions are equivalent:
(int)a = 5
(int)(a = (char *)(int)5)
An assignment-with-arithmetic operation such as `+=' applied to a
cast performs the arithmetic using the type resulting from the cast,
and then continues as in the previous case. Therefore, these two
expressions are equivalent:
(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))
You cannot take the address of an lvalue cast, because the use of its
address would not work out coherently. Suppose that `&(int)f' were
permitted, where `f' has type `float'. Then the following statement
would try to store an integer bit-pattern where a floating point number
belongs:
*&(int)f = 1;
This is quite different from what `(int)f = 1' would do--that would
convert 1 to floating point and store it. Rather than cause this
inconsistency, we think it is better to prohibit use of `&' on a cast.
If you really do want an `int *' pointer with the address of `f',
you can simply write `(int *)&f'.
File: @.Distr.UsingGCC, Node: Conditionals, Next: Long Long, Prev: Lvalues, Up: C Extensions
Conditionals with Omitted Operands
==================================
The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the
conditional expression.
Therefore, the expression
x ? : y
has the value of `x' if that is nonzero; otherwise, the value of `y'.
This example is perfectly equivalent to
x ? x : y
In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand
does, or may (if it is a macro argument), contain a side effect. Then
repeating the operand in the middle would perform the side effect
twice. Omitting the middle operand uses the value already computed
without the undesirable effects of recomputing it.
File: @.Distr.UsingGCC, Node: Long Long, Next: Zero Length, Prev: Conditionals, Up: C Extensions
Double-Word Integers
====================
GNU C supports data types for integers that are twice as long as
`long int'. Simp