home *** CD-ROM | disk | FTP | other *** search
- /* Complex math module */
-
- /* much code borrowed from mathmodule.c */
-
- #include "Python.h"
-
- #include "mymath.h"
-
- #include "protos/cmathmodule.h"
-
- #ifdef i860
- /* Cray APP has bogus definition of HUGE_VAL in <math.h> */
- #undef HUGE_VAL
- #endif
-
- #ifdef HUGE_VAL
- #define CHECK(x) if (errno != 0) ; \
- else if (-HUGE_VAL <= (x) && (x) <= HUGE_VAL) ; \
- else errno = ERANGE
- #else
- #define CHECK(x) /* Don't know how to check */
- #endif
-
- #ifndef M_PI
- #define M_PI (3.141592653589793239)
- #endif
-
- /* First, the C functions that do the real work */
-
- /* constants */
- static Py_complex c_1 = {1., 0.};
- static Py_complex c_half = {0.5, 0.};
- static Py_complex c_i = {0., 1.};
- static Py_complex c_i2 = {0., 0.5};
- #if 0
- static Py_complex c_mi = {0., -1.};
- static Py_complex c_pi2 = {M_PI/2., 0.};
- #endif
-
- /* forward declarations */
- staticforward Py_complex c_log();
- staticforward Py_complex c_prodi();
- staticforward Py_complex c_sqrt();
-
-
- static Py_complex c_acos(x)
- Py_complex x;
- {
- return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
- c_sqrt(c_diff(c_1,c_prod(x,x))))))));
- }
-
- static char c_acos_doc [] =
- "acos(x)\n\
- \n\
- Return the arc cosine of x.";
-
-
- static Py_complex c_acosh(x)
- Py_complex x;
- {
- return c_log(c_sum(x,c_prod(c_i,
- c_sqrt(c_diff(c_1,c_prod(x,x))))));
- }
-
- static char c_acosh_doc [] =
- "acosh(x)\n\
- \n\
- Return the hyperbolic arccosine of x.";
-
-
- static Py_complex c_asin(x)
- Py_complex x;
- {
- return c_neg(c_prodi(c_log(c_sum(c_prod(c_i,x),
- c_sqrt(c_diff(c_1,c_prod(x,x)))))));
- }
-
- static char c_asin_doc [] =
- "asin(x)\n\
- \n\
- Return the arc sine of x.";
-
-
- static Py_complex c_asinh(x)
- Py_complex x;
- {
- /* Break up long expression for WATCOM */
- Py_complex z;
- z = c_sum(c_1,c_prod(x,x));
- z = c_diff(c_sqrt(z),x);
- return c_neg(c_log(z));
- }
-
- static char c_asinh_doc [] =
- "asinh(x)\n\
- \n\
- Return the hyperbolic arc sine of x.";
-
-
- static Py_complex c_atan(x)
- Py_complex x;
- {
- return c_prod(c_i2,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
- }
-
- static char c_atan_doc [] =
- "atan(x)\n\
- \n\
- Return the arc tangent of x.";
-
-
- static Py_complex c_atanh(x)
- Py_complex x;
- {
- return c_prod(c_half,c_log(c_quot(c_sum(c_1,x),c_diff(c_1,x))));
- }
-
- static char c_atanh_doc [] =
- "atanh(x)\n\
- \n\
- Return the hyperbolic arc tangent of x.";
-
-
- static Py_complex c_cos(x)
- Py_complex x;
- {
- Py_complex r;
- r.real = cos(x.real)*cosh(x.imag);
- r.imag = -sin(x.real)*sinh(x.imag);
- return r;
- }
-
- static char c_cos_doc [] =
- "cos(x)\n\
- \n\
- Return the cosine of x.";
-
-
- static Py_complex c_cosh(x)
- Py_complex x;
- {
- Py_complex r;
- r.real = cos(x.imag)*cosh(x.real);
- r.imag = sin(x.imag)*sinh(x.real);
- return r;
- }
-
- static char c_cosh_doc [] =
- "cosh(x)\n\
- \n\
- Return the hyperbolic cosine of x.";
-
-
- static Py_complex c_exp(x)
- Py_complex x;
- {
- Py_complex r;
- double l = exp(x.real);
- r.real = l*cos(x.imag);
- r.imag = l*sin(x.imag);
- return r;
- }
-
- static char c_exp_doc [] =
- "exp(x)\n\
- \n\
- Return the exponential value e**x.";
-
-
- static Py_complex c_log(x)
- Py_complex x;
- {
- Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real);
- r.real = log(l);
- return r;
- }
-
- static char c_log_doc [] =
- "log(x)\n\
- \n\
- Return the natural logarithm of x.";
-
-
- static Py_complex c_log10(x)
- Py_complex x;
- {
- Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real)/log(10.);
- r.real = log10(l);
- return r;
- }
-
- static char c_log10_doc [] =
- "log10(x)\n\
- \n\
- Return the base-10 logarithm of x.";
-
-
- /* internal function not available from Python */
- static Py_complex c_prodi(x)
- Py_complex x;
- {
- Py_complex r;
- r.real = -x.imag;
- r.imag = x.real;
- return r;
- }
-
-
- static Py_complex c_sin(x)
- Py_complex x;
- {
- Py_complex r;
- r.real = sin(x.real)*cosh(x.imag);
- r.imag = cos(x.real)*sinh(x.imag);
- return r;
- }
-
- static char c_sin_doc [] =
- "sin(x)\n\
- \n\
- Return the sine of x.";
-
-
- static Py_complex c_sinh(x)
- Py_complex x;
- {
- Py_complex r;
- r.real = cos(x.imag)*sinh(x.real);
- r.imag = sin(x.imag)*cosh(x.real);
- return r;
- }
-
- static char c_sinh_doc [] =
- "sinh(x)\n\
- \n\
- Return the hyperbolic sine of x.";
-
-
- static Py_complex c_sqrt(x)
- Py_complex x;
- {
- Py_complex r;
- double s,d;
- if (x.real == 0. && x.imag == 0.)
- r = x;
- else {
- s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
- d = 0.5*x.imag/s;
- if (x.real > 0.) {
- r.real = s;
- r.imag = d;
- }
- else if (x.imag >= 0.) {
- r.real = d;
- r.imag = s;
- }
- else {
- r.real = -d;
- r.imag = -s;
- }
- }
- return r;
- }
-
- static char c_sqrt_doc [] =
- "sqrt(x)\n\
- \n\
- Return the square root of x.";
-
-
- static Py_complex c_tan(x)
- Py_complex x;
- {
- Py_complex r;
- double sr,cr,shi,chi;
- double rs,is,rc,ic;
- double d;
- sr = sin(x.real);
- cr = cos(x.real);
- shi = sinh(x.imag);
- chi = cosh(x.imag);
- rs = sr*chi;
- is = cr*shi;
- rc = cr*chi;
- ic = -sr*shi;
- d = rc*rc + ic*ic;
- r.real = (rs*rc+is*ic)/d;
- r.imag = (is*rc-rs*ic)/d;
- return r;
- }
-
- static char c_tan_doc [] =
- "tan(x)\n\
- \n\
- Return the tangent of x.";
-
-
- static Py_complex c_tanh(x)
- Py_complex x;
- {
- Py_complex r;
- double si,ci,shr,chr;
- double rs,is,rc,ic;
- double d;
- si = sin(x.imag);
- ci = cos(x.imag);
- shr = sinh(x.real);
- chr = cosh(x.real);
- rs = ci*shr;
- is = si*chr;
- rc = ci*chr;
- ic = si*shr;
- d = rc*rc + ic*ic;
- r.real = (rs*rc+is*ic)/d;
- r.imag = (is*rc-rs*ic)/d;
- return r;
- }
-
- static char c_tanh_doc [] =
- "tanh(x)\n\
- \n\
- Return the hyperbolic tangent of x.";
-
-
- /* And now the glue to make them available from Python: */
-
- static PyObject *
- math_error()
- {
- if (errno == EDOM)
- PyErr_SetString(PyExc_ValueError, "math domain error");
- else if (errno == ERANGE)
- PyErr_SetString(PyExc_OverflowError, "math range error");
- else /* Unexpected math error */
- PyErr_SetFromErrno(PyExc_ValueError);
- return NULL;
- }
-
- static PyObject *
- math_1(args, func)
- PyObject *args;
- Py_complex (*func) Py_FPROTO((Py_complex));
- {
- Py_complex x;
- if (!PyArg_ParseTuple(args, "D", &x))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0)
- x = (*func)(x);
- PyFPE_END_PROTECT(x)
- CHECK(x.real);
- CHECK(x.imag);
- if (errno != 0)
- return math_error();
- else
- return PyComplex_FromCComplex(x);
- }
-
- #ifdef HAVE_PROTOTYPES
- #define FUNC1(stubname, func) \
- static PyObject * stubname(PyObject *self, PyObject *args) { \
- return math_1(args, func); \
- }
- #else /* !HAVE_PROTOTYPES */
- #define FUNC1(stubname, func) \
- static PyObject * stubname(self, args) PyObject *self, *args; { \
- return math_1(args, func); \
- }
- #endif
-
- FUNC1(cmath_acos, c_acos)
- FUNC1(cmath_acosh, c_acosh)
- FUNC1(cmath_asin, c_asin)
- FUNC1(cmath_asinh, c_asinh)
- FUNC1(cmath_atan, c_atan)
- FUNC1(cmath_atanh, c_atanh)
- FUNC1(cmath_cos, c_cos)
- FUNC1(cmath_cosh, c_cosh)
- FUNC1(cmath_exp, c_exp)
- FUNC1(cmath_log, c_log)
- FUNC1(cmath_log10, c_log10)
- FUNC1(cmath_sin, c_sin)
- FUNC1(cmath_sinh, c_sinh)
- FUNC1(cmath_sqrt, c_sqrt)
- FUNC1(cmath_tan, c_tan)
- FUNC1(cmath_tanh, c_tanh)
-
-
- static char module_doc [] =
- "This module is always available. It provides access to mathematical\n\
- functions for complex numbers.";
-
-
- static PyMethodDef cmath_methods[] = {
- {"acos", cmath_acos, 1, c_acos_doc},
- {"acosh", cmath_acosh, 1, c_acosh_doc},
- {"asin", cmath_asin, 1, c_asin_doc},
- {"asinh", cmath_asinh, 1, c_asinh_doc},
- {"atan", cmath_atan, 1, c_atan_doc},
- {"atanh", cmath_atanh, 1, c_atanh_doc},
- {"cos", cmath_cos, 1, c_cos_doc},
- {"cosh", cmath_cosh, 1, c_cosh_doc},
- {"exp", cmath_exp, 1, c_exp_doc},
- {"log", cmath_log, 1, c_log_doc},
- {"log10", cmath_log10, 1, c_log10_doc},
- {"sin", cmath_sin, 1, c_sin_doc},
- {"sinh", cmath_sinh, 1, c_sinh_doc},
- {"sqrt", cmath_sqrt, 1, c_sqrt_doc},
- {"tan", cmath_tan, 1, c_tan_doc},
- {"tanh", cmath_tanh, 1, c_tanh_doc},
- {NULL, NULL} /* sentinel */
- };
-
- DL_EXPORT(void)
- initcmath()
- {
- PyObject *m, *d, *v;
-
- m = Py_InitModule3("cmath", cmath_methods, module_doc);
- d = PyModule_GetDict(m);
- PyDict_SetItemString(d, "pi",
- v = PyFloat_FromDouble(atan(1.0) * 4.0));
- Py_DECREF(v);
- PyDict_SetItemString(d, "e", v = PyFloat_FromDouble(exp(1.0)));
- Py_DECREF(v);
- }
-