home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-02-22 | 173.7 KB | 4,660 lines |
- ≡about
- ≡
- ┌──────────────────────────────────────────────────────────────────────┐
- │ G R A P H I C A │
- └──────────────────────────────────────────────────────────────────────┘
-
- Graphica is a command-driven interactive graphics program for making
- presentation quality graphs on a computer. This two-dimensional data
- plotting system is designed specifically for scientific and engineering
- applications. Graphica is easy to use, interactive, powerful and it
- runs on personal computers, mainframes and workstations. With Graphica,
- you can:
-
- o plot data or functions
- o evaluate and plot mathematical expressions
- o fit splines, polynomials and smooth data
- o display and print graphs on hardcopy devices
- o export graphs in HPGL, PostScript and other output formats
- o draw text in 11 different fonts, including roman, greek,
- cyrillic and gothic
- o draw hundreds of specialized symbols
- o get online help
- ≡arrow
- ≡noarrow
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ arrow {tag} {from sx,sy} {to ex,ey} {len} {ang} {type (1-5)} │
- │ noarrow {tag} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'arrow' command is used to draw arrows. All positions (x,y) default
- to 0,0. The x and y values are real numbers. These values can be either
- in the paper (inches) or the graph coordinate system (mapped units)
- depending on the status of the location flag (see the LOCATION command).
-
- The tag is an integer that may be used to identify a given arrow.
- If no tag is given, the lowest unused tag value is assigned
- automatically. This tag can be used to delete or change a specific
- arrow. To change any attribute of an existing arrow, use the arrow
- command with the appropriate tag, and specify the parts of the arrow
- to be changed.
-
- An optional arrow type may be specified. The default arrow type is
- 3 or full. The available arrow types are:
-
- type = 1 single wing
- type = 2 single wing with a back line
- type = 3 full
- type = 4 full with a half dimension line
- type = 5 full with a dimension line
-
- The arrowhead length and width are 20% and 6% of the total arrow length.
- If the arrowhead length is less than 1/8", it will remain at 1/8"
- regardless of the total arrow length.
-
- Entering 'arrows' by itself simply shows the currently defined arrows.
-
- Examples:
-
- to set an arrow pointing from the origin to (1,2) use:
- » arrow to 1.0,2.0
-
- to set an arrow from (-10,4) to (-5,5), and tag the arrow number 3, use:
- » arrow 3 from -10,4 to -5,5
-
- to change the preceding arrow begin at 1.1,1.3, use:
- » arrow 3 from 1.1,1.3
-
- to delete arrow number 2 use:
- » noarrow 2
-
- to delete all arrows use:
- » noarrow
- ≡audit
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ audit {'filename'} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command makes a copy of all your input commands into the given
- filename. You may later use it as a 'load' or 'input' file.
-
- Examples:
-
- » audit 'trace.dat'
- » audit
-
- in the latter case, a file called 'graphica.odt' will contain a trace
- of anything entered at the command line after entering 'audit'.
- ≡autoscale
- ≡noautoscale
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ autoscale {x,y,y2,x2} │
- │ noautoscale │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Frequently, it is difficult for the user to select suitable axis limits
- and step sizes, especially if the data being plotted varies greatly from
- one execution of the program to the next. For this reason Graphica
- provides automatic axis scaling for all axes as the default.
-
- The autoscale command sets the autoscaling feature for an axis. If an
- axis is not autoscaled, the default or current map is used when data is
- plotted.
-
- Entering 'autoscale' by itself simply shows the currently defined scaling.
-
- Examples:
-
- » autoscale x
- » noautoscale
-
- Another example. Suppose you have a data file with two columns of data,
- x and y but don't know their ranges. You could do the following:
-
- » data 'mydata.dat'
- » draw data
- » plot x y
-
- and determine how the data looks. The axes are autoscaled. Then you could
- say,
-
- » noaxes
- » map x 0 100 y 30 200
-
- where the mapped range would be your own values and then,
-
- » draw x y
-
- would draw the axes with the desired mapped range.
- ≡noaxes
- ≡axes
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ noaxes │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'noaxes' command will delete any previously specified axes, so the
- effect is as if the axes had never been drawn. It is very useful for one
- important reason: Graphica maintains a list in memory of all the axes that
- have been drawn on the same page. For example, if you had 2 graphs on one
- page and needed to get a hardcopy, Graphica would have to keep track of
- where everything is so that it could give you an exact reproduction on
- paper of what you had on your screen. The 'noaxes' command effectively
- wipes out all traces of previously drawn axes and lets you start anew.
-
- Entering 'axes' by itself simply shows the currently defined axes.
-
- Examples:
-
- » noaxes
- ≡background
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ background {color} {integer}/<name> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Sets the background color. See the PEN COLOR command for more
- details about the colors available to use with this command.
-
- Entering 'background' by itself simply shows the currently defined
- background color. The default background color is 'black'.
-
- Examples:
-
- » background 3
- » back red
- ≡beep
- ≡nobeep
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ beep │
- │ nobeep │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- These two commands are used to toggle Graphica beeps on and off.
- The default is on.
-
- Examples:
-
- » beep
-
- activates the beep when the screen has been drawn or when there is an error.
-
- » nobeep
-
- turns beeping off.
- ≡character
- ≡fonts
- ≡character fonts
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ character {gap,ratio,size,slant} <value> │
- │ character {font} <integer> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command sets character attributes such as the font type,
- character gap, ratio, size and slant.
-
- A font is a collection of characters with a unified design. The 'font'
- command defines the font style for characters. Characters may be
- hardware or software generated. The default font style is 1 which is a
- software generated character. The software generated character fonts are
- based on a database originally created by Dr. A.V. Hershey while working at
- the U.S. National Bureau of Standards. They have been reorganized and
- classified into several groups following the ASCII set. The font sets
- currently implemented are:
-
- font 1 = simplex roman
- font 2 = simplex greek
- font 3 = complex roman
- font 4 = complex greek
- font 5 = complex cyrillic
-
- and for registered users ten more:
-
- font 6 = simplex script
- font 7 = complex script
- font 8 = triplex roman
- font 9 = gothic german
- font 10 = gothic english
- font 11 = gothic italian
- font 12 = symbols I
- font 13 = symbols II
- font 14 = symbols II
- font 15 = symbols IV
-
- Entering 'character' by itself simply shows the currently defined
- character specs.
-
- The font files have to be somewhere in your DOS path. Alternatively,
- you may specify an environment variable called GRAPFONT containing the
- font directory. For example, if your fonts are in C:\GRAPHICA\FONTS,
- then you would specify,
-
- SET GRAPFONT=C:\GRAPHICA\FONTS
-
- somewhere in your autoexec.bat file or in a batch file just before
- running Graphica. (Font files have the names YY**.BIN where ** is a
- number from 01 to 15.)
-
- Extended character sets:
- ------------------------
-
- Fonts 1 and 3 (simplex roman and complex roman) include "extended
- ascii" characters. This means that you can draw some more characters
- without changing the font. For example, A with an "umlaut" (two dots)
- is ascii 143, a with a circle on top of it is 134, etc. The extended
- set is by no means complete yet but I'm getting there. It maps the
- MSDOS Multilingual (Latin I) code page set from ascii 127 to 212 (so
- far, with a few missing symbols). To use characters from the extended
- set, lookup TEXT in this help system.
-
- Examples:
-
- » character size 0.15 ratio 0.6
- » char gap 0.2 slant -10
- » character font 2
- » font 3
-
- This last command specifies a font of complex roman style.
-
- Also see CHARACTER FONT, CHARACTER GAP, CHARACTER RATIO, CHARACTER SIZE,
- CHARACTER SLANT, SUBSCRIPT, SUPERSCRIPT, TEXT and ENVIRONMENT.
- ≡character gap
- ≡gap
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ character gap <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The character gap attribute defines the spacing between adjacent
- characters in a text string, in the direction of the character path.
- The character gap is defined as a fraction of the average character box
- size. The default gap of 0.0 implies that adjacent character boxes are
- to be abutting. A gap of 1.0 implies that a gap, equivalent to the
- size of the average character box, is to be inserted between adjacent
- characters along the path. A gap of -0.5 implies that character boxes
- are to partially overlap.
-
- Example:
-
- » character gap 1.0
- ≡character ratio
- ≡ratio
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ character ratio <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Specifies the ratio of the width of the character to its height. The
- default character ratio is 1.0.
-
- Example:
-
- » character ratio 0.8
- ≡character size
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ character size <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The character size attribute defines the vertical size of the
- characters in default units (in, cm, mm). Graphica sets the default
- character size of all strings and labels to 0.17 in.
-
- Example:
-
- » character size 0.2
- ≡character slant
- ≡slant
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ character slant <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Specifies the number of degrees the characters tilt from the vertical.
- The sign convention for the direction of rotation is as follows:
-
- + clockwise
- - counterclockwise
-
- The default character slant is 0.0 degrees.
-
- Example:
-
- » character slant 25
- ≡cd
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ cd <directory-name> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'cd' command changes the working directory to <directory-name>.
-
- Examples:
-
- » cd c:\work
- » cd ..
- » cd c:\work\examples
- ≡circle
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ circle {center at <x>,<y>} {radius <value>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command draws a circle with the given radius in user default
- units at the given position (also in user default units).
-
- Entering 'circles' by itself simply shows the currently defined circles.
-
- Example:
-
- » circle radius 2.0 center at 3.0 4.0.
- ≡clc
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ clc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'clc' command erases the current text screen.
-
- Example:
-
- » clc
-
- See also CLEAR.
- ≡clear
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ clear │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'clear' command erases the current graphics screen or output device
- as specified by output. It also resets all internal flags to the default
- state found when entering Graphica, i.e. no axes, no frame, default map,
- etc. This usually generates a formfeed on hardcopy devices.
-
- Example:
-
- » clear
-
- See also CLC and DEFAULT.
- ≡column
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ column <integer> {is} {x,y,y2,x2} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This powerful command allows the assignment of any data column read
- from a user file to a certain axis.
-
- Entering 'columns' by itself simply shows the currently defined columns.
-
- Examples:
-
- » column 3 y2
- » column 2 is x 1 is y
-
- assigns column 3 of a data file to the x-axis and column 1 to the y-axis.
- Then plot x y add points will generate a graph of column 3 versus column 1.
-
- Also see PLOT.
- ≡comment
- ┌──────────────────────────────────────────────────────────────────────┐
- │ comments │
- └──────────────────────────────────────────────────────────────────────┘
-
- Comments are supported as follows: a '#' (hatch) may appear in most
- places in a line and Graphica will ignore the rest of the line. It
- will not have this effect inside quotes or inside numbers (including
- complex numbers).
-
- Examples:
-
- » # test file
- » echo # echo all commands from here on out
- » # map axes
- » map x 0 10 y 0 10
- ≡contributions
- ┌──────────────────────────────────────────────────────────────────────┐
- │ GRAPHICA Copyright (c) 1992-93 Antonio Montes. All rights reserved. │
- └──────────────────────────────────────────────────────────────────────┘
-
- GRAPHICA is shareware and as such is NOT FREE for use in a business,
- commercial, government, or institutional environment. Registration of
- GRAPHICA for personal (not at the office) use is optional. If you like
- this program and find it useful, you can support its continued development
- by sending me a contribution of NFL 50.- (dutch guilders) or US$25.00
- (US dollars). Your financial support is needed to encourage further
- improvements to GRAPHICA. Business, commercial, government, or
- institutional GRAPHICA users must register GRAPHICA after a 30-day
- evaluation period. If you want to see additional features in GRAPHICA,
- please send in a contribution. Feel free to contact me for any reason.
-
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Antonio Montes Internet address : antonio@amontes.fdc.iaf.nl │
- │ Postbus 13 CompuServe userid: 71031,1162 │
- │ 2350 AA Leiderdorp │
- │ The Netherlands │
- └──────────────────────────────────────────────────────────────────────┘
- ≡data
- ≡file
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ data {from} {file} {'filename'} {autox} │
- │ x(1) y(1) │
- │ x(2) y(2) │
- │ x(3) y(3) │
- │ . . │
- │ x(n) y(n) │
- │ end │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Discrete data contained in a file can displayed by specifying the name
- of a data file (enclosed in quotes) on the plot command line. Using the
- 'data' command simply reads in the data from a file, without plotting it.
-
- If the data to be plotted is on a data file already, then the command
- 'data {from} {file}' opens the data file and reads data points.
-
- Data files may contain one or more data points per line. If more than
- one data point is encountered on a line, the data points in a given
- column are referred to as columns. If just one value is given on a
- line, the program will use the number of the coordinate as the x value.
- Coordinate numbers start at 1 and are incremented for each data point
- read.
-
- Lines beginning with # will be treated as comments and ignored.
- Graphica will also ignore anything within two double quotes before
- data on a line.
-
- Numbers can be separated by a comma or one or more blanks (free format).
- There is no limit to the number of data points possible (well, until
- memory is exhausted.) Optionally, data pairs read interactively can be
- put on a single input line. You can't input multiple columns of data
- interactively, just two columns.
-
- In data files, up to 20 columns of data can be read in on a line. These
- data can in turn be assigned to different axes with the COLUMN command
- later on.
-
- Specifying 'autox' will result in the automatic assignment of the x
- values starting from 1. In other words, you may read in one or more
- columns of y data only and Graphica will assign the x values for you.
-
- It is possible to have several sets of data one after another in the
- same data file. Simply separate the sets with blank lines: Graphica
- will read each set in sequence and plot the curves one after another.
- This way you won't need a bunch of data filenames in one script file:
- just put all the data in one data file separated by blank lines.
-
- Also see COLUMN.
-
- Examples:
-
- Interactive data input:
-
- » data # interactive data input only
- » 1.0,10.0 2.0,20.0 3.0,30.0 4.0,40.0 5.0,50.0
- » end
-
- Data file input:
-
- » data 'gel3.dat'
- » data file 'comfil'
- » data 'test.dat' autox
-
- In this last example, if 'test.dat' contained only one column of data
- (the y values), x would be assigned automatically by Graphica.
- ≡default
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ default <parameter> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'default' command resets parameter settings to their default value.
- The available parameters are:
-
- all
- character
- division
- map
- tic
- unit
-
- Examples:
-
- » default all
-
- resets all the above parameters to their default value. Graphica does
- the equivalent of 'default all' at startup or when a 'paper size'
- command is given.
-
- » def map
-
- resets all axes mapping to the default state.
-
- Also see CLEAR.
- ≡del
- ≡delete
- ≡rm
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ del <file> │
- │ rm <file> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'del' command deletes a file. Pathnames, wildcards, and drive
- designators may be used in the usual way for your operating system.
- Other operating system commands can be issued using the $ character
- followed by a command. 'rm' is the equivalent UNIX command.
-
- Examples:
-
- » del script.plt
-
- deletes the ASCII file script.plt.
-
- » del foo
-
- deletes the ASCII file foo.
-
- Also see DIR, SHELL, TYPE and WHAT.
- ≡digitize
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ digitize │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Establish the (x,y) coordinates of a point on the plot. This position is
- relative to the graphic origin (0,0), the lower left hand corner of the
- paper on which the plot appears, and is given is the default unit system.
-
- If the mouse driver is loaded and your graphics card supports it (I
- can only make it work with VGA), a crosshair will appear and you may
- move it around by moving your mouse. By pressing any mouse button the
- point will be digitized. If the mouse can't be used, the keyboard
- (up/down/left/right) arrow keys will let you move a cross-hair around
- until you hit the enter (or return) key. Pressing H or D will half or
- double the cursor step size.
-
- Example:
-
- » digitize
-
- will give you the coordinates of the point on which the cursor was on the
- plot before you pressed return, in inches, cm or mm.
- ≡dir
- ≡ls
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ dir <file> │
- │ ls <file> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'dir' command lists the files and subdirectories in a directory.
- Pathnames, wildcards, and drive designators may be used in the usual way
- for your operating system. Other operating system commands can be issued
- using the $ character on the very first position of a line followed by a
- command. 'ls' is the equivalent UNIX command.
-
- Examples:
-
- » dir
-
- lists all files in the current directory.
-
- » dir *.plt
-
- lists all files with an extension of .plt in the current directory.
-
- Also see DEL, SHELL, TYPE and WHAT.
- ≡divisions
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ divisions {x,y,y2,x2} <major> <minor> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Graphica draws a tic at each axis value (major tic) and other tic marks
- in between (minor tics).
-
- The 'divisions' command determines the number of major and minor tic
- marks. These two numbers must be integers. Major and minor tic marks
- are one less than the total number of divisions for a particular axis.
- For example, if the x-axis range is 0 to 25, a good selection for major
- divisions would be 5. The major tic marks will appear at 5, 10, 15,
- and 20. 5 could be chosen as the number of minor divisions. This
- results in four minor tic marks between two major ones. The default
- divisions are 5 and 2.
-
- Entering 'divisions' by itself simply shows the currently defined divisions.
-
- Example:
-
- » divisions x 6,3 y 4,2
- ≡draw
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ draw {x,y,y2,x2} {mask} {reflect} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Draws the specified axis with the given range, tic size and number of
- divisions. The key words 'x,x2,y,y2' may be followed by two optional
- key words, 'mask' and/or 'reflect'. If 'mask' is specified, that axis
- is drawn with the major and minor tic marks but with no numbers or
- label. If the 'reflect' option is used, a mirror image of that axis is
- drawn.
-
- Example:
-
- » draw x reflect y reflect.
-
- draws the x and y axes with opposite mirror images.
-
- Note: You may draw more than one axis of the same kind by suitably changing
- the subplot area.
- ≡dummy
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ dummy <dummy-var-1> <dummy-var-2> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- By default, Graphica assumes that the independent variable for the
- 'plot' command line is 'x'. These variables are called the dummy variable
- because it is just a notation to indicate the independent variable. The
- 'dummy' command changes the default dummy variable names. For example,
- you may find it more convenient to call the dummy variable 't' when
- plotting time functions.
-
- Entering 'dummy' by itself simply shows the currently defined dummy
- variables.
-
- Examples:
-
- » dummy t
- » dummy u,v
-
- See also FUNCTIONS and WHO.
- ≡dump
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ dump {device-type} {'filename'} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Generates hardcopy output into a file. The available device types are:
-
- dj, epson, epsf, hpgl, hpgl2, lj2, lj4, pic, postscript
-
- If the filename is omitted, Graphica will use a default filename of the
- form 'graphica.xxx' where xxx is one of:
-
- dj5, prn, eps, hpg, lj2, lj4, pic, ps
-
- depending on the chosen device type. If the device type is missing and
- you have defined the environment variable GRAPDUMP, then this device will
- be used. A device type specified on the command line overrides any device
- type previously specified in GRAPDUMP. You will get an error message if
- Graphica can't find a device type somewhere (either in the environment or
- on the command line.)
-
- If you wish to dump directly to a device, there are two options. First,
- you can dump to a file and then use the OS command $ to perform a copy
- to a printer or plotter. The second option is not to use the dump command,
- but to use the OUTPUT command and then do a SHOW. Both achieve the same
- purpose. Let's illustrate both on the DOS version:
-
- » dump postscript
- » $copy graphica.ps prn
-
- or
-
- » (do some graphics on screen)
- » output prn
- » term postscript
- » show
-
- This last example would 'redraw' everything in PostScript to the printer
- specified by prn.
-
- Examples:
-
- » dump hpgl 'plotter.dat'
-
- generates a file called plotter.dat containing HPGL commands. You may
- send this file directly to an HP plotter or import it into another
- program which accepts HPGL commands, such as WordPerfect, Ventura
- Publisher, etc.
-
- » dump hpgl
-
- does the same thing except it dumps the output to 'graphica.hpg'.
-
- » dump 'plotter.dat' hpgl
-
- same effect as the first example.
-
- » dump
-
- In this case, if GRAPDUMP=post, a postscript file will be generated,
- but you will get an error message otherwise.
-
- » dump post "graph.ps" color
-
- generates a PostScript file called 'graph.ps' for color printers.
-
- On DOS systems,
-
- » dump epson
-
- generates a binary file called 'graphica.prn' which you may send to an
- Epson-compatible printer (after you're out of Graphica or by 'shelling'
- out to DOS) by typing:
-
- C:\>copy/b graphica.prn lpt1:
-
- The resolution of this plot is 512 x 384 pixels on a 9-pin dot-matrix
- printer.
-
- Also see ENVIRONMENT, HPGL, LASERJET, OUTPUT, TERMINAL and POSTSCRIPT.
- ≡echo
- ≡noecho
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ echo │
- │ noecho │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'echo' command causes all input typed at the terminal or picked up
- from a load file to be displayed at the terminal. This is useful with
- a load file because progress can be monitored. The default is 'noecho.'
-
- Examples:
-
- » echo
-
- switches echoing on
-
- » noecho
-
- switches echoing off.
- ≡quit
- ≡exit
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ exit │
- │ quit │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The commands 'exit' and 'quit' will terminate Graphica. These commands
- will clear the output device (as the clear command does) before exiting.
- If this command is used in a script file, program execution halts
- immediately. Do not use this command until you really want to exit the
- program.
-
- Example:
-
- » exit
-
- and you will be back at the command line prompt.
- ≡exponent
- ≡noexponent
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ exponent │
- │ noexponent │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Use this option to select either a fixed or exponential format for
- logarithmic axis tic mark labels.
-
- Exponential format is displayed as the number 10 with an exponent. For
- example, the value 0.001 will be displayed as 10 to the power -3 on a log
- axis with exponential format.
-
- Example:
-
- » exponent
-
- Also see FORMAT.
- ≡format
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ format {x,y,y2,x2} <integer> │
- │ format {x,y,y2,x2} ({"<lab>"} <pos> {, {"<lab>"} <pos>}...) │
- │ format {log} n │
- │ format {long} {short} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The main 'format' command controls the format of numbers plotted next
- to the major tic marks. The parameter in angle brackets indicates the
- number of digits drawn after the decimal point. A -1 or 0 causes the
- numbers to be displayed in integer format. The default value for the
- number of digits to the right of the decimal point is 1.
-
- The ("<label>" <pos>, ...) format allows non-numeric tic labels. Each
- set of tics can have an optional label. The label is a string enclosed
- by quotes, such as "hello". The label may even be empty. You have to
- include the ( and ) for the non-numeric tic labels to work. Of course,
- the corresponding axis will have to be mapped properly for user-defined
- labels to work. That is, if you map the y axis from -10 to -5 and
- specify "format y ("one" 1, "two" 2), you'll get labels like "-10",
- etc. instead of "one", "two", etc.
-
- For logarithmic axes, 'format log' controls how often major and minor
- tic marks should be labeled. Enter a frequency of:
-
- n = 1 to label all minor tics and all major tics
- n = 2 to label even minor tics and all major tics
- n = 3 to label minor tics 2 and 5, and all major tics
- n = 4 to label minor tic 3, and all major tics
- n = 5 to label only major tics.
-
- The result of any Graphica assignment statement is displayed on the
- screen. The numeric display format can be controlled using the
- 'format' command. The default format, called the 'short' format, shows
- approximately 5 significant decimal digits. For the 'long' format
- (approx. 15 digits) the last significant digit may appear to be
- incorrect but the output is actually an accurate representation of the
- binary number stored in the computer.
-
- Entering 'format' by itself simply shows the currently defined formats.
-
- Examples:
-
- » format x 2 y 3
-
- In this example, the x-axis labels will be printed with 2 decimal
- points and the y-axis labels with 3.
-
- » format x ("Jan" 1, "Feb" 2, "Mar" 3)
- » format y ("bottom" 0, "" 10, "top" 20)
-
- Here, we're using the user-defined axis labels. "Jan" will be printed
- instead of a "1", "Feb" instead of 2, and "Mar" instead of 3. In the
- second example, the label "bottom" will appear at the "0" position, and
- "top" will appear at the "20" position.
-
- » format log 2
-
- in this case, the even minor tic marks will be labeled (2,4,6,8) for
- each log cycle.
-
- » a = 4./3.
- » format short
- » print a
-
- a = 1.33333
-
- » format long
- » print a
-
- a = 1.333333333333333
-
- Also see EXPONENT.
- ≡frame
- ≡noframe
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ frame │
- │ noframe │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command draws a frame around the subplot area. 'noframe' cancels
- this effect.
-
- Example:
-
- » frame
-
- produces a frame around the subplot area.
- ≡grid
- ≡nogrid
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ grid {pen {style} <integer>} {color <integer>/name} │
- │ nogrid │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- You may specify whether or not to put a set of horizontal and vertical
- reference lines on a plot at the same points as the axis tic marks.
- The grid may make it easier to read values off and may improve plot
- appearance.
-
- The 'grid' command sets an internal flag that signals the axis drawing
- routine to generate a grid. 'nogrid' cancels this effect for subsequent
- axis draws. The 'pen' and 'color' keywords may be specified to change
- the appearance of the grid. The defaults are:
-
- nogrid, pen = current pen style + 2, color = red.
-
- Examples:
-
- » grid
- » draw x
-
- » grid pen 2 color 3
-
- » grid color cyan
- ≡help
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ help <topic> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Invoking the HELP utility
- -------------------------
- The HELP utility displays information about requested Graphica topics.
- From the Graphica command level (in response to the > prompt), you can
- display a list of topics for which help information is available by
- typing HELP (or ?) and pressing the RETURN key. The system responds by
- displaying a brief description of Graphica, followed by a list of
- topics for which help is available, followed by the prompt "topic?".
-
- Specifying topic names
- ----------------------
- To display information on a particular topic, respond to the prompt by
- typing the name of the topic and pressing the RETURN key.
-
- Subtopic information
- --------------------
- The information displayed by HELP on a particular topic includes a
- description of the topic and a list of subtopics that further describe
- the topic. To display subtopic information, type one of the subtopic
- names from the list in response to the "subtopic?" prompt.
-
- Special responses to prompts
- ----------------------------
- If you press RETURN in response to the "subtopic?" prompt instead of
- typing a subtopic name, the "topic?" prompt reappears, enabling you to
- enter another topic name. If you press RETURN in response to the
- "topic?" prompt, you will exit from HELP. You can also exit HELP by
- pressing 'q' or ESC (escape key) at the "press any key to continue"
- prompt.
-
- You can type a question mark (?) in response to any of the prompts to
- redisplay the most recently requested text and a list of topic or
- subtopic names. For example, if you type ? in response to the
- "subtopic?" prompt, a list of subtopics is displayed followed by the
- "subtopic?" prompt.
-
- Examples:
-
- » help subplot
- » help ?
- » help
-
- Also see ENVIRONMENT and STARTUP.
- ≡hpgl
- ≡hpgl2
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ terminal {hpgl,hpgl2} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The hpgl device driver can also output HPGL-2 commands. This is
- especially useful when you'd like filled symbols on the plotter.
- I haven't implemented filled symbols in software yet. Any HPGL-2
- commands sent to an hpgl plotter like the HP7475 (or a program
- that understands hpgl) will be ignored.
-
- Examples:
-
- » term hpgl
- » dump hpgl "graph1.hpg"
- » dump hpgl2 "graph2.hpg"
-
- Also see DUMP, OUTPUT and TERMINAL.
- ≡labels
- ≡titles
- ≡nolabels
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ label {top,bottom,right,left} "label text" │
- │ label {tag} "label_text" {at <x>,<y>} {justification} {<angle>} │
- │ label {origin} <integer> │
- │ title "title text" │
- │ nolabel {tag} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- By default, the text is placed flush left against point (x,y). If you
- want to adjust the way the label is positioned with respect to the
- point (x,y), add the parameter <justification>, which may be 'start',
- 'stop' or 'center'. This indicates that the point is to be at the
- left, right or center of the text. The <justification> may be
- abbreviated.
-
- The top label lies above the plot frame line. The bottom label is
- drawn below the frame. 'start', 'center' and 'stop' cause the
- program to halt for pen positioning if a label position was not
- specified. The start label is drawn left-justified. The center
- label is centered around (x,y) and the stop label is right-justified.
- the top and bottom labels are centered and each subsequent label goes
- either above or below the previously drawn label. The label will be
- drawn at an 'angle'from the horizontal.
-
- 'tag' is an integer that is used to identify the label. If no tag
- is given, the lowest unused tag value is assigned automatically. The
- tag can be used to delete or change a specific label. To change any
- attribute of an existing label, use the label command with the
- appropriate tag, and specify the parts of the label to be changed.
-
- The 'xlabel' command is equivalent to the label bottom command (and so
- are the 'x2label', 'ylabel' and 'y2label' commands equivalent to the
- label top, left and right commands.)
-
- Entering just 'labels' or 'titles' simply shows the currently defined
- labels and titles.
-
- Examples:
-
- to set a label at (1,2) to "y=x" use:
- » label "y=x" at 1,2
-
- to set a label "y=x^2" with the right of the text at (2,3), and
- tag the label number 3, use:
- » label 3 "y=x≡U2" at 2,3 stop
-
- to change the preceding label to center justification, use:
- » label 3 center
-
- to delete label number 2 use:
- » nolabel 2
-
- to delete all labels use:
- » nolabel
- ≡laserjet
- ≡deskjet
- ≡dj
- ≡lj2
- ≡lj4
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ terminal {dj,lj2,lj4} {low,med,high} {us,a4} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The LaserJet II and deskjet 500 drivers can output graphs in three
- different resolutions: low (75 dpi), medium (150 dpi) and high (300
- dpi). The LaserJet 4 can also print graphs in three resolutions:
- low (150), medium (300) and high (600 dpi).
-
- Graphica chooses the highest resolution possible according to how
- much memory is present. Currently, the Borland-compiled version of
- Graphica can generate 150 dpi (dots per inch). The Watcom-compiled
- version will produce the highest resolution since it works in
- protected mode.
-
- The 'us' and 'a4' switches are used by the driver to select the
- correct paper tray size installed in the printer. The default is
- 'a4' for a paper size of 210 mm by 297 mm. The 'us' paper tray has
- dimensions of 8.5 by 11 in.
-
- Examples:
-
- » term lj2 med
- » dump lj2 "graph1.lj2" med
- » dump lj4 high us
- » dump dj "graph2.dj5"
-
- Also see DUMP, OUTPUT and TERMINAL.
- ≡legends
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ legend {framed} {offset <value>} {left} {center} │
- │ {right} {flat} {stacked} {at <x>,<y>} │
- │ "legend string" │
- │ {pen {style} {width} <integer>} │
- │ {length {value}} │
- │ {symbol {<integer>}/{name}} │
- │ {{pen} color {<integer>}/{name}} │
- │ end │
- └──────────────────────────────────────────────────────────────────────┘
- Description:
-
- This command places a legend at a digitized location. This location
- is (x,y) default units away from the lower left hand corner of the
- current page size. If a line pattern is specified a small segment of
- the line is drawn before the text. If a symbol is specified, that
- symbol is drawn before the text. 'pen', 'length', 'symbol' and 'color'
- can be specified in any order.
-
- The 'color' command applies to the entire group (line segment, symbol
- and text) but the 'pen style' and 'pen width' commands apply only to
- the line segement and the symbol, not the text. The text style and
- width will be those in effect just before the legend was specified. If
- you want a legend with thick letters, specify 'pen width 3' before the
- 'legend' command.
-
- The 'legend' command processes information until the word 'end' is
- encountered. 'left', 'center' and 'right' are keywords to place the
- whole legend (lines, symbols and text) at that relative given position.
-
- 'offset' specifies the separation between lines in a given legend in
- multiples of the current character size. The default is 2.5 times the
- character size.
-
- 'length' specifies the length of the line drawn, if one has been asked
- for with the 'pen' keyword. It is in default paper units (inches).
-
- 'framed' places a frame around the legend. This frame is also a
- masked area. So if you draw a legend first, then anything drawn "over"
- the legend will effectively be masked out. You can only have one
- "masked" area (see MASK).
-
- 'flat' is a keyword used to draw all the legend information in one
- line (Lotus-style). The default mode of operation is 'stacked'.
-
- Entering 'legends' by itself simply shows the currently defined legends.
-
- Examples:
-
- » legend framed at 2.0 3.0
- » 'This is one line with a symbol' symbol square
- » color 3 'This second line is in another color'
- » pen 4 length 1.0 'one inch line'
- » end
-
- » legend center at 5.0,4.0
- » symb 1 'experimental data set 1'
- » symb 2 'experimental data set 2'
- » pen 3 'simulation results'
- » end
-
- » legend center at 5.0,4.0 flat framed
- » pen 1 'data 1'
- » pen 2 'data 2'
- » end
-
- This last example draws all the legend information on one line as
- compared to the other two examples above which draw stacked legends.
-
- Also see the example script files 'legend.plt' and 'flat.plt' for
- more examples.
- ≡lines
- ≡nolines
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ line {<tag>} {from <sx>,<sy>} {to <ex>,<ey>} │
- │ noline {<tag>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command is used to make more complicated diagrams by specifying
- each line to be drawn. The linked list so created may be corrected and
- modified by specifying new coordinates. 'noline tag' eliminates the
- line from the list. The coordinates can also be mapped units. Just
- precede the 'line' command by a 'location mapped' command.
-
- Entering 'lines' by itself simply shows the currently defined lines.
-
- Examples:
-
- » line from 3,4 to 6,8
- » line 2 to 3,5
-
- this last command modifies line number 2 to end at (3,5).
-
- See also LINETO and MOVETO.
- ≡lineto
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ lineto <ex>,<ey> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command draws a line from the current cursor location to the
- specified location. The coordinates can also be mapped units. Just
- precede the 'lineto' command by a 'location mapped' command.
-
- Entering 'lineto' by itself simply shows the currently defined lines.
-
- Example:
-
- » moveto 3,4
- » lineto 6,8.5
-
- moves the cursor to a point (3,4) inches away from the origin and
- draws a line to point (6,8.5).
-
- See also LINE and MOVETO.
- ≡load
- ≡batch
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ load <filename> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'load' command executes each command line of the specified input
- file as if they had been typed in interactively. Files created by
- the 'audit' command can later be loaded. Any text file containing
- valid commands can be created and then executed by the 'load'
- command. Files being loaded may themselves contain 'load' commands.
- The 'load' command must be the last command on the line. The name of
- the input file must be enclosed in single or double quotes if there
- are any non-character elements in the name, e.g. file.dat has a dot
- in it so you must enclose it in quotes.
-
- You may also enter a script file directly at the command line prompt.
- In general, if you input the name of something to GRAPHICA, for example
- 'whoa', the GRAPHICA interpreter goes through the following steps:
-
- 1) looks to see if 'whoa' is a variable
- 2) checks to see if 'whoa' is a function or variable definition
- 3) checks if 'whoa' is a built-in command
- 4) checks to see if 'whoa' is an expression
- 5) looks in the current directory (or search path on DOS systems)
- for a script file named 'whoa.plt'
-
- Note: If you have a script file called 'spline.plt' and simply enter
- 'spline' at the command line, you'll be executing the spline command
- rather than calling in the 'spline.plt' script file.
-
- Examples:
-
- » load 'work.plt'
- » load "function.plt"
- » my.plt
- » myplot
-
- The 'load' command is performed implicitly on any file names given as
- arguments to Graphica. These are loaded in the order specified, and
- then Graphica switches to interactive mode. For example,
-
- C:\GRAPH\graphica myown.plt
-
- will load Graphica, execute the script file myown.plt and, after a key
- is pressed, switch to the > command line. To simply exit to the OS,
- enter q or Q. Notice how quotes are not needed to specify data files
- at the OS command line level. You may specify more than one file as
- arguments to Graphica,
-
- C:\GRAPH\graphica first.plt second.plt
- ≡location
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ location {default,mapped} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command allows giving mapped (x,y) positions in commands like
- 'arrow', 'circle', 'label', 'legend', 'line', and 'rectangle'.
-
- Examples:
-
- » location mapped
-
- turns a flag on so that the (x,y) location is interpreted as being in
- mapped units.
-
- » location default
-
- turns the flag off so that the (x,y) location is interpreted as being
- in user default units (inches, for example, which is the default.)
-
- 'location' by itself gives the status of this flag.
- ≡map
- ≡nomap
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ map {x,y,y2,x2,t} <min> <max> │
- │ nomap │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The command 'map' defines the ranges of the data for the generation
- of axes. These values determine the numbers that appear along the
- axes. The x range specifies a range for the bottom x-axis, the x2
- range for the top x-axis, the y range is for the left y-axis and the
- y2 range for the right y-axis. If this command is not specified the
- subplot area is mapped automatically from the minimum and maximum
- (x,y) data values entered with the data command. (This latter
- procedure will only map the (x,y) axes, not the (x2,y2) axes.) The
- mapping of 't' is used in polar plots only.
-
- Mapping can be turned off with the command 'nomap'.
-
- Entering 'map' by itself simply shows the currently mapped axes.
-
- Examples:
-
- » map x 0,10 y 0.0,100.0
- » map y2 25,-10 x 100,200
- » map t 0 3*pi
-
- See also PARAMETRIC, POLAR, and PLOT.
- ≡mask
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ mask {area} {on} {off} {<x1>,<y1>,<x2>,<y2>} │
- │ nomask │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'mask' command defines a masking area. Nothing is drawn over the
- masked area if it is currently active. The 'legend' command for
- example, creates a mask over the specified legend block and no points
- or lines are drawn over it. Use 'nomask' to turn masking off or 'mask
- on'/'mask off' to toggle the mask status.
-
- Entering 'mask' by itself simply shows the currently defined mask.
-
- Examples:
-
- » mask 2,3 5,8
- » nomask
- » mask on
- » mask off
- ≡memory
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ memory │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'memory' command gives the number of bytes left in system RAM in
- the DOS version of Graphica compiled with Borland C++. Other versions
- of Graphica compiled in 32-bit environments (Coherent, WATCOM C, etc.)
- do not implement this command for obvious reasons (it's not needed).
-
- Example:
-
- » mem
-
- would give you the following message:
-
- System RAM available: 378,588 bytes.
- ≡moveto
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ moveto <sx>,<sy> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command moves the graphics cursor to the specified location.
- The coordinates can also be mapped units. Just precede the 'moveto'
- command by a 'location mapped' command.
-
- Entering 'moveto' by itself simply shows the currently defined lines.
-
- Example:
-
- » moveto 3.3,4
- » lineto 6.2,8
-
- moves the cursor to a point (3.3,4) inches away from the origin and
- draws a line to point (6.2,8).
-
- See also LINE and LINETO.
- ≡origin
- ≡noorigin
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ origin {x,y} {axis} <other coordinate value> │
- │ noorigin │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The normal plot style is to have the data plotted in a box. It is
- possible to cause either the x or y-axis, or both, to be drawn in such
- a way that they cross at an arbitrary value. Unless told otherwise,
- Graphica will always draw the axes with their origin values at the
- physical origin (left bottom side of the graph).
-
- The origin command specifies the axis origin in user defined coordinates.
-
- Entering 'origin' by itself simply shows the currently defined axis origins.
-
- Examples:
-
- » origin x 0 y 0
- » origin x axis 0
- » norigin
- ≡output
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ output {<filename>} {stdout} {com} {prn} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- By default, plots are displayed to the standard output (stdout). The
- 'output' command redirects the display to the specified file or device.
- The filename must be enclosed in quotes. If the filename is omitted,
- output will be sent to the standard output.
-
- If you're sending output to the communications port (DOS version), make
- sure you have configured your serial port with the 'mode' command. For
- example,
-
- mode com1:96,n,8,1,p
-
- configures a serial port for use at 9600-baud, with no parity checking,
- 8 bits per character, one stop bit, and with retries. Graphica can
- only use the 'com1:' port for output when using 'output com'.
-
- Example:
-
- » output 'output.dat'
-
- sends output to the file 'output.dat'
-
- » output com
-
- sends output to comm port 1 (com1:)
-
- » output prn
-
- sends output to the printer port (prn).
-
- Also see DUMP, OUTPUT and TERMINAL.
- ≡paper
- ≡border
- ≡noborder
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ paper {size} <dx> {by} <dy> {default} │
- │ border │
- │ noborder │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The most basic elements of a plot are the paper (or page) and the
- subplot area. The paper size usually coincides with the graphics device
- hardclip limits, that is, no plotting can be done outside this region.
-
- The paper command defines the size of the paper. Graphica sets the
- page limits to the standard 11.0 by 8.5 inch paper size. If a raster
- graphics terminal is being used the page border is also drawn so that the
- relative size of the plot can be ascertained. This page border may be
- turned off by using the command 'noborder' and on also by using 'border'.
-
- When paper default is specified, the paper size will be reset to its
- default value. The 'paper size ' command is also used to indicate that
- a new plot is going to be generated.
-
- Entering 'paper' by itself simply shows the current paper dimensions.
-
- Examples:
-
- » paper default
- » paper 8.5 by 11
- » pap size 11 8.5
-
- Any of these three resets the paper size to the standard size of 11 by 8.5
- inches.
-
- » border
- » noborder
-
- These two commands turn the paper size outline drawing on and off,
- respectively.
- ≡parametric
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ parametric {plot} t tmin,tmax fx(t),fy(t) │
- │ {connect {points}} {add {symbols}} │
- │ where │
- │ t = any dummy variable │
- │ tmin = minimum value of the dummy variable │
- │ tmax = maximum value of the dummy variable │
- │ fx(t) = x coordinate of each point in the curve │
- │ fy(t) = y coordinate of each point in the curve │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The plot command allows plotting curves in Graphica in which you give
- the y coordinate of each point as a function of the x coordinate. You
- can also use Graphica to make parametric plots. In a parametric plot,
- you give both the x and y coordinates of each point as a function of a
- third parameter, say t. It takes two parametric function
- specifications in terms of the parametric dummy argument to describe a
- single graph. The order the parametric functions is xfunction,
- yfunction. Each function operates over the common parametric domain.
-
- Examples:
-
- » parametric plot t 0,2*pi sin(t) sin(2*t)
- » parametric t 0,2*pi sin(t) cos(t)
- » parametric plot x 1,4 log(x) log(x**2+x**6)
-
- » r(t) = (3*cos(t)**2-1)/2
- » parametric plot t 0 2*pi r(t)*cos(t) r(t)*sin(t)
-
- See also FUNCTIONS, PLOT and POLAR.
- ≡pause
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pause {<expression>} {"string"} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Halts execution until a user responds at the keyboard. 'pause' is
- useful in conjunction with 'load' files. It displays any text
- associated with the command and then waits the specified amount of
- time. This allows one to build a load file and control the amount of
- time a finished graph is displayed. The first argument can be a
- negative or a positive integer. Choosing -1 will have Graphica wait
- until any key is hit. A positive integer will have Graphica wait for
- the specified number of seconds.
-
- The expression and string are optional. If a string is present it
- must be enclosed in quotes. If no expression is given, 'pause' waits a
- default time of 3 seconds.
-
- Examples:
-
- » pause # Wait a default three seconds
- » pause 3 # Wait three seconds
- » pause 10 "Isn't this great? It's a cubic spline."
- » pause -1 # Wait until a carriage return is hit
- » pause -1 "Hit return to continue"
- ≡pen
- ≡color
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pen {style} {speed} {width} <value> │
- │ pen {color} <integer>/{name} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- With the 'pen' command, several parameters may be specified, as follows:
-
- To distinguish between the lines of a multiline plot, 'style' defines
- the type of the line pattern to use when connecting data points or
- drawing lines. The default is 1 (a solid line). All drawing commands
- are affected by the 'pen style' command. In other words, the line type
- remains in effect until changed. Issue a new 'pen style' command
- whenever you wish to respecify the line pattern. There are 8 (eight)
- pen styles available.
-
- 'width' defines the pen width in pixels or points. This feature is
- only available in devices with variable pen thickness capability. There
- are 8 (eight) pen widths available, with 1 being a line 1 pixel thick.
- This is the default.
-
- 'speed' defines the pen speed in a pen plotter in cm/sec. The speed
- defaults to the output device's default. (On an HP7475 plotter, this is
- 30 cm/sec.)
-
- 'color' defines the pen color by color code or by color name. Colors are
- assigned to numbers that in turn correspond to the pen numbers on a
- hardware device (display screen, plotter, printer, etc.). There are
- currently 16 colors defined:
-
- 0 - black 8 - lgray
- 1 - blue 9 - lblue
- 2 - green 10 - lgreen
- 3 - cyan 11 - lcyan
- 4 - red 12 - lred
- 5 - magenta 13 - lmagenta
- 6 - brown 14 - yellow
- 7 - gray 15 - white
-
- Entering 'color' by itself simply shows the current drawing specifications.
- The default color upon Graphica startup is green (2).
-
- Examples:
-
- » pen style 1, color 3
- » pen width 3
- » pen speed 15 (cm/s)
-
- Also see DUMP, POSTSCRIPT and TERMINAL.
- ≡plot
- ≡noplot
- ≡nodata
- ≡errorbars
- ≡connect
- ≡add
- ≡needle
- ≡step
- ≡autox
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ plot 'data-file' {autox} │
- │ {connect {points}} {add {symbols}} │
- │ {needle} {step} {errorbars {itype}} │
- │ plot {data} {x,y,x2,y2} │
- │ {connect {points}} {add {symbols}} │
- │ {needle} {step} {errorbars {itype}} │
- │ plot 'definition' <function> │
- │ {connect {points}} {add {symbols}} │
- │ plot {p pmin pmax} <function> │
- │ {connect {points}} {add {symbols}} │
- │ (no)plots │
- └──────────────────────────────────────────────────────────────────────┘
-
- Definition:
-
- This command allows you to plot data, functions and data files. It is
- the primary Graphica command.
-
- 'data-file' the name of a data file enclosed in quotes. The filename
- may be followed by the 'autox' keyword as in the data command. In that
- case, the x values are assigned automatically starting from data point
- number 1.
-
- If 'data' is specified, previously read-in data is plotted. 'autox'
- may also be specified.
-
- <function> is a mathematical expression and may optionally be preceded
- by a range specification.
-
- 'connect' causes the points to be connected by a straight line of
- the specified default line pattern.
-
- For plots with more than one line of data, it may be difficult to tell
- the difference between the lines. For this reason, Graphica includes
- the capability of marking each point in a line with a symbol. 'add'
- causes the specified symbol to be displayed at each data point.
- Leaving out the word 'add' just draws a line through the data points.
-
- 'needle' makes the plot come out such that the y data values are
- plotted as needles perpendicular to the x axis.
-
- 'step' makes a step plot, useful, for example, for plotting production
- data versus years.
-
- The 'errorbars' keyword lets you add error bars to the plotted data
- points. An optional integer specifies the type, 1 = no tics, 2 =
- tics at end of bar. Error bar values are read in one of two ways:
- (1) from columns 3 and 4 of a data file (these two extra values are
- read in as ylow and yhigh values for the y values in column 2) or (2)
- from column 3 (this value is a delta y). If you're using the 'autox'
- keyword you need one column less than specified above since the x
- values will be assigned automatically.
-
- Two types of error bars may be drawn: type 1 is simply a vertical
- line spanning the error; type 2 has to tic marks parallel to the
- x-axis, the size of the symbol, like a bracket. The default is type 2.
-
- For axes specified as logarithmic, the log of the data values is
- plotted. The log of absolute values is plotted. For zero or negative
- data values, the log of 0.001 is plotted.
-
- Optionally, a definition may be given on this line as well, for example,
- 'plot s=2 cos(x/s)'.
-
- 'noplot' or 'nodata' clears all data points from memory and leaves
- Graphica as if no data points or functions had been entered.
-
- 'plots' by itself shows the currently defined plots, including data,
- functions, smoothed curves, polynomial fits and shaded data.
-
- If the 'column' command assigned column 3 of a data file to the x-axis
- and column 1 to the y-axis, 'plot x y add points' will generate a graph
- of column 3 versus column 1.
-
- Examples:
-
- » plot 'exp.dat' # plot data in datafile exp.dat
-
- » plot 'bar.dat' errorbars 1 # plot error bars
-
- » plot 'one-y.dat' autox add # plot a single column with symbols
-
- » plot data # equivalent to 'plot x y connect'
-
- » data 'oilrate.dat'
- » draw x y
- » plot data step # draw a step plot of 'oilrate.dat'
-
- » map x 0 100 y 0 200 # map the x-axis from 0 to 100
- » draw x y # draw the axes
- » plot f 20 80 b(f) # plot b(f) only from 20 to 80
-
- » plot sin(x) # plot the sine of x
-
- » plot sin(x) cos(x) # plot sin(x) and cos(x)
-
- » plot cos(x) add symbols connect points
-
- » plot s=0.1, t(x) # define a variable s, plot t(x)
-
- where t(x) has been defined previously and is a function of s.
-
- » noplot # clear out any plot information
-
- Also see COLUMN, FUNCTIONS, MAP, PARAMETRIC, POLAR, SAMPLING and SYMBOLS.
- ≡plotting
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ plotting sequence <start>,<stop> {{by} <increment>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- If you want the program to plot the data other than in the normal
- fashion (start with the first point and plot all points up to the
- last one), use this command to alter the program's processing loop.
- Given as integers, <start> indicates the first data point to start
- at, <stop> is the last data point to plot and <increment> controls
- which points to pick up within the start-stop range. The default
- is to plot all points in increments of 1.
-
- 'plotting seq' without arguments shows the current plotting sequence.
-
- Example:
-
- » plotting sequence 2,10,2
-
- plots points 2, 4, 6, 8 and 10.
- ≡polar
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ polar <function> {connect {points}} {add {symbols}} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Definition:
-
- This command generates polar plots and is similar to the 'plot'
- command. You can plot data, functions and data files. Type PLOT
- for some more details. 'polar' by itself simply gives a list of plots
- made so far.
-
- There is a dummy variable 't' which can be mapped to specify the range
- of values that will be covered by the function. Polar plots are
- simple transformations of a function y = f(t) where
-
- xc = y * cos( t )
- and
- yc = y * sin( t )
-
- and xc and yc are the transformed values in cartesian coordinates.
- 't' can be mapped as follows:
-
- » map t <tmin> <tmax>
-
- The default map is 0 to 2*pi. Polar plots can also be done using the
- parametric function plotting feature.
-
- Examples:
-
- » polar .5, 1, 1.5
-
- plots three circles of the given radius.
-
- » polar cos(2*x)
-
- plots a cloverleaf.
-
- Also see FUNCTIONS, MAP, PARAMETRIC, PLOT, and SYMBOLS.
- ≡fits
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Curve Fits │
- └──────────────────────────────────────────────────────────────────────┘
-
- Graphica curve fit options currently include polynomial and spline
- fitting and smoothing.
-
- 'polyfit' generates an nth degree polynomial least squares fit of the
- current data. The coefficients of the polynomial are given.
-
- 'spline' is used to interpolate the current data using splines under
- tension. The spline goes through every data point.
-
- 'smooth' is simply used to draw a "smooth curve through scattered
- data points." The smooth curve does not necessarily go through any
- data point.
-
- Spline fitting and smoothing do not produce an equation (unlike
- polynomial fitting, which does).
-
- Also see POLYFIT, SMOOTH and SPLINE.
- ≡polyfit
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ polyfit {degree} n {range {min} {max}} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'polyfit' command generates an nth degree polynomial least squares
- fit of the current data. The highest degree possible is 10.
-
- Optionally, a range of given x values may be provided and Graphica
- will plot the least squares fit from min to max only.
-
- Polynomial fits apply to the LATEST data set, that is, you can't fit a
- polynomial to the last polynomial, only to a set of previously entered
- data points or function.
-
- 'polyfit' by itself shows the current polynomial fitting and correlation
- coefficients.
-
- The number of points plotted on the polynomial fit can be changed by
- the 'sampling' command.
-
- Examples:
-
- » polyfit degree 2
- » polyfit range 20 30
- » polyfit 5
- » polyfit
-
- Also see FIT, SAMPLING, SMOOTH and SPLINE.
- ≡postscript
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ terminal postscript {color} {bw} {font fontname} {level2} │
- │ terminal epsf │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The PostScript device driver can output color commands. The default
- is gray-scale output. Black & white output can be forced through the
- 'bw' switch.
-
- Although Level 1 PostScript is the default, Level 2 output can also
- be generated. There is only one Level 2 feature active at the moment
- (setfont).
-
- The same switches ('color', 'bw', 'font' and 'level2') apply to the
- Encapsulated PostScript driver (epsf) and work in the 'dump' command.
-
- Examples:
-
- » term post
- » dump post "graph.ps" color # used in color postscript printers
- » dump post "graph.ps" bw # forces black & white output
-
- See DUMP, OUTPUT and TERMINAL.
- ≡pwd
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pwd │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'pwd' command prints the name of the current working directory.
-
- Example:
-
- » pwd
-
- would print out C:\WORK, for example, on DOS systems or /usr/work in UNIX.
- ≡recall
- ≡editing
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ recall │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- On some systems (COHERENT and DOS), Graphica is compiled with a feature
- called last-line editing and recall. In that case, the arrow keys on
- the keypad can be used to edit mistyped commands or to recall previous
- command lines.
-
- Instead of retyping an entire line, simply hit the up-arrow or down-
- arrow keys to recall previous input lines. Then you can move the
- cursor over using the left and right-arrow keys and edit the line.
- The arrow keys on the keypad work on copies of the previous input
- lines, which have been saved in a moderately sized input buffer.
- Here is a brief description of the arrow key functions:
-
- ^N or up arrow recall previous line
- ^P or down arrow recall next line
- ^B or left arrow move left one character
- ^F or right arrow move right one character
- ^A or home move to beginning of line
- ^E or end move to tend of line
- ^U or esc (esc) cancel current line
- ^H or del delete character at cursor
- backspace delete character left of cursor
-
- ^K kills from current position to the end of line
- ^D deletes the current character, or EOF if line is empty
- ^L/^R redraw line in case it gets trashed
- ^W kills last word
-
- RETURN returns the entire line regardless of the cursor position.
-
- On systems without the last-line editing and recall feature, the 'recall'
- command gives a list of the last 10 user input lines for review.
-
- Example:
-
- » recall
-
- would give out a list such as:
-
- paper size 11 by 8.5
- subplot 2 3 6 7
- frame
- draw x y
- ≡rectangle
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ rectangle {from <x1>,<y1>} {to <x2>,<y2>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command generates a rectangle with its lower left hand corner
- at <x1>,<y1> and its upper right hand corner at <x2>,<y2>.
-
- Entering 'rectangles' by itself simply shows the currently defined
- rectangles.
-
- Example:
-
- » rectangle from 1.0,2.0 to 3.0,4.0
-
- Also see ARROW, CIRCLE, LABEL, LEGEND and LINE.
- ≡revisions
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Revision History │
- └──────────────────────────────────────────────────────────────────────┘
-
- 18 December 93 - Added linestyles to the Lotus 1-2-3 PIC driver.
-
- 17 December 93 - Added left division \ to the set of internal functions.
-
- 9 December 93 - The '[' character (left square bracket) is no longer
- allowed as a comment delimiter.
-
- 30 November 93 - Fixed a bug with the Lotus 1-2-3 PIC driver.
-
- 29 November 93 - Prevented 'spline range xmin xmax' from exceeding
- the maximum x data point.
-
- 25 November 93 - Added the following probability distribution
- functions: Binomial, Complemented Binomial, Inverse Binomial,
- Negative Binomial, Complemented Negative Binomial, Chi-square,
- Complemented Chi-square, Inverse of Complemented Chi-square, F,
- Complemented F, Inverse of Complemented F, Gamma, Complemented
- Gamma, Poisson, Complemented Poisson, Inverse Poisson and Student's t.
- Changed 'beta' to 'ibeta', 'normal' to 'ndtr', and 'inormal' to
- 'ndtri'. Type HELP PROBABILITY for details.
-
- 23 November 93 - Added F1 ('help') and F10 ('show') function key support.
-
- 14 November 93 - Changed version to 2.5.
-
- 3 November 93 - Added LaserJet II, DeskJet 500 and LaserJet 4 drivers.
- Type HELP LASERJET.
-
- 29 October 93 - Added smoothing of data points. Type HELP SMOOTH.
- Changed the default symbol size to 0.1 inches (instead of 0.17).
-
- 25 October 93 - Added nine more Bessel functions: besi0, besi1, besin,
- besjn, besk0, besk1, beskn and besyn. Type HELP BESSEL.
-
- 21 October 93 - Added the following built-in functions: beta, gamma,
- igamma, ierf, inormal, normal, and rand. Type HELP FUNCTIONS.
-
- 19 October 93 - Added the 'what' command to the Coherent version to list
- all the *.plt files in the current directory.
-
- 18 October 93 - Added last-line editing and command recall to the
- Coherent version.
-
- 1 October 93 - Added checks when reading data in from a data file to
- prevent memory overflows and lockups in the DOS version using Borland's
- compiler.
-
- 25 September 93 - Fixed a little bug which screwed up the prompt when
- shelling out to DOS a second time.
-
- 24 September 93 - Added hardware font sizes to the Coherent version.
-
- 20 September 93 - Fixed a bug that showed the last DOS screen immediately
- after pressing any key at the introductory Graphica screen.
-
- 16 September 93 - Added 'lineto' and 'moveto' commands.
-
- 15 September 93 - Corrected a problem with the timestamp printed out
- in hpgl mode when the character size, ratio or gap where changed.
-
- 14 September 93 - Added 6 filled symbols to the bgi and HPGL2 drivers.
- HPGL can produce only a filled square. Working on filled symbols for
- the PostScript driver.
-
- 12 September 93 - Changed version to 2.44. The line continuation symbol
- ';' can now also be used in script files as well as interactively.
-
- 10 September 93 - Fixed some bugs related to the 'location' command
- when used with units other than inches. Added 'ufactor' to the set of
- pre-defined constants. Type HELP WHO.
-
- 8 September 93 - Added an optional range specification to the 'plot'
- command. Type HELP PLOT for details.
-
- 7 September 93 - Changed version to 2.43. "Beautified" the help file.
- If the environment variable GRAPHELP is not set, Graphica will look
- for the help file in any of the directories currently in your DOS
- path. If the file is not found, you won't have any help on-line.
-
- 6 September 93 - Program froze up when trying to delete labels, arrows,
- circles, etc. Fixed this bug.
-
- 5 September 93 - Added a 'rotate' switch to the x,y,y2 and x2-label
- commands to draw them at 180 degrees. Type HELP PLOT for details.
-
- 4 September 93 - Added color and hardware font support to the PIC
- driver. PIC still doesn't support line widths.
-
- 30 August 93 - Added color and hardware fonts to the PostScript driver.
- For details type HELP POSTSCRIPT and HELP TERMINAL.
-
- 20 August 93 - Fixed some bugs relative to the thickness of characters
- drawn with the 'legend' and 'label' commands. Thoroughly tested and
- fixed Graphica's operation in video modes other than VGA. New data
- input routine ignores labels in data files (see DATA).
-
- 17 August 93 - Whenever you shell out to DOS, a temporary prompt is
- shown telling you to type EXIT to return to GRAPHICA. Activated the
- Hercules video driver and fixed some color-related bugs. Slightly
- changed the behavior of the legend block command (see HELP LEGEND).
-
- 10 August 93 - Added a 'clc' command to clear the text screen.
-
- 15 July 93 - Changed version to 2.42.
-
- 13 July 93 - Fixed a bug related to the power function (wasn't raising
- to integer powers correctly under Coherent). Also fixed a bug in the
- Coherent cbm (coherent bitmap graphics) driver not resetting the line
- style after loading a second load file.
-
- 13 July 93 - After Graphica detects an error with a script file on the
- command line, it stays on line for further processing instead of
- bailing out to the OS command line.
-
- 7 July 93 - Added the 'what' command listing all .plt files in the
- current directory.
-
- 1 July 93 - Started working on the 'polar' command to make polar plots.
-
- 25 June 93 - Changed version to 2.41.
-
- 22 June 93 - Found and fixed a serious bug with the font routines.
-
- 20 June 93 - Changed code to handle errors when dynamically loaded font
- files are not found.
-
- 5 June 93 - Added 10 dynamically loaded software fonts to the registered
- version. See DEMO5 and DEMO6 for how the new fonts look.
-
- 2 June 93 - Added code to dynamically load software fonts from disk, thus
- reducing the executable size considerably. Changed version to 2.4.
-
- 14 May 93 - Added linestyles to the Coherent version. Soon linewidths.
-
- 20 April 93 - Changed some code to prevent errors from occurring when
- changing terminals from bgi to (some other terminal) back to bgi.
-
- 19 April 93 - Started work on the LaTeX driver.
-
- 17 Apr 93 - Added the capability of sending output to the printer port
- in the DOS version. If you have a printer connected to that port, for
- example, you can send PostScript output directly to the printer (without
- having to DUMP to a file and then send it later.) Type HELP OUTPUT.
-
- 14 Apr 93 - Finished adding on-screen color graphics to the Coherent
- version. Still need to add linestyle and linewidth. It also has a
- simple hardware font.
-
- 10 Apr 93 - Worked on the Coherent version for quite some time trying
- to fix miscellaneous bugs and core dumps.
-
- 2 Apr 93 - Got rid of the 'show' command for showing status. Now
- simply entering a command by itself will show its status. 'show' by
- itself works just like before, i.e. it displays whatever you've
- plotted so far on the screen or output device. Changed the meaning
- of the 'axes' command. It no longer draws those axes that have been
- mapped. Now it simply tells what axis types you've got.
-
- 20 Mar 93 - Added asinh, acosh and atanh to the set of built-in
- functions. Type HELP FUNCTIONS.
-
- 20 Mar 93 - The 'print' command has been taken out. If you want to
- evaluate functions or expressions, simply enter them at the Graphica
- command line. Type HELP EXPRESSIONS.
-
- 20 Mar 93 - Added 'searchpath' logic to the DOS version. Graphica
- will try to locate any script or data file entered with the 'load' or
- 'data' commands in the current DOS search path, not just in the current
- working directory. You can also simply enter a script filename at the
- Graphica command line and Graphica will try to determine if it exists
- in the current search path, try to 'load' it and execute commands from
- it. Type HELP LOAD.
-
- 20 Mar 93 - Changed the environmental variable GRAPHICA to GRAPHINI.
- It now should contain the full path to the start-up filename,
- including the filename itself, just like in GRAPHELP. Type HELP STARTUP
- and HELP ENVIRONMENT.
-
- 20 Mar 93 - Changed version to 2.3.
-
- 17 Mar 93 - Pressing any key will cancel the introductory graphics
- screen. Also, in batch mode plotting, the introductory screen does
- not show up. Added a symbol type of 0 or 'dot' for plotting lots of
- data with just tiny dots. Type HELP SYMBOLS.
-
- 13 Mar 93 - Renamed this help file to GRAPHICA.FIL to make things less
- confusing for the development of the windows version. The compiled
- windows version help file will be called GRAPHICA.HLP.
-
- 10 Mar 93 - Corrected some logic in the handling of units (in, cm,
- mm). Repositioned the mouse location to the bottom right on DOS
- systems. Also added a 'nodisplay' command to not show the location
- of the mouse cursor. The mouse cursor shows up right above the
- location display on the lower right hand corner of the screen.
-
- 3 Mar 93 - Added a 'default' command to reset various parameters to
- their default values. Type HELP DEFAULT.
-
- 2 Mar 93 - Added a .PG command to the HPGL driver when a 'clear' command
- is given. This ejects the page on some plotters and loads a blank one.
-
- 2 Mar 93 - Fixed the way log labels were plotted when noexponent was
- the default. Now, regardless of the length of the label, you'll
- always get the full label, i.e. 0.00000001 instead of 10 ** -8 as
- before. The old behavior would plot a log axis like (10**-4, 0.001,
- 0.01, 0.1, 1, 10, 100, 1000, 10**4, 10**5) which was not consistent.
- With 'exponent' you still get the powers of 10 all the time.
-
- 1 Mar 93 - You can now "remap" an axis even after you've plotted
- data and that axis. The new mapping will be reflected in the last
- plot data set and the last axis of that type plotted. Try plotting
- some data and changing the map of an axis to see the effect.
-
- 1 Mar 93 - Reduced the mask area around the legend to the actual
- framing area. Fixed the 'audit' command to work properly. Fixed a
- bug that would show up when inputing data interactively and
- specifying 'end' before actually entering points. Solid lines are
- now plotted on decade boundaries in log axes.
-
- 28 Feb 93 - Fixed some problems with polynomial and spline fitting.
- Modified the command 'polyfit' to list all the polynomial fitting and
- correlation coefficients. Polynomial and spline fits apply to the
- "latest" data set, that is, you can't fit a spline to the last spline,
- only to a set of data points or function. Fixed other problems with
- multiple polyfit plotting.
-
- 26 Feb 93 - The letters C and c will no longer be comment flags.
- You can continue to use # to make comments in script files or
- when entering data on the > prompt. (I was having trouble defining
- functions like c(x)= etc.)
-
- 24 Feb 93 - Fixed a problem with the Coherent version of the 'cd'
- command. Now, you can also enter filenames with the 'load' command
- or directories in 'load' without quotes around them.
-
- 23 Feb 93 - After batch processing script files on the OS command line,
- Graphica now remains online for further interactive processing.
-
- 19 Feb 93 - Graphica returns to the command line after 'dumping' plots
- to a file rather that redrawing the entire plot. You can still redraw
- what you've got by specifying 'show' after dumping.
-
- 14 Feb 93 - Fixed a small quirk when entering two commands on the
- same line separated by ';'. For example, when entering 'draw x ;
- draw y' you would have to press a key once before you could see the
- second axis. Now Graphica recognizes the second command on the same
- line and waits to process graphics until all commands have been parsed.
-
- 10 Feb 93 - Fixed a problem with the legend mask when plotting on a
- non-raster device. Optimized axis drawing with a grid. Now there is
- less pen changing when plotting on a plotter. Fixed a bug happening
- when 'dump' was entered all by itself in a command line.
-
- 9 Feb 93 - Added 2-variable function specification and fixed a bug
- reading in dummy variables.
-
- 8 Feb 93 - Added 'reverse' logarithms, in other words, you can plot log
- scales going from 1000 to 1, for example (the axis minimum is 1000 on
- the left and the maximum is 1 on the right).
-
- 5 Feb 93 - Fixed a problem with 'character'. Changed the help file
- system a little bit so you get a list of subtopics when you've entered
- an incorrect keyword.
-
- 3 Feb 93 - Changed to version 2.2 and uploaded it to CompuServe.
-
- 2 Feb 93 - Finally got around fixing the legend routines. The legend
- lines weren't quite aligned when center- or right-justified. Added a
- new keyword 'flat' to draw non-stacked legends Lotus 1-2-3 style. Check
- out the 'legend.plt' 'and flat.plt' scripts file to see how it works.
-
- 31 Jan 93 - Added the error and complementary error functions to the
- set of built-in functions. Type HELP FUNCTIONS.
-
- 30 Jan 93 - Wrote a "getch" function for COHERENT so you can press any
- key to continue rather than having to press return. Check out the new
- help system.
-
- 29 Jan 93 - New feature: you can now have several curves in a data file
- by separating the data by blank lines. See help on FILE and the
- 'world.plt' example script file.
-
- 28 Jan 93 - Changed the default color to green.
-
- 22 Jan 93 - Fixed BIG BUGS when error bar and probability plotting.
-
- 21 Jan 93 - Fixed a tiny little bug with the memory allocation code
- in the recall function (DOS version).
-
- 20 Jan 93 - Changed version to 2.1.
-
- 20 Jan 93 - Changed code in the COHERENT and DOS versions to read in only
- help keywords when requesting help. The help text is read in from the
- help file as needed. The new scheme reduces the memory requirements on
- PCs. Now you can load in bigger script files!
-
- 14 Jan 93 - Ported Graphica to a Sun 4 workstation (no graphics yet).
- Cleaned up the code a little bit, especially dealing with include files.
- Should be easier to port to many platforms now.
-
- 3 Jan 93 - Changed the mouse routines in the DOS version to use a
- software cursor (faster than using getimage/putimage).
-
- 2 Jan 93 - Added code to save text screen before going into graphics in
- the DOS version. This way when you get back to text mode, previous text
- will still be visible.
-
- 23 Dec 92 - Added the capability of sending output to com1 in the DOS
- version. If you have a plotter connected to that communications port,
- for example, you can send hpgl output directly to the plotter (without
- having to DUMP to a file and then use COPY FILE COM1: at the DOS prompt.)
-
- 23 Dec 92 - Fixed a little buglet when changing terminal types and output
- was sent to (stdout). 'output' now shows the correct output.
-
- 14 Dec 92 - Added further functionality to the 'format' command by
- allowing user-defined tic labels. Type HELP FORMAT.
-
- 14 Dec 92 - Added the 'square-root' type to the family of axis types.
-
- 8 Dec 92 - Fixed a bug in the help command. You can abort help by
- pressing q/Q/ESC. With the bug, the next help command was invalid.
-
- 24 Nov 92 - Added two fonts to the Coherent version, simplex script and
- complex script.
-
- 17 Nov 92 - Fixed a bug with the probability scale. It wasn't drawing
- the numeric labels in the right place when plotting an x2 or y2 axis.
-
- 12 Nov 92 - Fixed bugs in the 'mask' command. Circles and rectangles
- are now being masked correctly.
-
- 9 Nov 92 - Released version 2.0 to Simtel.
- ≡range
- ┌──────────────────────────────────────────────────────────────────────┐
- │ range │
- └──────────────────────────────────────────────────────────────────────┘
-
- This command shows the input data range (max and min) of each column,
- if any.
- ≡sampling
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ sampling <expression> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Graphica always tries to plot functions as smooth curves. It is
- impossible to sample the infinite number of points that would be
- needed to reproduce a given function exactly. Since the function is
- only sampled at a limited number of points, Graphica can sometimes
- miss features of the function. By increasing the sampling rate, you
- can make Graphica sample your function at a larger number of points.
- Of course, the larger the sampling rate, the longer it will take
- Graphica to plot any function, even a smooth one.
-
- The sampling rate is changed by the 'sampling' command. By default,
- sampling is set to 150 points. A higher sampling rate will produce
- more accurate plots, but will also take longer.
-
- For example, the function sin(1/x) wiggles infinitely often when x
- is near zero. As a result, there are slight glitches in the plot.
- Increasing the sampling rate will reduce the number of glitches.
-
- Entering 'sampling' by itself simply shows the current sampling rate.
-
- 'sampling' also affects the number of points plotted when polynomial
- fitting, spline fitting or smoothing.
-
- Example:
-
- » sampling 200
-
- Also see FIT, FUNCTIONS, PARAMETRIC, PLOT, POLYFIT, SPLINE and SMOOTH.
- ≡save
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ save │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'save' command creates a file called 'session.log' containing a few
- basic settings of your graphica session. It will not entirely reproduce
- complicated graphs.
-
- Example:
-
- » save
- ≡shade
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ shade {spacing} {angle} <value> {mode} <integer> │
- │ {(no)closure} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'shade' command allows the user to shade a specified polygon.
- 'spacing' is the vertical distance between shade lines in default
- user units.
-
- Optionally, a shade 'angle' may be specified. This angle is measured
- from the horizontal. The sign convention for the direction of rotation
- is as follows:
-
- + clockwise
- - counterclockwise
-
- 'mode' indicates the following:
-
- mode = 1 - shade and outline (this is the default)
- mode = 2 - shade polygon only
- mode = 3 - outline polygon only
-
- The 'closure/noclosure' keyword is used to specify whether Graphica
- should draw a line making the polygon a closed one or not. This
- keyword is only active when mode is 1 or 3. The default is 'noclosure'.
-
- Example:
-
- » shade angle 35.0 mode 1
- ≡shell
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ shell │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The shell command spawns an interactive shell. Use this option to
- access the operating system prompt and execute commands or run other
- programs. When shelling out to the operating system, you can execute
- any command or application. To return to Graphica: type EXIT at the
- command line (under DOS); type control-d (under Coherent); do
- stop/id=xxx, where xxx is your subprocess ID (under VAX/VMS).
-
- A single shell command may be spawned by preceding it with the $
- character on the very first position of a command line. Control will
- return immediately to Graphica after this command is executed.
-
- Examples:
-
- » shell
-
- spawns a shell to the operating system. Type EXIT to return to Graphica.
-
- » $dir
-
- prints a directory listing and then returns to Graphica without waiting.
-
- Also see DELETE, DIR, TYPE and WHAT.
- ≡show
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ show │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The SHOW command redraws existing plots on your screen.
- ≡smooth
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ smooth {n} {range {min} {max}} {(no)spline} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Data smoothing is used simply as a graphical technique, to guide the
- eyes through a forest of scattered data points. Graphica removes any
- linear trend, uses a Fast Fourier Transform to low-pass filter the
- data and reinserts the trend at the end.
-
- If the total number of points is smaller than the current sampling
- rate, Graphica generates a spline curve through the resulting smooth
- points. You can force a spline fit anyway, by specifying 'spline'
- on the command line. The number of points plotted on the smooth
- spline curve can be changed by a previous 'sampling' command. Or,
- you can prevent Graphica from drawing a spline fit regardless of the
- total number of points by specifiying 'nospline'.
-
- The user-specified constant 'n' gives the number of points over which
- the data should be smoothed. A value of zero gives no smoothing at
- all. If 'n' is not specified, the default is 5.
-
- Optionally, a range of x values may be provided and Graphica will
- smooth data points from min to max only.
-
- Smoothing applies to the LATEST data set, that is, you can't smooth
- a smoothed curve, only a set of previously entered data points or
- function.
-
- Examples:
-
- » smooth 10
- » smooth range 20 30
- » smooth 8 spline
- » smooth nospline
-
- Also see FIT, POLYFIT, SAMPLING and SPLINE.
- ≡spline
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ spline {plot} {tension {value}} {range {min} {max}} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'spline' command is used to interpolate the current data using
- splines under tension. The produced data curve is a spline under
- tension, which is somewhat "tighter" than a cubic spline, and less
- likely to have spurious inflection points. The cubic spline
- interpolator will produce a smooth curve through (x,y) data pairs,
- even if their variation is quite complicated.
-
- The tension factor indicates the curviness desired for the line
- produced by the cubic spline. A tension in the interpolating curve
- of 50 gives almost a polygonal line; a tension of 0.01 gives almost
- a cubic spline. The default of 2.0 will produce a smooth curve in
- most cases. For very erratic data it may be necessary to tighten
- up the tension factor to 5 or 6 to adequately follow the data points.
-
- Optionally, a range of given x values may be provided and Graphica
- will interpolate from min to max only.
-
- Spline fits apply to the LATEST data set, that is, you can't fit a
- spline to the last spline, only to a set of previously entered data
- points or function.
-
- The number of points plotted on the spline fit can be changed by the
- 'sampling' command.
-
- Examples:
-
- » spline plot tension 10
- » spline range 20 30
-
- Also see FIT, POLYFIT, SAMPLING and SMOOTH.
- ≡subplot
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ subplot {size/area} <xleft> <ybottom> <xright> <ytop> │
- │ {default} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The subplot area is also referred to as soft clip. The actual graph
- resides in the subplot area but other graphic elements can be drawn
- outside the subplot area.
-
- The 'subplot' command defines the region on the paper where the plot
- is drawn. By default, the subplot area is set to a rectangle of
- about 60% of the paper size. The (xleft,ybottom) pair sets the
- coordinates of the left bottom corner of the subplot area, while the
- (xright, ytop) pair sets the coordinates of the top right hand corner
- of the plotting region. If subplot default is specified, the subplot
- area size will be reset to its default size.
-
- Data points and curves are drawn or plotted on a grid space formed
- by Cartesian coordinate axes. The horizontal line is the x-axis and
- the vertical line is the y-axis. These axes are within the subplot
- area or plotting region.
-
- Entering 'subplot' by itself simply shows the current subplot area.
-
- Example:
-
- » subplot area 2.0,2.0 9.0,7.0
- ≡subscript
- ≡superscript
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ subscript {size} <value> │
- │ superscript {size} <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- These commands set the subscript and superscript sizes in default units.
- The default values are 0.15 inches.
-
- Example:
-
- » subscript size 0.15
- » superscript size 0.15
-
- Also see CHARACTER FONT, CHARACTER GAP, CHARACTER RATIO, CHARACTER SIZE,
- CHARACTER SLANT and TEXT.
- ≡symbol
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ symbol <code>/<name> size <value> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Defines the symbol to use in displaying data points. Mnemonic codes
- may be used to specify a symbol. You have a choice of 16 standard
- graphics symbols and a dot:
- (filled symbols)
- 0 - dot
- 1 - square 11 - fsquare
- 2 - circle 12 - fcircle
- 3 - triangle 13 - ftriangle
- 4 - diamond 14 - fdiamond
- 5 - itriangle (inv triangle) 15 - fitriangle
- 6 - hourglass 16 - fhourglass
- 7 - plus
- 8 - cross
- 9 - star
- 10 - pdiamond (plus within a diamond)
-
- The default is a square ('symbol 1' or 'symbol square'). The symbol
- size is specified as the height of the current symbol in default units.
- The default symbol size is 0.17 inches.
-
- If you specify 'symbol 0' or 'symbol dot', no markers will be plotted
- at each point location, just a tiny point the size of a pixel, so you
- can plot lots of data.
-
- Entering 'symbol' by itself simply shows the current symbol type and
- size.
-
- (Filled symbols work only on certain hardware devices. Software symbol
- fill is under development.)
-
- Examples:
-
- » symbol square size 0.2
- » symbol 3
- » sym 0
- ≡terminal
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ terminal {<terminal-type>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Graphica supports many different graphics devices. Use this command to
- select the type of device for which Graphica will produce output.
-
- If <terminal-type> is omitted, Graphica will show the currently defined
- output terminal and list the available terminal types. <terminal-type>
- may be abbreviated.
-
- Use 'output' to redirect this output to a file, device or port.
-
- Examples:
-
- » terminal hpgl
- » terminal
-
- would print out the following:
-
- available terminal types:
- unknown Unknown terminal type - not a plotting device
- bgi IBM PC/Clone with a Hercules/CGA/EGA/VGA graphics card
- epsf Encapsulated PostScript Graphics Language
- epson Epson LX-800, Star NL-10, NX-1000, etc.
- hpgl HPGL Graphics Language and HP7475 plotter
- hpgl2 HPGL Graphics Language and HP7550 plotter
- pic Lotus 1-2-3 PIC Graphics Format
- postscript PostScript Graphics Language
-
- and possibly (depending on the version you have) any of the following:
-
- apollo HP Apollo Domain Workstation - direct mode
- cbm Coherent Bitmap Graphics
- kercolor Kermit-MS color tek40xx terminal emulator
- kermono Kermit-MS monochrome tek40xx terminal emulator
- latex LaTeX picture environment
- qms QMS Laser Printer
- raster Raster Technologies Model One terminal
- tek40xx Tektronix 4010 and most TEK emulators
-
- Notes on some of the graphics formats:
-
- The software fonts will look identically whether you use hpgl, PIC,
- PostScript or any other driver. The only difference comes from the
- slight resolution difference in the formats. The standard hpgl
- resolution is 10365 by 7962 pixels. The Lotus 1-2-3 PIC format has
- a fixed resolution of 3200 by 2311 pixels. The PostScript driver
- outputs graphic information at a resolution of 7920 by 6120 pixels.
-
- The hpgl, PIC and PostScript drivers output portrait files by
- turning the paper around 90 degrees. An hpgl graph will come out
- alright on an actual HP plotter (which has its paper always in the
- landscape orientation). If you need to import the file into a
- program that can read any of these formats, you'll have to rotate
- the plot back a quarter turn.
-
- The Lotus 1-2-3 PIC format should not be confused with the PC Paint
- Plus format, PPIC or with Dr. Halo PIC format. Some programs only
- look at the file extension instead of looking inside the file to
- determine what type of graphics information is in it. For example,
- the graphics viever VPIC won't read PIC files generated by Graphica
- (because it thinks it's something else). WordPerfect for DOS and
- Word for Windows will read Graphica PIC files without a hitch.
-
- Only the PostScript driver supports line widths.
-
- See DUMP, OUTPUT and POSTSCRIPT.
- ≡tics
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ tic {size} <major value> <minor value> {<direction>} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- All axes are marked off in equal segments with tic marks. The values
- major and minor determine the size of the major and minor tic marks.
- The defaults are 0.16 and 0.09 inches for the major and minor tic marks,
- respectively.
-
- By default, tics are drawn inwards from the border on all four sides.
- The 'tic' command can be used to change the tics to be drawn outwards.
- <direction> may be in, out or nothing (which is the same as in).
-
- Entering 'tics' by itself simply shows the current tic size and direction.
-
- Example:
-
- » tic size 0.1 0.06
- » tics in
- ≡timestamp
- ≡notimestamp
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ timestamp │
- │ notimestamp │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command toggles the timestamp on and off on a non-screen plot.
- The timestamp is simply a message drawn near the bottom of the page as
- follows:
-
- Graphica version 2.2 Thu Feb 11 11:34:14 1993
-
- 'timestamp' activates printing of the message ; 'notimestamp' deactivates
- it. The default is ON. You may put a 'notimestamp' command in your
- 'graphica.ini' initialization file.
-
- Examples:
-
- » timestamp
- » notimestamp
-
- Also see STARTUP.
- ≡type
- ≡more
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ type <file> │
- │ more <file> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'type' command displays the contents of a file. Pathnames, wildcards,
- and drive designators may be used in the usual way for your operating
- system. Other operating system commands can be issued using the $
- character on the very first position of a line followed by a command.
- 'more' is the UNIX version of the command.
-
- Examples:
-
- » type script.plt
-
- lists the ASCII file script.plt.
-
- » type foo
-
- lists the ASCII file foo.
-
- Also see DEL, DIR, SHELL and WHAT.
- ≡units
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ units <unit type> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- It is sometimes desirable to use units other than inches, i.e., the
- metric system, with Graphica. To change the unit of measure for
- parameters which are usually given in inches use the unit command.
- This command defines the units to be used in subsequent commands which
- represent a length or position normally supplied in inches, such as in
- paper size, subplot area, etc.
-
- The <unit type> may be 'in', 'cm' or 'mm'.
-
- Entering 'units' by itself simply shows the current units of measure.
-
- Changing the units of measure also changes the built-in variable
- 'ufactor'.
-
- Example:
-
- » units cm
-
- See VARIABLES.
- ≡view
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ view │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Retracts the pen and advances the paper on a pen plotter to view the
- graph fully. This command is similar to pushing the VIEW button on
- Hewlett-Packard HP7475 or HP7550 plotters.
-
- Example:
-
- » view
-
- would move the plotting paper outward into view.
- ≡x
- ≡y
- ≡x2
- ≡y2
- ≡logarithmic
- ≡linear
- ≡sqr
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ {x,y,y2,x2} {linear,logarithmic,probability,sqr} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- With this command, the kind of axis to be plotted may be specified, as
- follows:
-
- linear - specifies a linear axis. A linear scale is a standard base 10
- numeric scale. This is the default.
-
- logarithmic - specifies a log axis. A log scale is a base 10
- logarithmic scale. If a regression has been performed, the values for
- that particular axis are logarithmic. Given the mapped range for an
- axis, the logarithmic range for that axis will be determined
- automatically. If an axis is to be logarithmic, there is no need to
- specify the number of divisions or the format. If the range is
- negative as specified in a map command, Graphica automatically converts
- it to positive. Zero values for min or max will cause the log axis to
- begin at 0.001.
-
- probability - a probability scale is the inverse of the Gaussian
- cumulative distribution function. Thus the graph of the sigmoidally
- shaped Gaussian cumulative distribution function on a probability scale
- will be a straight line.
-
- Probabilities are expressed as a percentage so that the range of the
- scale is from 0 to 100. The minimum and maximum values that a
- probability axis can take in Graphica are 0.01 and 99.99. A probability
- axis label could be specified as something like "cumulative frequency, %".
-
- sqr - square-root axis. Used in some engineering applications. A square
- root scale is based on the square root of the axis in question.
-
- Examples:
-
- » x lin
- » y log
- » x2 pro
- » x sqr
- ≡xlabel
- ≡ylabel
- ≡x2label
- ≡y2label
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ {xlabel,x2label,ylabel,y2label} 'string' {rotate} │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- This command draws a centered label for that axis. The label text must
- be enclosed in single or double quotes. All labels are drawn using the
- current character font and size. The label bottom command is equivalent
- to the xlabel command. Likewise, the 'label top', 'left', and 'right'
- commands are equivalent to the 'x2label', 'ylabel' and 'y2label' commands.
-
- The ROTATE switch turns the labels around 180 degrees. This may
- become especially useful when drawing the y2-label (some people prefer
- the y2-label to "face" left rather than right).
-
- Examples:
-
- » xlabel 'This is the x-axis label'
- » ylabel 'This is the y-axis label'
- » y2label 'rotated y2-label' rotate
- ≡expressions
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ <expression> │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- You can determine the value of expressions or variables by just typing
- the expression or variable at the » prompt.
-
- In general, any mathematical expression accepted by C, FORTRAN, Pascal,
- or BASIC is valid. The precedence of these operators is determined by
- the specifications of the C programming language. White space (spaces
- and tabs) is ignored inside expressions.
-
- Complex variables may be expressed as {<real>,<imag>}, where <real> and
- <imag> must be numbers. For example, {3,2} represents 3 + 2i; {0,1}
- represents 'i' itself. The curly braces are explicitly required.
-
- Examples:
-
- » 2*3
-
- would print out '2*3 = 6'
-
- » 30+2*2
-
- would print out '30+2*2 = 34'
- ≡complex
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Complex Variables │
- └──────────────────────────────────────────────────────────────────────┘
-
- Complex variables may be expressed as {<real>,<imag>}, where <real> and
- <imag> must be numbers. For example, {3,2} represents 3 + 2i; {0,1}
- represents 'i' itself. The curly braces are explicitly required.
-
- Also see EXPRESSIONS and FUNCTIONS.
- ≡expressions functions
- ≡functions
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ functions │
- └──────────────────────────────────────────────────────────────────────┘
-
- All functions in Graphica accept integer, real, and complex arguments,
- unless otherwise noted.
-
- The 'functions' command by itself lists all user-defined functions and
- their definitions.
-
- Graphica also supports the following special functions:
-
- Gamma function y = gamma( x )
- Natural logarithm of gamma function y = lgamma( x )
-
- Incomplete gamma integral y = igamma( a, x )
- Complemented incomplete gamma integral y = igamc( a, x )
- Inverse of complemented incomplete gamma integral x = igami( a, y )
-
- Incomplete beta integral y = ibeta( a, b, x )
- Inverse of incomplete beta integral x = ibetai( a, b, y )
-
- Error function y = erf( x )
- Complementary error function y = erfc( x )
- Inverse error function x = ierf( y )
-
- Also see VARIABLES.
- ≡expressions functions abs
- ≡functions abs
- ≡abs
- ┌──────────────────────────────────────────────────────────────────────┐
- │ abs │
- └──────────────────────────────────────────────────────────────────────┘
-
- abs(z) returns the absolute value of the real or complex number z.
- The returned value is of the same type as the argument. For complex
- arguments, abs(z) returns the complex modulus (magnitude) defined as
- the length of z in the complex plane:
-
- sqrt( real(z)**2 + imag(z)**2 )
- ≡expressions functions acos
- ≡functions acos
- ≡acos
- ┌──────────────────────────────────────────────────────────────────────┐
- │ acos │
- └──────────────────────────────────────────────────────────────────────┘
-
- acos(z) returns the arc cosine (inverse cosine) of z. All results
- are given in radians. For real z, such that abs(z) <= 0.0, the
- result is in the range 0 to π. Complex results are obtained if
- abs(z) > 1.0, or if z is complex. The complex arc cosine is defined as:
-
- acos(z) = -i log( z + i sqrt(1-z**2) )
- ≡expressions functions acosh
- ≡functions acosh
- ≡acosh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ acosh │
- └──────────────────────────────────────────────────────────────────────┘
-
- acosh(z) returns the arc hyperbolic cosine (inverse hyperbolic cosine)
- of z. All results are given in radians. For real z, such that abs(z) <=
- 0.0, the result is in the range 0 to π. Complex results are obtained if
- abs(z) > 1.0, or if z is complex. The complex arc cosine is defined as:
-
- acosh(z) = -i log( z + i sqrt(1-z**2) )
- ≡expressions functions arg
- ≡functions arg
- ≡arg
- ┌──────────────────────────────────────────────────────────────────────┐
- │ arg │
- └──────────────────────────────────────────────────────────────────────┘
-
- arg(z) returns the phase angle of a complex number z, in radians.
- The result is always between -π and π.
- For complex z = x + iy = r exp(i theta), the magnitude and phase
- are given by
-
- r = abs(z)
- theta = arg(z)
- ≡expressions functions asin
- ≡functions asin
- ≡asin
- ┌──────────────────────────────────────────────────────────────────────┐
- │ asin │
- └──────────────────────────────────────────────────────────────────────┘
-
- asin(z) returns the arc sine (inverse sine) of z. All results are
- given in radians. For real z, such that abs(z) <= 1.0, the result is
- in the range -π/2 to π/2. Complex results are obtained if abs(z) >
- 1.0, or if z is complex. The complex arc sine is defined as:
-
- asin(z) = -i log( iz + sqrt(1-z**2) )
- ≡expressions functions asinh
- ≡functions asinh
- ≡asinh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ asinh │
- └──────────────────────────────────────────────────────────────────────┘
-
- asinh(z) returns the arc hyperbolic sine (inverse hyperbolic sine)
- of z. All results are given in radians. For real z, such that
- abs(z) <= 1.0, the result is in the range -π/2 to π/2. Complex
- results are obtained if abs(z) > 1.0, or if z is complex. The
- complex arc sine is defined as:
-
- asinh(z) = -i log( iz + sqrt(1-z**2) )
- ≡expressions functions atan
- ≡functions atan
- ≡atan
- ┌──────────────────────────────────────────────────────────────────────┐
- │ atan │
- └──────────────────────────────────────────────────────────────────────┘
-
- atan(z) returns the arc tangent (inverse tangent) of z. All results
- are given in radians. For real z, the result is in the range -π/2 to
- π/2. If z is complex, the complex arc tangent is returned:
-
- atan(z) = i/2 log( (i+z) / (i-z) )
- ≡expressions functions atanh
- ≡functions atanh
- ≡atanh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ atanh │
- └──────────────────────────────────────────────────────────────────────┘
-
- atanh(z) returns the arc hyperbolic tangent (inverse hyperbolic
- tangent) of z. All results are given in radians. For real z, the
- result is in the range -π/2 to π/2. If z is complex, the complex arc
- tangent is returned:
-
- atanh(z) = i/2 log( (i+z) / (i-z) )
- ≡expressions functions ibeta
- ≡functions ibeta
- ≡ibeta
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ibeta │
- └──────────────────────────────────────────────────────────────────────┘
-
- ibeta(p,q,z) returns the incomplete beta function of the real parts of
- its arguments (p, q>0 and 0<z<1). If the arguments are complex, the
- imaginary components are ignored. The function is defined as
-
- x
- - -
- | (a+b) | | a-1 b-1
- ----------- | t (1-t) dt.
- - - | |
- | (a) | (b) -
- 0
-
- ≡expressions functions ibetai
- ≡functions ibetai
- ≡ibetai
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ibetai │
- └──────────────────────────────────────────────────────────────────────┘
-
- x = ibetai(a,b,y) returns the inverse of the incomplete beta function
- of the real parts of its arguments (p, q>0 and 0<z<1). If the arguments
- are complex, the imaginary components are ignored. Given y, the function
- finds x such that ibeta( a, b, x ) = y.
- ≡expressions functions ceil
- ≡functions ceil
- ≡ceil
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ceil │
- └──────────────────────────────────────────────────────────────────────┘
-
- ceil(z) returns the smallest integer greater than z. For complex
- numbers, ceil returns the smallest integer greater than the real part of z.
- ≡expressions functions cos
- ≡functions cos
- ≡cos
- ┌──────────────────────────────────────────────────────────────────────┐
- │ cos │
- └──────────────────────────────────────────────────────────────────────┘
-
- cos(z) returns the cosine of z, where z is in radians.
- For complex z = x + iy, the complex cosine is returned:
-
- cos(z) = cos(x) cosh(y) - u sin(x) sinh(y)
- ≡expressions functions cosh
- ≡functions cosh
- ≡cosh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ cosh │
- └──────────────────────────────────────────────────────────────────────┘
-
- cosh(z) returns the hyperbolic cosine of z, where z is in radians.
- ≡expressions functions exp
- ≡functions exp
- ≡exp
- ┌──────────────────────────────────────────────────────────────────────┐
- │ exp │
- └──────────────────────────────────────────────────────────────────────┘
-
- exp(z) returns the exponential function of z (e raised to the power
- of z). For complex z = x + iy, the complex exponential is returned:
-
- exp(z) = exp(x) ( cos(y) + i sin(y) )
- ≡expressions functions erf
- ≡functions erf
- ≡erf
- ┌──────────────────────────────────────────────────────────────────────┐
- │ erf │
- └──────────────────────────────────────────────────────────────────────┘
-
- erf(x) returns the error function of x. erf(x) is the integral of the
- normal (Gaussian) probability distribution function from 0 to x. The
- error function is central to many calculations in statistics. It is
- defined as:
-
- erf(x) = 2/sqrt(pi) integral(0,x) exp(-t^2)
-
- Also see ERFC and IERF.
- ≡expressions functions erfc
- ≡functions erfc
- ≡erfc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ erfc │
- └──────────────────────────────────────────────────────────────────────┘
-
- erfc(x) returns the complementary error function of x. erfc(x) is
- simply 1.0 - erf(x), where erf(x) is the integral of the normal
- (Gaussian) probability distribution function from 0 to x.
-
- 1 - erf(x) =
- inf.
- -
- 2 | | 2
- erfc(x) = -------- | exp( - t ) dt
- sqrt(pi) | |
- -
- x
- Also see ERF and IERF.
- ≡expressions functions floor
- ≡functions floor
- ≡floor
- ┌──────────────────────────────────────────────────────────────────────┐
- │ floor │
- └──────────────────────────────────────────────────────────────────────┘
-
- floor(z) returns the greatest integer less than or equal to z. For
- complex numbers, floor returns the largest integer not greater than
- the real part of z.
- ≡expressions functions gamma
- ≡functions gamma
- ≡gamma
- ┌──────────────────────────────────────────────────────────────────────┐
- │ gamma │
- └──────────────────────────────────────────────────────────────────────┘
-
- gamma(z) returns the gamma function of the real part of z. For
- integer z, gamma(z+1) = z!. If z is a complex value, the imaginary
- component is ignored.
-
- Also see IGAMMA, LGAMMA, IGAMC, IGAMI.
- ≡expressions functions lgamma
- ≡functions lgamma
- ≡lgamma
- ┌──────────────────────────────────────────────────────────────────────┐
- │ lgamma │
- └──────────────────────────────────────────────────────────────────────┘
-
- lgamma(z) returns the base e (2.718...) logarithm of the absolute
- value of the gamma function of the argument.
-
- Also see GAMMA, IGAMMA, IGAMC, IGAMI.
- ≡expressions functions igamc
- ≡functions igamc
- ≡igamc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ igamc │
- └──────────────────────────────────────────────────────────────────────┘
-
- igamc(a,x) returns the complemented incomplete gamma integral. This
- function is defined by
-
- igamc(a,x) = 1 - igamma(a,x)
-
- inf.
- -
- 1 | | -t a-1
- = ----- | e t dt.
- - | |
- | (a) -
- x
-
- Also see GAMMA, IGAMMA, LGAMMA, IGAMI.
- ≡expressions functions igami
- ≡functions igami
- ≡igami
- ┌──────────────────────────────────────────────────────────────────────┐
- │ igami │
- └──────────────────────────────────────────────────────────────────────┘
-
- igami(a,y) returns the inverse of the complemented incomplete gamma
- integral. Given y, the function finds x such that igamc( a, x ) = y.
-
- Also see GAMMA, IGAMMA, LGAMMA, IGAMC.
- ≡expressions functions ierf
- ≡functions ierf
- ≡ierf
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ierf │
- └──────────────────────────────────────────────────────────────────────┘
-
- ierf(z) returns the inverse error function of the real part of z. The
- error function, erf(x), is the integral of the normal (Gaussian)
- probability distribution function from 0 to x.
-
- Also see ERF and ERFC.
- ≡expressions functions igamma
- ≡functions igamma
- ≡igamma
- ┌──────────────────────────────────────────────────────────────────────┐
- │ igamma │
- └──────────────────────────────────────────────────────────────────────┘
-
- igamma(a,z) returns the incomplete gamma function of the real parts of
- its arguments (a > 0 and z >= 0). If the arguments are complex, the
- imaginary components are ignored.
-
- The function is defined by
- x
- -
- 1 | | -t a-1
- igamma(a,x) = ----- | e t dt.
- - | |
- | (a) -
- 0
-
- Also see GAMMA and FUNCTIONS.
- ≡expressions functions imag
- ≡functions imag
- ≡imag
- ┌──────────────────────────────────────────────────────────────────────┐
- │ imag │
- └──────────────────────────────────────────────────────────────────────┘
-
- imag(z) returns the imaginary part of z as a real number.
- ≡expressions functions int
- ≡functions int
- ≡int
- ┌──────────────────────────────────────────────────────────────────────┐
- │ int │
- └──────────────────────────────────────────────────────────────────────┘
-
- int(z) returns the integer part of z, truncated toward zero.
- ≡expressions functions ln
- ≡functions ln
- ≡ln
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ln │
- └──────────────────────────────────────────────────────────────────────┘
-
- ln(z) returns the natural logarithm (base e) of z. For complex or
- negative z, the complex logarithm is returned:
-
- ln(z) = ln( abs(z) ) + i atan2( y, x )
- ≡expressions functions log
- ≡functions log
- ≡log
- ┌──────────────────────────────────────────────────────────────────────┐
- │ log │
- └──────────────────────────────────────────────────────────────────────┘
-
- log(z) returns the logarithm (base 10) of z. For complex or
- negative z, the complex logarithm is returned:
-
- log(z) = log( abs(z) ) + i atan2( y, x )
- ≡expressions functions rand
- ≡functions rand
- ≡rand
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ rand │
- └──────────────────────────────────────────────────────────────────────┘
-
- Syntax:
-
- rand
- rand(0)
- rand(1)
-
- Description:
-
- rand(0) returns a pseudorandom number in the interval (0.0,1.0)
- using a uniform distribution. rand(1) returns a pseudorandom
- number using a normal distribution with mean 0.0 and variance 1.0.
-
- Entering 'rand' by itself is equivalent to entering 'rand(0)'.
-
- When Graphica starts up, it takes the time of day (measured in
- small fractions of a second) as the seed for the pseudorandom
- number generator. Two different Graphica sessions will therefore
- almost always give different sequences of pseudorandom numbers.
-
- If you want to make sure that you always get the same sequence
- of pseudorandom numbers, you can explicitly give a seed for the
- pseudorandom number generator, using 'seed'.
-
- Examples:
-
- » rand(0)
- » plot rand(0) add
- » rand
- » rand(1)
-
- Also see FUNCTIONS and SEED.
- ≡seed
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ seed │
- └──────────────────────────────────────────────────────────────────────┘
-
- Syntax:
-
- seed n
-
- Description:
-
- 'seed' explicitly gives a seed for the pseudorandom number generator.
-
- Example:
-
- » seed 321
- » rand
- rand = 0.27789
- » rand
- rand = 0.41721
-
- To repeat the sequence exactly, reseed the number generator:
-
- » seed 321
- » rand
- rand = 0.27789
- » rand
- rand = 0.41721
-
- Also see RAND.
- ≡expressions functions real
- ≡functions real
- ≡real
- ┌──────────────────────────────────────────────────────────────────────┐
- │ real │
- └──────────────────────────────────────────────────────────────────────┘
-
- real(z) returns the real part of z.
- ≡expressions functions sgn
- ≡functions sgn
- ≡sgn
- ┌──────────────────────────────────────────────────────────────────────┐
- │ sgn │
- └──────────────────────────────────────────────────────────────────────┘
-
- sgn(z) returns 1 if z is positive, -1 if z is negative, and 0 if z is 0.
- If z is a complex value, the imaginary component is ignored.
- ≡expressions functions sin
- ≡functions sin
- ≡sin
- ┌──────────────────────────────────────────────────────────────────────┐
- │ sin │
- └──────────────────────────────────────────────────────────────────────┘
-
- sin(z) returns the sine of z, where z is in radians.
- For complex z = x + iy, the complex sine is returned:
-
- sin(z) = sin(x) cosh(y) - i cos(x) sinh(y)
- ≡expressions functions sinh
- ≡functions sinh
- ≡sinh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ sinh │
- └──────────────────────────────────────────────────────────────────────┘
-
- sinh(z) returns the hyperbolic sine of z, where z is in radians.
- ≡expressions functions sqrt
- ≡functions sqrt
- ≡sqrt
- ┌──────────────────────────────────────────────────────────────────────┐
- │ sqrt │
- └──────────────────────────────────────────────────────────────────────┘
-
- sqrt(z) returns the square root of z.
- ≡expressions functions tan
- ≡functions tan
- ≡tan
- ┌──────────────────────────────────────────────────────────────────────┐
- │ tan │
- └──────────────────────────────────────────────────────────────────────┘
-
- tan(z) returns the tangent of z, where z is in radians.
- For complex z, the complex tangent sin(z)/cos(z) is returned.
- ≡expressions functions tanh
- ≡functions tanh
- ≡tanh
- ┌──────────────────────────────────────────────────────────────────────┐
- │ tanh │
- └──────────────────────────────────────────────────────────────────────┘
-
- tanh(z) returns the hyperbolic tangent of z, where z is in radians.
- ≡expressions operators
- ≡operators
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Operators │
- └──────────────────────────────────────────────────────────────────────┘
-
- All operators in Graphica accept integer, real, and complex arguments,
- unless otherwise noted. The ** operator (exponentiation) is supported,
- as in FORTRAN.
-
- Parentheses may be used to change the order of evaluation.
- ≡expressions operators binary
- ≡operators binary
- ≡binary
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Binary Operators │
- └──────────────────────────────────────────────────────────────────────┘
-
- The following is a list of all the binary operators and their usage:
-
- symbol example explanation
-
- ** a**b exponentiation
- * a*b multiplication
- / a/b division
- \ a\b left division
- % a%b * modulo
- + a+b addition
- - a-b subtraction
- == a==b equality
- != a!=b inequality
- & a&b * bitwise AND
- ^ a^b * bitwise exclusive OR
- | a|b * bitwise inclusive OR
- && a&&b * logical AND
- || a||b * logical OR
-
- (*) Operator requires integer arguments.
-
- Logical AND (&&) and OR (||) short-circuit the way they do in C. That
- is, the second && operand is not evaluated if the first is false; the
- second || operand is not evaluated if the first is true.
-
- Multiplication must be explicitly noted with the asterisk; adjacent
- parenthetical terms such as (a+b)(c-4) are not automatically multiplied.
-
- The left division a\b is equivalent to b/a.
- ≡expressions operators ternary
- ≡operators ternary
- ≡ternary
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Ternary Operators │
- └──────────────────────────────────────────────────────────────────────┘
-
- The following is a list of the ternary operator and its usage:
-
- symbol example explanation
-
- ≡: a≡b:c * ternary operation
-
- (*) Operator requires an integer argument.
-
- The ternary operator evaluates its first argument (a). If it is true
- (non-zero) the second argument (b) is evaluated and returned, otherwise
- the third argument (c) is evaluated and returned.
- ≡expressions operators unary
- ≡operators unary
- ≡unary
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Unary Operators │
- └──────────────────────────────────────────────────────────────────────┘
-
- The following is a list of all the unary operators and their usage:
-
- symbol example explanation
-
- - -a unary minus
- ~ ~a * one's complement
- ! !a * logical negation
- ! a! * factorial
-
- (*) Operator requires an integer argument.
-
- The factorial operator returns a real number to allow a greater range.
- ≡probability
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Probability Distribution Functions │
- └──────────────────────────────────────────────────────────────────────┘
-
- Probability distribution functions are used in the mathematics areas of
- probability and statistics. If an experiment can occur in 'n' mutually
- exclusive and equally likely ways, and if exactly 'm' of these ways
- correspond to an event 'E', then the probability of 'E' is given by
-
- m
- P(E) = -.
- n
-
- The probability that the value of a random variable 'X' is less than or
- equal to some real number 'x' is defined as
-
- F(x) = P(X ≤ x), -∞ < x < ∞
- = integral(-∞ to x) f(x) dx
-
- where f(x) is called the probability density of the random variable X.
-
- Graphica implements 20 probability distribution functions. Refer to
- a good statistics textbook for details. The functions are:
-
- Binomial distribution y = bdtr( k, n, p )
- Complemented Binomial distribution y = bdtrc( k, n, p )
- Inverse Binomial distribution p = bdtri( k, n, y )
-
- Negative Binomial distribution y = nbdtr( k, n, p )
- Complemented Negative Binomial distribution y = nbdtrc( k, n, p )
-
- Beta distribution y = btdtr( a, b, x )
-
- Chi-square distribution y = chdtr( df, x )
- Complemented Chi-square distribution y = chdtrc( v, x )
- Inverse of Complemented Chi-square distribution x = chdtri( df, y )
-
- F distribution y = fdtr( df1, df2, x )
- Complemented F distribution y = fdtrc( df1, df2, x )
- Inverse of Complemented F distribution x = fdtri( df1, df2, y )
-
- Gamma distribution y = gdtr( a, b, x )
- Complemented Gamma distribution y = gdtrc( a, b, x )
-
- Normal distribution y = ndtr( x )
- Inverse of Normal distribution x = ndtri( y )
-
- Poisson distribution y = pdtr( k, m )
- Complemented Poisson distribution y = pdtrc( k, m )
- Inverse Poisson distribution m = pdtri( k, y )
-
- Student's t distribution y = stdtr( k, t )
-
- Also see BDTR, BDTRC, BDTRI, NBDTR, NBDTRC, BTDTR, CHDTR, CHDTRC,
- CHDTRI, FDTR, FDTRC, FDTRI, GDTR, GDTRC, NDTR, NDTRI, PDTR, PDTRC,
- PDTRI, and STDTR for more details.
- ≡expressions functions bdtr
- ≡functions bdtr
- ≡bdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ bdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- bdtr(k,n,p) returns the sum of the terms 0 through k of the Binomial
- probability density:
-
- k
- -- ( n ) j n-j
- > ( ) p (1-p)
- -- ( j )
- j=0
-
- The terms are not summed directly; instead the incomplete beta
- integral is employed, according to the formula
-
- y = bdtr( k, n, p ) = ibeta( n-k, k+1, 1-p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions bdtrc
- ≡functions bdtrc
- ≡bdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ bdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- bdtrc(k,n,p) returns the sum of the terms k+1 through n of the Binomial
- probability density:
-
- n
- -- ( n ) j n-j
- > ( ) p (1-p)
- -- ( j )
- j=k+1
-
- The terms are not summed directly; instead the incomplete beta integral
- is employed, according to the formula
-
- y = bdtrc( k, n, p ) = ibeta( k+1, n-k, p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions bdtri
- ≡functions bdtri
- ≡bdtri
- ┌──────────────────────────────────────────────────────────────────────┐
- │ bdtri │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- bdtri(k,n,y) finds the event probability p such that the sum of the
- terms 0 through k of the Binomial probability density is equal to the
- given cumulative probability y. This is accomplished using the inverse
- beta integral function and the relation
-
- 1 - p = ibetai( n-k, k+1, y ).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions nbdtr
- ≡functions nbdtr
- ≡nbdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ nbdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- nbdtr(k,n,p) returns the sum of the terms 0 through k of the negative
- binomial distribution:
-
- k
- -- ( n+j-1 ) n j
- > ( ) p (1-p)
- -- ( j )
- j=0
-
- In a sequence of Bernoulli trials, this is the probability that k or
- fewer failures precede the nth success.
-
- The terms are not computed individually; instead the incomplete beta
- integral is employed, according to the formula
-
- y = nbdtr( k, n, p ) = ibeta( n, k+1, p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions nbdtrc
- ≡functions nbdtrc
- ≡nbdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ nbdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- nbdtrc(k,n,p) returns the sum of the terms k+1 to infinity of the negative
- binomial distribution:
-
- inf
- -- ( n+j-1 ) n j
- > ( ) p (1-p)
- -- ( j )
- j=k+1
-
- The terms are not computed individually; instead the incomplete beta
- integral is employed, according to the formula
-
- y = nbdtrc( k, n, p ) = ibeta( k+1, n, 1-p ).
-
- The arguments must be positive, with p ranging from 0 to 1.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions btdtr
- ≡functions btdtr
- ≡btdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ btdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- btdtr(a,b,x) returns the area from zero to x under the beta density
- function:
- x
- - -
- | (a+b) | | a-1 b-1
- P(x) = ---------- | t (1-t) dt
- - - | |
- | (a) | (b) -
- 0
-
- This function is identical to the incomplete beta integral function
- ibeta(a, b, x).
-
- The complemented function is
-
- 1 - P(1-x) = ibeta( b, a, x )
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions chdtr
- ≡functions chdtr
- ≡chdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ chdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- chdtr(df,x) returns the area under the left hand tail (from 0 to x) of
- the Chi square probability density function with v degrees of freedom.
-
- inf.
- -
- 1 | | v/2-1 -t/2
- P( x | v ) = ----------- | t e dt
- v/2 - | |
- 2 | (v/2) -
- x
-
- where x is the Chi-square variable.
-
- The incomplete gamma integral is used, according to the formula
-
- y = chdtr( v, x ) = igamma( v/2.0, x/2.0 ).
-
- The arguments must both be positive.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions chdtrc
- ≡functions chdtrc
- ≡chdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ chdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- chdtrc(v,x) returns the area under the right hand tail (from x to
- infinity) of the Chi square probability density function with v
- degrees of freedom:
- inf.
- -
- 1 | | v/2-1 -t/2
- P( x | v ) = ----------- | t e dt
- v/2 - | |
- 2 | (v/2) -
- x
-
- where x is the Chi-square variable.
-
- The incomplete gamma integral is used, according to the formula
-
- y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
-
- The arguments must both be positive.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions chdtri
- ≡functions chdtri
- ≡chdtri
- ┌──────────────────────────────────────────────────────────────────────┐
- │ chdtri │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- chdtri(df,y) finds the Chi-square argument x such that the integral
- from x to infinity of the Chi-square density is equal to the given
- cumulative probability y.
-
- This is accomplished using the inverse gamma integral function and
- the relation
-
- x/2 = igami( df/2, y )
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions fdtr
- ≡functions fdtr
- ≡fdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ fdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- fdtr(df1,df2,x) returns the area from zero to x under the F density
- function (also known as Snedcor's density or the variance ratio density).
- This is the density of x = (u1/df1)/(u2/df2), where u1 and u2 are random
- variables having Chi square distributions with df1 and df2 degrees of
- freedom, respectively.
-
- The incomplete beta integral is used, according to the formula
-
- P(x) = ibeta( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
-
- The arguments a and b are greater than zero, and x x is nonnegative.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions fdtrc
- ≡functions fdtrc
- ≡fdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ fdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- fdtrc(df1,df2,x) returns the area from x to infinity under the F density
- function (also known as Snedcor's density or the variance ratio density).
-
- inf.
- -
- 1 | | a-1 b-1
- 1-P(x) = ------ | t (1-t) dt
- B(a,b) | |
- -
- x
-
- The incomplete beta integral is used, according to the formula
-
- P(x) = ibeta( df2/2, df1/2, (df2/(df2 + df1*x) ).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions fdtri
- ≡functions fdtri
- ≡fdtri
- ┌──────────────────────────────────────────────────────────────────────┐
- │ fdtri │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- fdtri(df1,df2,y) returns the F density argument x such that the integral
- from x to infinity of the F density is equal to the given probability y.
-
- This is accomplished using the inverse beta integral
- function and the relations
-
- z = ibetai( df2/2, df1/2, y )
- x = df2 (1-z) / (df1 z).
-
- Note: the following relations hold for the inverse of
- the uncomplemented F distribution:
-
- z = ibetai( df1/2, df2/2, y )
- x = df2 z / (df1 (1-z)).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions gdtr
- ≡functions gdtr
- ≡gdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ gdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- gdtr(a,b,x) returns the integral from zero to x of the gamma probability
- density function:
-
- x
- b -
- a | | b-1 -at
- y = ----- | t e dt
- - | |
- | (b) -
- 0
-
- The incomplete gamma integral is used, according to the relation
-
- y = igamma( b, ax ).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions gdtrc
- ≡functions gdtrc
- ≡gdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ gdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- gdtrc(a,b,x) returns the integral from x to infinity of the gamma
- probability density function:
-
- inf.
- b -
- a | | b-1 -at
- y = ----- | t e dt
- - | |
- | (b) -
- x
-
- The incomplete gamma integral is used, according to the relation
-
- y = igamc( b, ax ).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions ndtr
- ≡functions ndtr
- ≡ndtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ndtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- ndtr(x) returns the area under the Gaussian probability density
- function, integrated from minus infinity to x:
-
- x
- -
- 1 | | 2
- ndtr(x) = --------- | exp( - t /2 ) dt
- sqrt(2pi) | |
- -
- -inf.
-
- = ( 1 + erf(z) ) / 2
- = erfc(z) / 2
-
- where z = x/sqrt(2). Computation is via the functions erf and erfc.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions ndtri
- ≡functions ndtri
- ≡ndtri
- ┌──────────────────────────────────────────────────────────────────────┐
- │ ndtri │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- ndtri(y) returns the argument, x, for which the area under the Gaussian
- probability density function (integrated from minus infinity to x) is
- equal to y.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions pdtr
- ≡functions pdtr
- ≡pdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- pdtr(k,m) returns the sum of the first k terms of the Poisson
- distribution:
-
- k j
- -- -m m
- > e --
- -- j!
- j=0
-
- The terms are not summed directly; instead the incomplete gamma integral
- is employed, according to the relation
-
- y = pdtr( k, m ) = igamc( k+1, m ).
-
- The arguments must both be positive.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions pdtrc
- ≡functions pdtrc
- ≡pdtrc
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pdtrc │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- pdtrc(k,m) returns the sum of the terms k+1 to infinity of the Poisson
- distribution:
-
- inf. j
- -- -m m
- > e --
- -- j!
- j=k+1
-
- The terms are not summed directly; instead the incomplete gamma integral
- is employed, according to the formula
-
- y = pdtrc( k, m ) = igamma( k+1, m ).
-
- The arguments must both be positive.
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions pdtri
- ≡functions pdtri
- ≡pdtri
- ┌──────────────────────────────────────────────────────────────────────┐
- │ pdtri │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- pdtri(k,y) finds the Poisson variable x such that the integral from
- 0 to x of the Poisson density is equal to the given probability y.
-
- This is accomplished using the inverse gamma integral function and
- the relation m = igami( k+1, y ).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡expressions functions stdtr
- ≡functions stdtr
- ≡stdtr
- ┌──────────────────────────────────────────────────────────────────────┐
- │ stdtr │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- stdtr(k,t) computes the integral from minus infinity to t of the Student
- t distribution with integer k > 0 degrees of freedom:
-
- t
- -
- | |
- - | 2 -(k+1)/2
- | ( (k+1)/2 ) | ( x )
- ---------------------- | ( 1 + --- ) dx
- - | ( k )
- sqrt( k pi ) | ( k/2 ) |
- | |
- -
- -inf.
-
- Relation to incomplete beta integral:
-
- 1 - stdtr(k,t) = 0.5 * ibeta( k/2, 1/2, z )
- where
- z = k/(k + t**2).
-
- Also see FUNCTIONS and PROBABILITY.
- ≡bessel
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Bessel Functions │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- Bessel functions arise in solving differential equations for systems
- with cylindrical symmetry.
-
- Jn(x) is often called the Bessel function of the first kind, or simply
- the Bessel function. Yn(x) is referred to as the Bessel function of
- the second kind, the Weber function, or the Newmann function. In(x)
- and Kn(x) are modified Bessel functions. They are equivalent to the
- usual Bessel functions Jn and Yn evaluated for purely imaginary
- arguments.
-
- Twelve Bessel functions are provided with Graphica: besi0, besi1,
- besin, besj0, besj1, besjn, besk0, besk1, beskn, besy0, besy1 and besyn.
-
- For example, besi0(x) returns the modified Bessel function I0 of x,
- besj1(x) returns the Bessel function J1 of x, and besyn(n,x) returns
- the Bessel function Y of general integer order n (n>1).
-
- All Bessel functions expect x to be in radians.
-
- Also see BESI0, BESI1, BESIN, BESJ0, BESJ1, BESJN, BESK0, BESK1, BESKN,
- BESY0, BESY1, and BESYN for more details.
- ≡expressions functions besi0
- ≡functions besi0
- ≡besi0
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besi0 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besi0(x) returns the i0th (modified) Bessel function of x, where x
- is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besi1
- ≡functions besi1
- ≡besi1
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besi1 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besi1(x) returns the i1st (modified) Bessel function of x, where x
- is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besin
- ≡functions besin
- ≡besin
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besin │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besin(n,x) returns the inth (modified) Bessel function of x, where x
- is in radians and n > 1.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besj0
- ≡functions besj0
- ≡besj0
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besj0 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besj0(x) returns the j0th Bessel function of x, where x is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besj1
- ≡functions besj1
- ≡besj1
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besj1 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besj1(x) returns the j1st Bessel function of x, where x is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besjn
- ≡functions besjn
- ≡besjn
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besjn │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besjn(n,x) returns the jnth Bessel function of x, where x is in
- radians and n > 1.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besk0
- ≡functions besk0
- ≡besk0
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besk0 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besk0(x) returns the k0th (modified) Bessel function of x, where x
- is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besk1
- ≡functions besk1
- ≡besk1
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besk1 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besk1(x) returns the k1st (modified) Bessel function of x, where x
- is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions beskn
- ≡functions beskn
- ≡beskn
- ┌──────────────────────────────────────────────────────────────────────┐
- │ beskn │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- beskn(n,x) returns the knth (modified) Bessel function of x, where x
- is in radians and n > 1.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besy0
- ≡functions besy0
- ≡besy0
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besy0 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besy0(x) returns the y0th Bessel function of x, where x is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besy1
- ≡functions besy1
- ≡besy1
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besy1 │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besy1(x) returns the y1st Bessel function of x, where x is in radians.
-
- Also see BESSEL and FUNCTIONS.
- ≡expressions functions besyn
- ≡functions besyn
- ≡besyn
- ┌──────────────────────────────────────────────────────────────────────┐
- │ besyn │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- besyn(n,x) returns the ynth (modified) Bessel function of x, where x
- is in radians and n > 1.
-
- Also see BESSEL and FUNCTIONS.
- ≡environment
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Environment Variables │
- └──────────────────────────────────────────────────────────────────────┘
-
- An environment variable is used to specify from the operating system
- certain parameters of program operation. The "environment" is really
- just a common area of memory that programs can write to and read from.
- Some programs are geared to look specifically at the environment to find
- particular data important to their operation. They may ask you to place
- a variable into the environment equal to a certain value so that they
- can find support files which could not be found otherwise.
-
- A number of shell environment variables are understood by Graphica.
- None of these are required, but may be useful:
-
- - GRAPTERM
- - GRAPDUMP
- - GRAPHELP
- - GRAPHINI
- - GRAPFONT
-
- GRAPTERM may be used as the name of the terminal type to be used. This
- overrides any terminal type sensed by Graphica on start up, but is itself
- overridden by the 'graphica.ini' or other start-up file, and of course by
- later explicit changes.
-
- GRAPDUMP is used as the default terminal type used when dumping graphics
- to a file.
-
- GRAPHELP may be defined to be the pathname of the help file. If this
- environment variable is not defined, Graphica will try to look for the
- help file somewhere in your DOS path. If the help file can't be found,
- you have no on-line help available.
-
- GRAPHINI may be used as the pathname of a startup-up file. The default
- name is 'graphica.ini' on DOS/VAX systems and '.graphica' on UNIX. The
- DOS version of Graphica will use the entire search path to look for it.
-
- GRAPFONT specifies where Graphica's font files are located. If the
- font files are not somewhere in your DOS path, you may specify an
- environment variable called GRAPFONT containing the font directory.
- For example, if the fonts are in C:\GRAPHICA\FONTS, then you would
- specify,
-
- SET GRAPFONT=C:\GRAPHICA\FONTS
-
- somewhere in your autoexec.bat file or in a batch file just before
- running Graphica. Graphica will then find the necessary font file
- in that directory and load it at runtime.
-
- DOS Environment Variables
- -------------------------
-
- If we were to look at the DOS environment (by typing the SET command
- at the DOS prompt), we might see a listing similar to the one below:
-
- COMSPEC=C:\COMMAND.COM
- PATH=C:\;C:\DOS;C:\UTIL
-
- Other values might be present, like PROMPT=$P$G, and more depending
- on the types and kinds of software you are running.
-
- Environment variables are specified before running Graphica. They
- can be specified directly from DOS, from within the AUTOEXEC.BAT file,
- or from within any batch file.
-
- The command for setting an environment variable is:
-
- SET PARAMETER=PARAMETER VALUE
-
- Examples:
-
- C:\SET GRAPDUMP=hpgl (sets the dump terminal type)
- C:\SET GRAPHELP=c:\plot\graphica.hlp (the help file)
- C:\SET GRAPHINI=c:\plot\graphica.ini (the start-up file)
- C:\SET GRAPFONT=C:\GRAPHICA\FONT (font files)
-
- In general, you won't have to set the DOS environment variable GRAPTERM if
- you have any of the commonly available graphics monitors, CGA/EGA/VGA, etc.
-
- VAX/VMS Logical Symbols
- -----------------------
-
- On a VAX, environment variables are called 'symbols.' The format for
- defining a symbolic name for a character string is:
-
- symbol-name :== expression
-
- For example, we could define the following symbols:
-
- $ LIST :== "DIRECTORY"
- $ TIME :== "SHOW TIME"
- $ QP :== "SHOW QUEUE/DEVICE"
- $ SS :== "SHOW SYMBOL"
-
- To look at the environment, you may type SHOW SYMBOL/GLOBAL/ALL at the
- $ prompt).
-
- Examples:
-
- $ GRAPDUMP :== hpgl (sets the dump terminal type)
- $ GRAPTERM :== raster (sets the terminal type)
- $ GRAPHINI :== dua7:[user.junk]graph.ini (the start-up file)
-
- (GRAPHELP should already have been defined for you.)
-
- Unix Shell Variables
- --------------------
-
- In a UNIX environment, things get a little bit confusing because of the
- different shells that you might be running. Environment variables can
- be shown by using the 'printenv' command (Korn-shell or /bin/sh), the
- 'setenv' command (c-shell or /bin/csh) or the 'AEGIS' command (Aegis
- shell on Apollos). To set them, do
-
- $ GRAPTERM=apollo
- $ GRAPDUMP=postscript
- $ export GRAPDUMP
- $ export GRAPTERM
-
- Also see STARTUP.
- ≡startup
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Startup File │
- └──────────────────────────────────────────────────────────────────────┘
-
- When Graphica is run, it looks for an initialization file to load.
- This file is called 'graphica.ini'. If this file is not found in the
- current directory (or entire search path on DOS systems), the program
- will look for a start-up file pointed to by the environment variable
- GRAPHINI.
-
- If the initialization file is found, Graphica executes the commands
- in that file. This is most useful for setting your terminal type and
- defining any functions or variables which you use often.
-
- Also see ENVIRONMENT.
- ≡text
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Text Primitives │
- └──────────────────────────────────────────────────────────────────────┘
-
- Text primitives generate a string of characters on a display device
- in a specific location in the world coordinate system. The character
- string may comprise letters, numerals, and symbols. Text primitives
- provide a method for labeling and clarifying a graphical image.
-
- This section describes the control sequences which are accessible
- when specifying a string label. The control sequences are only available
- when using a software generated font. Graphica recognizes \ as a special
- character used to signal the start of an escape sequence. There are two
- kinds of escape sequences, those that take an argument and those that do
- not.
-
- The two escape sequences that do not take an argument are:
-
- \U move up half a character size
- \D move down half a character size
-
- The following take one integer argument immediately after the escape
- sequence and a space after it to delineate the end (the space is not
- printed):
-
- \Cn set color to n
- \C-1 reset color to the default
- \Fn set font to n
- \F-1 reset font to the default
- \Sn set character size to n % of the default size
- \S-1 reset character size to the default size
- \Ln set character slant to n degrees
- \L-1 reset character slant to the default slant
- \An print ascii n
- \rn save current position in register n
- \Rn restore position from register n
-
- Examples:
-
- to print greek characters such as in 'beta = x + lambda':
- » label '\F2 b\F1 = x + \F2 l'
-
- to label the x-axis with 'velocity U sub f':
- » xlabel 'velocity, U\Dsub'
-
- to place a top label of 'stress in dynes per cm squared':
- » top label 'stress (dyn\cm\U2\D)'
-
- to get 'x squared plus y squared':
- » label 'x\U2\D + y\U2'
-
- and finally, an advanced example. To get 'A sub b sup beta':
- » label 'A\r1 \Db\R1 \U\F2 b'
-
- This last example is translated as: do A, save this spot, go down half,
- do b, restore the saved spot, go up half, switch to font 2 (greek simplex),
- do beta. Notice the use of registers to stack characters on top of each
- other.
-
- To get a backslash, simply use one \.
- ≡version
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ version │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- The 'version' command displays:
-
- - your Graphica version number
- - pertinent copyright and other information
-
- Also on DOS systems:
-
- - the amount of system RAM available
- - the amount of disk space available in the current drive
- ≡what
- Syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ what │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- 'what' shows a directory listing of the .plt files on the disk in the
- current directory. Files with other extensions are not shown.
-
- Also see DEL, DIR, SHELL and TYPE.
- ≡variables
- ≡userdefined
- ≡who
- User-defined function syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ <function-name>( <dummyvar 1> {, <dummyvar 2> } ) = <expression> │
- │ │
- │ where │
- │ <expression> is defined in terms of <dummyvar 1> and <dummyvar 2> │
- └──────────────────────────────────────────────────────────────────────┘
-
- User-defined variable syntax:
- ┌──────────────────────────────────────────────────────────────────────┐
- │ <variable-name> = <constant-expression> │
- │ variables │
- └──────────────────────────────────────────────────────────────────────┘
-
- Description:
-
- You may define your own functions and variables. User-defined functions
- and variables may be used anywhere an expression is called for. A function
- refers to a general expression and can take one or two arguments (dummy
- variables).
-
- The WHO or VARIABLES command lists all pre-defined and user-defined
- variables together with their values.
-
- The following variables have already been defined for you:
-
- pi = 3.14159
- e = 2.71828
- catalan = 0.91597
- degree = 0.01745
- ufactor = 1.00000
- gamma = 0.57721
- golden = 1.61803
-
- where pi is the mathematical constant π, e is the exponential constant,
- catalan is Catalan's constant, degree gives the number of radians in one
- degree (pi/180), ufactor is a conversion factor used to convert from
- inches to user-defined units (cm and mm), gamma is Euler's constant,
- and golden is the golden ratio (1+sqrt(5))/2. These constants have
- been predefined for you but you may change them (so they are really
- variables).
-
- Examples:
-
- » w = 2
- » q = floor(tan(pi/2 - 0.1))
- » f(x) = sin(w*x)
- » sinc(x) = sin(pi*x)/(pi*x)
- » delta(t) = (t == 0)
- » ramp(t) = (t > 0) ? t : 0
- » comb(n,k) = n!/(k!*(n-k)!)
-
- Note: case matters, e.g., 'Alpha' is different from 'alpha'.
- Also see FUNCTIONS.
- ≡nodisplay
- ┌──────────────────────────────────────────────────────────────────────┐
- │ nodisplay │
- └──────────────────────────────────────────────────────────────────────┘
-
- This command shuts off the display of the mouse position on DOS systems
- at the bottom right corner of the screen in graphics mode.
- ≡tips
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Tips │
- └──────────────────────────────────────────────────────────────────────┘
-
- Here some tips to help you get started with Graphica:
-
- - Pressing any key while the introductory screen is shown will turn
- it off and take you directly to the command line.
-
- - Use the arrow keys (up, down, right, left ) to recall previous
- commands or edit the current command line.
-
- - Type 'what' to get a list of all the *.plt script files you may
- have in the current directory.
-
- - You may put more than one command on a line--just separate each
- command by a semicolon, for example,
-
- » plot x y add ; column 3 is y ; plot x y connect
-
- - Pressing F1 calls up the help system. Pressing F10 displays the
- graph on the screen.
- ≡errors
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Errors │
- └──────────────────────────────────────────────────────────────────────┘
-
- When Graphica encounters an error caused by an incorrect command in a
- script file or on the command line it will issue an error message. If
- the bad command was in a script file, the line number will be given.
-
- You can type SHOW at the command line to see everything you've plotted
- so far. You can also correct errors in a script file by "shelling" out
- to the OS or issue a $edit command (to invoke the editor from within
- Graphica for example) where 'edit' is the name of your favorite editor.
- ≡bugs
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Notes │
- └──────────────────────────────────────────────────────────────────────┘
-
- No text control characters (see HELP TEXT) when using the hardware font.
-
- Subscript/superscript size hasn't been implemented yet. Use the \S
- command (described in TEXT) to change the character size of superscripts
- and subscripts.
-
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Bug Reports │
- └──────────────────────────────────────────────────────────────────────┘
-
- Graphica is under constant revision, updating and being given expanded
- capabilities. Prior to each release, the developer strives to verify new
- features and bug fixes through testing. However, as inevitably happens
- with any software, some bugs do survive and show up in user runs. Users
- can aid in the problem fixing process by following the guidelines below:
-
- a) Report any unusual messages, computed results, format overflows,
- etc. even though the program appears to have terminated normally.
-
- b) For any abnormal program termination, save the input file and all
- output obtained by running the program.
-
- Reported problems will be fixed as quickly as possible. In most
- instances, alternate methods or techniques of plot formulation and
- input are available to permit graphing despite the bug. All problems
- encountered with Graphica should be reported to:
-
- ┌──────────────────────────────────────────────────────────────────────┐
- │ Antonio Montes Internet address : antonio@amontes.fdc.iaf.nl │
- │ Postbus 13 CompuServe userid: 71031,1162 │
- │ 2350 AA Leiderdorp │
- │ The Netherlands │
- └──────────────────────────────────────────────────────────────────────┘
-