home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
World of Graphics
/
WOGRAPH.BIN
/
729.SOURCE.ZIP
/
VECT.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-04-28
|
13KB
|
538 lines
#include <math.h>
#include <string.h>
#include "vect.h"
#define EPSILON 1e-6
void adjoint (Matrix mat);
double det4x4 (Matrix mat);
double det3x3 (double a1, double a2, double a3, double b1, double b2,
double b3, double c1, double c2, double c3);
double det2x2 (double a, double b, double c, double d);
void vect_init (Vector v, float x, float y, float z)
{
v[X] = x;
v[Y] = y;
v[Z] = z;
}
void vect_copy (Vector v1, Vector v2)
{
v1[X] = v2[X];
v1[Y] = v2[Y];
v1[Z] = v2[Z];
}
int vect_equal (Vector v1, Vector v2)
{
if (v1[X] == v2[X] && v1[Y] == v2[Y] && v1[Z] == v2[Z])
return 1;
else
return 0;
}
void vect_add (Vector v1, Vector v2, Vector v3)
{
v1[X] = v2[X] + v3[X];
v1[Y] = v2[Y] + v3[Y];
v1[Z] = v2[Z] + v3[Z];
}
void vect_sub (Vector v1, Vector v2, Vector v3)
{
v1[X] = v2[X] - v3[X];
v1[Y] = v2[Y] - v3[Y];
v1[Z] = v2[Z] - v3[Z];
}
void vect_scale (Vector v1, Vector v2, float k)
{
v1[X] = k * v2[X];
v1[Y] = k * v2[Y];
v1[Z] = k * v2[Z];
}
float vect_mag (Vector v)
{
float mag = sqrt(v[X]*v[X] + v[Y]*v[Y] + v[Z]*v[Z]);
return mag;
}
void vect_normalize (Vector v)
{
float mag = vect_mag (v);
if (mag > 0.0)
vect_scale (v, v, 1.0/mag);
}
float vect_dot (Vector v1, Vector v2)
{
return (v1[X]*v2[X] + v1[Y]*v2[Y] + v1[Z]*v2[Z]);
}
void vect_cross (Vector v1, Vector v2, Vector v3)
{
v1[X] = (v2[Y] * v3[Z]) - (v2[Z] * v3[Y]);
v1[Y] = (v2[Z] * v3[X]) - (v2[X] * v3[Z]);
v1[Z] = (v2[X] * v3[Y]) - (v2[Y] * v3[X]);
}
void vect_min (Vector v1, Vector v2, Vector v3)
{
v1[X] = (v2[X] < v3[X]) ? v2[X] : v3[X];
v1[Y] = (v2[Y] < v3[Y]) ? v2[Y] : v3[Y];
v1[Z] = (v2[Z] < v3[Z]) ? v2[Z] : v3[Z];
}
void vect_max (Vector v1, Vector v2, Vector v3)
{
v1[X] = (v2[X] > v3[X]) ? v2[X] : v3[X];
v1[Y] = (v2[Y] > v3[Y]) ? v2[Y] : v3[Y];
v1[Z] = (v2[Z] > v3[Z]) ? v2[Z] : v3[Z];
}
/* Return the angle between two vectors */
float vect_angle (Vector v1, Vector v2)
{
float mag1, mag2, angle, cos_theta;
mag1 = vect_mag(v1);
mag2 = vect_mag(v2);
if (mag1 * mag2 == 0.0)
angle = 0.0;
else {
cos_theta = vect_dot(v1,v2) / (mag1 * mag2);
if (cos_theta <= -1.0)
angle = 180.0;
else if (cos_theta >= +1.0)
angle = 0.0;
else
angle = (180.0/M_PI) * acos(cos_theta);
}
return angle;
}
void vect_print (FILE *f, Vector v, int dec, char sep)
{
char fstr[] = "%.4f, %.4f, %.4f";
if (dec < 0) dec = 0;
if (dec > 9) dec = 9;
fstr[2] = '0' + dec;
fstr[8] = '0' + dec;
fstr[14] = '0' + dec;
fstr[4] = sep;
fstr[10] = sep;
fprintf (f, fstr, v[X], v[Y], v[Z]);
}
/* Rotate a vector about the X, Y or Z axis */
void vect_rotate (Vector v1, Vector v2, int axis, float angle)
{
float cosa, sina;
cosa = cos ((M_PI/180.0) * angle);
sina = sin ((M_PI/180.0) * angle);
switch (axis) {
case X:
v1[X] = v2[X];
v1[Y] = v2[Y] * cosa + v2[Z] * sina;
v1[Z] = v2[Z] * cosa - v2[Y] * sina;
break;
case Y:
v1[X] = v2[X] * cosa - v2[Z] * sina;
v1[Y] = v2[Y];
v1[Z] = v2[Z] * cosa + v2[X] * sina;
break;
case Z:
v1[X] = v2[X] * cosa + v2[Y] * sina;
v1[Y] = v2[Y] * cosa - v2[X] * sina;
v1[Z] = v2[Z];
break;
}
}
/* Rotate a vector about a specific axis */
void vect_axis_rotate (Vector v1, Vector v2, Vector axis, float angle)
{
float cosa, sina;
Matrix mat;
cosa = cos ((M_PI/180.0) * angle);
sina = sin ((M_PI/180.0) * angle);
mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa);
mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina);
mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina);
mat[0][3] = 0.0;
mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina);
mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa);
mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina);
mat[1][3] = 0.0;
mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina);
mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina);
mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa);
mat[2][3] = 0.0;
mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0;
vect_transform (v1, v2, mat);
}
/* Transform the given vector */
void vect_transform (Vector v1, Vector v2, Matrix mat)
{
Vector tmp;
tmp[X] = (v2[X] * mat[0][0]) + (v2[Y] * mat[1][0]) + (v2[Z] * mat[2][0]) + mat[3][0];
tmp[Y] = (v2[X] * mat[0][1]) + (v2[Y] * mat[1][1]) + (v2[Z] * mat[2][1]) + mat[3][1];
tmp[Z] = (v2[X] * mat[0][2]) + (v2[Y] * mat[1][2]) + (v2[Z] * mat[2][2]) + mat[3][2];
vect_copy (v1, tmp);
}
/* Create an identity matrix */
void mat_identity (Matrix mat)
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mat[i][j] = 0.0;
for (i = 0; i < 4; i++)
mat[i][i] = 1.0;
}
void mat_copy (Matrix mat1, Matrix mat2)
{
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mat1[i][j] = mat2[i][j];
}
/* Rotate a matrix about the X, Y or Z axis */
void mat_rotate (Matrix mat1, Matrix mat2, int axis, float angle)
{
Matrix mat;
float cosa, sina;
cosa = cos ((M_PI/180.0) * angle);
sina = sin ((M_PI/180.0) * angle);
mat_identity (mat);
switch (axis) {
case X:
mat[1][1] = cosa;
mat[1][2] = sina;
mat[2][1] = -sina;
mat[2][2] = cosa;
break;
case Y:
mat[0][0] = cosa;
mat[0][2] = -sina;
mat[2][0] = sina;
mat[2][2] = cosa;
break;
case Z:
mat[0][0] = cosa;
mat[0][1] = sina;
mat[1][0] = -sina;
mat[1][1] = cosa;
break;
}
mat_mult (mat1, mat2, mat);
}
void mat_axis_rotate (Matrix mat1, Matrix mat2, Vector axis, float angle)
{
float cosa, sina;
Matrix mat;
cosa = cos ((M_PI/180.0) * angle);
sina = sin ((M_PI/180.0) * angle);
mat[0][0] = (axis[X] * axis[X]) + ((1.0 - (axis[X] * axis[X]))*cosa);
mat[0][1] = (axis[X] * axis[Y] * (1.0 - cosa)) - (axis[Z] * sina);
mat[0][2] = (axis[X] * axis[Z] * (1.0 - cosa)) + (axis[Y] * sina);
mat[0][3] = 0.0;
mat[1][0] = (axis[X] * axis[Y] * (1.0 - cosa)) + (axis[Z] * sina);
mat[1][1] = (axis[Y] * axis[Y]) + ((1.0 - (axis[Y] * axis[Y])) * cosa);
mat[1][2] = (axis[Y] * axis[Z] * (1.0 - cosa)) - (axis[X] * sina);
mat[1][3] = 0.0;
mat[2][0] = (axis[X] * axis[Z] * (1.0 - cosa)) - (axis[Y] * sina);
mat[2][1] = (axis[Y] * axis[Z] * (1.0 - cosa)) + (axis[X] * sina);
mat[2][2] = (axis[Z] * axis[Z]) + ((1.0 - (axis[Z] * axis[Z])) * cosa);
mat[2][3] = 0.0;
mat[3][0] = mat[3][1] = mat[3][2] = mat[3][3] = 0.0;
mat_mult (mat1, mat2, mat);
}
/* mat1 <-- mat2 * mat3 */
void mat_mult (Matrix mat1, Matrix mat2, Matrix mat3)
{
float sum;
int i, j, k;
Matrix result;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
sum = 0.0;
for (k = 0; k < 4; k++)
sum = sum + mat2[i][k] * mat3[k][j];
result[i][j] = sum;
}
}
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mat1[i][j] = result[i][j];
}
/*
Decodes a 3x4 transformation matrix into separate scale, rotation,
translation, and shear vectors. Based on a program by Spencer W.
Thomas (Graphics Gems II)
*/
void mat_decode (Matrix mat, Vector scale, Vector shear, Vector rotate,
Vector transl)
{
int i;
Vector row[3], temp;
for (i = 0; i < 3; i++)
transl[i] = mat[3][i];
for (i = 0; i < 3; i++) {
row[i][X] = mat[i][0];
row[i][Y] = mat[i][1];
row[i][Z] = mat[i][2];
}
scale[X] = vect_mag (row[0]);
vect_normalize (row[0]);
shear[X] = vect_dot (row[0], row[1]);
row[1][X] = row[1][X] - shear[X]*row[0][X];
row[1][Y] = row[1][Y] - shear[X]*row[0][Y];
row[1][Z] = row[1][Z] - shear[X]*row[0][Z];
scale[Y] = vect_mag (row[1]);
vect_normalize (row[1]);
if (scale[Y] != 0.0)
shear[X] /= scale[Y];
shear[Y] = vect_dot (row[0], row[2]);
row[2][X] = row[2][X] - shear[Y]*row[0][X];
row[2][Y] = row[2][Y] - shear[Y]*row[0][Y];
row[2][Z] = row[2][Z] - shear[Y]*row[0][Z];
shear[Z] = vect_dot (row[1], row[2]);
row[2][X] = row[2][X] - shear[Z]*row[1][X];
row[2][Y] = row[2][Y] - shear[Z]*row[1][Y];
row[2][Z] = row[2][Z] - shear[Z]*row[1][Z];
scale[Z] = vect_mag (row[2]);
vect_normalize (row[2]);
if (scale[Z] != 0.0) {
shear[Y] /= scale[Z];
shear[Z] /= scale[Z];
}
vect_cross (temp, row[1], row[2]);
if (vect_dot (row[0], temp) < 0.0) {
for (i = 0; i < 3; i++) {
scale[i] *= -1.0;
row[i][X] *= -1.0;
row[i][Y] *= -1.0;
row[i][Z] *= -1.0;
}
}
if (row[0][Z] < -1.0) row[0][Z] = -1.0;
if (row[0][Z] > +1.0) row[0][Z] = +1.0;
rotate[Y] = asin(-row[0][Z]);
if (fabs(cos(rotate[Y])) > EPSILON) {
rotate[X] = atan2 (row[1][Z], row[2][Z]);
rotate[Z] = atan2 (row[0][Y], row[0][X]);
}
else {
rotate[X] = atan2 (row[1][X], row[1][Y]);
rotate[Z] = 0.0;
}
/* Convert the rotations to degrees */
rotate[X] = (180.0/M_PI)*rotate[X];
rotate[Y] = (180.0/M_PI)*rotate[Y];
rotate[Z] = (180.0/M_PI)*rotate[Z];
}
/* Matrix inversion code from Graphics Gems */
/* mat1 <-- mat2^-1 */
float mat_inv (Matrix mat1, Matrix mat2)
{
int i, j;
float det;
if (mat1 != mat2) {
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mat1[i][j] = mat2[i][j];
}
det = det4x4 (mat1);
if (fabs (det) < EPSILON)
return 0.0;
adjoint (mat1);
for (i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
mat1[i][j] = mat1[i][j] / det;
return det;
}
void adjoint (Matrix mat)
{
double a1, a2, a3, a4, b1, b2, b3, b4;
double c1, c2, c3, c4, d1, d2, d3, d4;
a1 = mat[0][0]; b1 = mat[0][1];
c1 = mat[0][2]; d1 = mat[0][3];
a2 = mat[1][0]; b2 = mat[1][1];
c2 = mat[1][2]; d2 = mat[1][3];
a3 = mat[2][0]; b3 = mat[2][1];
c3 = mat[2][2]; d3 = mat[2][3];
a4 = mat[3][0]; b4 = mat[3][1];
c4 = mat[3][2]; d4 = mat[3][3];
/* row column labeling reversed since we transpose rows & columns */
mat[0][0] = det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4);
mat[1][0] = -det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4);
mat[2][0] = det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4);
mat[3][0] = -det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
mat[0][1] = -det3x3 (b1, b3, b4, c1, c3, c4, d1, d3, d4);
mat[1][1] = det3x3 (a1, a3, a4, c1, c3, c4, d1, d3, d4);
mat[2][1] = -det3x3 (a1, a3, a4, b1, b3, b4, d1, d3, d4);
mat[3][1] = det3x3 (a1, a3, a4, b1, b3, b4, c1, c3, c4);
mat[0][2] = det3x3 (b1, b2, b4, c1, c2, c4, d1, d2, d4);
mat[1][2] = -det3x3 (a1, a2, a4, c1, c2, c4, d1, d2, d4);
mat[2][2] = det3x3 (a1, a2, a4, b1, b2, b4, d1, d2, d4);
mat[3][2] = -det3x3 (a1, a2, a4, b1, b2, b4, c1, c2, c4);
mat[0][3] = -det3x3 (b1, b2, b3, c1, c2, c3, d1, d2, d3);
mat[1][3] = det3x3 (a1, a2, a3, c1, c2, c3, d1, d2, d3);
mat[2][3] = -det3x3 (a1, a2, a3, b1, b2, b3, d1, d2, d3);
mat[3][3] = det3x3 (a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
double det4x4 (Matrix mat)
{
double ans;
double a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
a1 = mat[0][0]; b1 = mat[0][1];
c1 = mat[0][2]; d1 = mat[0][3];
a2 = mat[1][0]; b2 = mat[1][1];
c2 = mat[1][2]; d2 = mat[1][3];
a3 = mat[2][0]; b3 = mat[2][1];
c3 = mat[2][2]; d3 = mat[2][3];
a4 = mat[3][0]; b4 = mat[3][1];
c4 = mat[3][2]; d4 = mat[3][3];
ans = a1 * det3x3 (b2, b3, b4, c2, c3, c4, d2, d3, d4) -
b1 * det3x3 (a2, a3, a4, c2, c3, c4, d2, d3, d4) +
c1 * det3x3 (a2, a3, a4, b2, b3, b4, d2, d3, d4) -
d1 * det3x3 (a2, a3, a4, b2, b3, b4, c2, c3, c4);
return ans;
}
double det3x3 (double a1, double a2, double a3, double b1, double b2,
double b3, double c1, double c2, double c3)
{
double ans;
ans = a1 * det2x2 (b2, b3, c2, c3)
- b1 * det2x2 (a2, a3, c2, c3)
+ c1 * det2x2 (a2, a3, b2, b3);
return ans;
}
double det2x2 (double a, double b, double c, double d)
{
double ans;
ans = a * d - b * c;
return ans;
}