home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
gondwana.ecr.mu.oz.au/pub/
/
Graphics.tar
/
Graphics
/
VOGLE.ZIP
/
SRC
/
PATCHES.C
< prev
next >
Wrap
C/C++ Source or Header
|
2000-02-11
|
10KB
|
484 lines
#include "vogle.h"
static int ntsegs, tsegs = 10, nusegs, usegs = 10,
ntcurves = 10, nucurves = 10,
ntiter = 1, nuiter = 1,
makeprec_called = 0;
static Matrix tbasis, ubasis, et, eu,
ones = {
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0}
};
void premulttensor(), multtensor(),
copytensor(), copytensortrans(),
drpatch(), drcurve(),
rpatch(), transformtensor();
static void makeprec(), replace(), iterate(), extract();
static float addemup();
/*
* patchbasis
*
* Specify the two basis matrices for a patch
*/
void
patchbasis(tb, ub)
Matrix tb, ub;
{
if(!vdevice.initialised)
verror("patchbasis: vogle not initialised");
copymatrix(tbasis, tb);
copytranspose(ubasis, ub);
}
/*
* patchprecision
*
* Specify the lower limit on the number of line segments used
* to draw a curve as part of a patch. The actual number used varies
* with the number of curve segments in the "other" direction.
*/
void
patchprecision(tseg, useg)
int tseg, useg;
{
if (!vdevice.initialised)
verror("patchprecision: vogle not initialised");
if(tseg > 0 && useg > 0) {
tsegs = tseg;
usegs = useg;
} else
verror("patchprecision: number of segments <= 0");
/*
* Set up the difference matrices
*/
makeprec();
}
/*
* patchcurves
*
* Specify the number of curves to be drawn in each direction
* on a patch.
*/
void
patchcurves(nt, nu)
int nt, nu;
{
if (!vdevice.initialised)
verror("patchcurves: vogle not initialised");
if(nt > 0 && nu > 0) {
ntcurves = nt;
nucurves = nu;
} else
verror("patchcurves: number of patch curves <= 0");
/*
* Set up the difference matrices
*/
makeprec();
}
/*
* makeprec
*
* Makes up the two precision matrices for a patch
*/
static void
makeprec()
{
float n2, n3;
/*
* Find ntsegs, nusegs, ntiter, nuiter....
* ie. the actual number of curve segments of a tcurve,
* the actual number of curve segments of a ucurve,
* and the number of times to iterate in each direction.
*/
ntsegs = tsegs;
ntiter = ntsegs / (nucurves - 1);
if (ntsegs > ntiter * (nucurves - 1))
ntsegs = (++ntiter) * (nucurves - 1);
nusegs = usegs;
nuiter = nusegs / (ntcurves - 1);
if (nusegs > nuiter * (ntcurves - 1))
nusegs = (++nuiter) * (ntcurves - 1);
/*
* Doing the t precision matrix.....
*/
identmatrix(et);
n2 = (float)(ntsegs * ntsegs);
n3 = (float)(ntsegs * n2);
et[0][0] = et[2][2] = et[3][3] = 0.0;
et[1][0] = 1.0 / n3;
et[1][1] = 1.0 / n2;
et[2][0] = et[3][0] = 6.0 / n3;
et[2][1] = 2.0 / n2;
et[1][2] = 1.0 / (float)ntsegs;
et[0][3] = 1.0;
/*
* Make the Transpose of eu
*/
identmatrix(eu);
n2 = (float)(nusegs * nusegs);
n3 = (float)(nusegs * n2);
eu[0][0] = eu[2][2] = eu[3][3] = 0.0;
eu[0][1] = 1.0 / n3;
eu[1][1] = 1.0 / n2;
eu[0][2] = eu[0][3] = 6.0 / n3;
eu[1][2] = 2.0 / n2;
eu[2][1] = 1.0 / (float)nusegs;
eu[3][0] = 1.0;
makeprec_called = 1;
}
/*
* patch
*
* Draws a bicubic patch. (ie. all the w coords a 1 and the
* basis matrices don't change that)
*/
void
patch(geomx, geomy, geomz)
Matrix geomx, geomy, geomz;
{
rpatch(geomx, geomy, geomz, ones);
}
/*
* rpatch
*
* Draws rational bicubic patches.
*
* Reference: J. H. Clark, Parametric Curves, Surfaces and volumes in
* computer graphics and computer aided Geometric Design.
* Technical report No. 221, Nov 1981.
* Computer Systems Lab. Dept's of Elecrical Eng. and Computer Science,
* Standford University, Standford, California 94305.
*/
void
rpatch(geomx, geomy, geomz, geomw)
Matrix geomx, geomy, geomz, geomw;
{
Tensor S, R;
Matrix tmp, tmp2;
float xlast, ylast, zlast;
int i, j, sync;
Token *tok;
if (!vdevice.initialised)
verror("patch: vogle not initialised");
/*
* Form S = et . tbasis . Gtensor . ubasisT . euT
*/
if (!makeprec_called)
makeprec();
mult4x4(tmp, et, tbasis);
mult4x4(tmp2, ubasis, eu);
/*
* Load the geometry matrices into S.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++) {
S[0][i][j] = geomx[i][j];
S[1][i][j] = geomy[i][j];
S[2][i][j] = geomz[i][j];
S[3][i][j] = geomw[i][j];
}
premulttensor(R, tbasis, S);
multtensor(S, ubasis, R);
/*
* Find the last point on the curve.
*/
xlast = addemup(S[0]);
ylast = addemup(S[1]);
zlast = addemup(S[2]);
/*
* Multiply the precision matrices in.
*/
premulttensor(R, et, S);
multtensor(S, eu, R);
if (vdevice.inobject) {
tok = newtokens(74);
tok[0].i = RPATCH;
tok[1].f = xlast;
tok[2].f = ylast;
tok[3].f = zlast;
tok[4].i = ntcurves;
tok[5].i = nucurves;
tok[6].i = ntsegs;
tok[7].i = nusegs;
tok[8].i = ntiter;
tok[9].i = nuiter;
tok += 10;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++) {
(tok++)->f = S[0][i][j];
(tok++)->f = S[1][i][j];
(tok++)->f = S[2][i][j];
(tok++)->f = S[3][i][j];
}
return;
}
/*
* Multiply by the current transformation....
*/
transformtensor(S, vdevice.transmat->m);
/*
* Draw the patch....
*/
if ((sync = vdevice.sync))
vdevice.sync = 0;
drpatch(S, ntcurves, nucurves, ntsegs, nusegs, ntiter, nuiter);
if (sync) {
vdevice.sync = 1;
(*vdevice.dev.Vsync)();
}
/*
* Set the current (untransformed) world spot....
*/
vdevice.cpW[V_X] = xlast;
vdevice.cpW[V_Y] = ylast;
vdevice.cpW[V_Z] = zlast;
}
/*
* transformtensor
*
* Transform the tensor S by the matrix m
*/
void
transformtensor(S, m)
Tensor S;
Matrix m;
{
Matrix tmp, tmp2;
register int i;
for (i = 0; i < 4; i++) {
extract(tmp, S, i);
mult4x4(tmp2, tmp, m);
replace(S, tmp2, i);
}
}
/*
* replace
*
* Does the reverse of extract.
*/
static void
replace(a, b, k)
Tensor a;
Matrix b;
int k;
{
int i, j;
/*
* Not unwound because it only gets called once per patch.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
a[j][i][k] = b[i][j];
}
/*
* drpatch
*
* Actually does the work of drawing a patch.
*/
void
drpatch(R, ntcurves, nucurves, ntsegs, nusegs, ntiter, nuiter)
Tensor R;
int ntcurves, nucurves, ntsegs, nusegs, ntiter, nuiter;
{
Tensor S;
Matrix tmp;
int i;
/*
* Copy R transposed into S
*/
copytensortrans(S, R);
for (i = 0; i < ntcurves; i++) {
extract(tmp, R, 0);
drcurve(ntsegs, tmp);
iterate(R, nuiter);
}
/*
* Now using S...
*/
for (i = 0; i < nucurves; i++) {
extract(tmp, S, 0);
drcurve(nusegs, tmp);
iterate(S, ntiter);
}
}
/*
* iterate
*
* Iterates the forward difference tensor R
*/
static void
iterate(R, n)
register Tensor R;
int n;
{
register int it;
/*
* Anyone for an unwound loop or two???
*
* for (it = 0; it < n; it++) {
* for (i = 0; i < 4; i++)
* for (j = 0; j < 4; j++)
* for (k = 0; k < 3; k++)
* R[i][j][k] += R[i][j][k+1];
* }
*/
for (it = 0; it < n; it++) {
R[0][0][0] += R[0][0][1];
R[0][0][1] += R[0][0][2];
R[0][0][2] += R[0][0][3];
R[0][1][0] += R[0][1][1];
R[0][1][1] += R[0][1][2];
R[0][1][2] += R[0][1][3];
R[0][2][0] += R[0][2][1];
R[0][2][1] += R[0][2][2];
R[0][2][2] += R[0][2][3];
R[0][3][0] += R[0][3][1];
R[0][3][1] += R[0][3][2];
R[0][3][2] += R[0][3][3];
R[1][0][0] += R[1][0][1];
R[1][0][1] += R[1][0][2];
R[1][0][2] += R[1][0][3];
R[1][1][0] += R[1][1][1];
R[1][1][1] += R[1][1][2];
R[1][1][2] += R[1][1][3];
R[1][2][0] += R[1][2][1];
R[1][2][1] += R[1][2][2];
R[1][2][2] += R[1][2][3];
R[1][3][0] += R[1][3][1];
R[1][3][1] += R[1][3][2];
R[1][3][2] += R[1][3][3];
R[2][0][0] += R[2][0][1];
R[2][0][1] += R[2][0][2];
R[2][0][2] += R[2][0][3];
R[2][1][0] += R[2][1][1];
R[2][1][1] += R[2][1][2];
R[2][1][2] += R[2][1][3];
R[2][2][0] += R[2][2][1];
R[2][2][1] += R[2][2][2];
R[2][2][2] += R[2][2][3];
R[2][3][0] += R[2][3][1];
R[2][3][1] += R[2][3][2];
R[2][3][2] += R[2][3][3];
R[3][0][0] += R[3][0][1];
R[3][0][1] += R[3][0][2];
R[3][0][2] += R[3][0][3];
R[3][1][0] += R[3][1][1];
R[3][1][1] += R[3][1][2];
R[3][1][2] += R[3][1][3];
R[3][2][0] += R[3][2][1];
R[3][2][1] += R[3][2][2];
R[3][2][2] += R[3][2][3];
R[3][3][0] += R[3][3][1];
R[3][3][1] += R[3][3][2];
R[3][3][2] += R[3][3][3];
}
}
/*
* Extract the k'th column of the tensor a into the matrix b.
*/
static void
extract(b, a, k)
register Tensor a;
register Matrix b;
register int k;
{
b[0][0] = a[0][0][k];
b[0][1] = a[1][0][k];
b[0][2] = a[2][0][k];
b[0][3] = a[3][0][k];
b[1][0] = a[0][1][k];
b[1][1] = a[1][1][k];
b[1][2] = a[2][1][k];
b[1][3] = a[3][1][k];
b[2][0] = a[0][2][k];
b[2][1] = a[1][2][k];
b[2][2] = a[2][2][k];
b[2][3] = a[3][2][k];
b[3][0] = a[0][3][k];
b[3][1] = a[1][3][k];
b[3][2] = a[2][3][k];
b[3][3] = a[3][3][k];
}
static float
addemup(m)
Matrix m;
{
return (m[0][0] + m[0][1] + m[0][2] + m[0][3] +
m[1][0] + m[1][1] + m[1][2] + m[1][3] +
m[2][0] + m[2][1] + m[2][2] + m[2][3] +
m[3][0] + m[3][1] + m[3][2] + m[3][3]);
}