home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE KOLM2
- C
- C PURPOSE
- C
- C TESTS THE DIFFERENCE BETWEEN TWO SAMPLE DISTRIBUTION
- C FUNCTIONS USING THE KOLMOGOROV-SMIRNOV TEST
- C
- C USAGE
- C CALL KOLM2(X,Y,N,M,Z,PROB)
- C
- C DESCRIPTION OF PARAMETERS
- C X - INPUT VECTOR OF N INDEPENDENT OBSERVATIONS. ON
- C RETURN FROM KOLM2, X HAS BEEN SORTED INTO A
- C MONOTONIC NON-DECREASING SEQUENCE.
- C Y - INPUT VECTOR OF M INDEPENDENT OBSERVATIONS. ON
- C RETURN FROM KOLM2, Y HAS BEEN SORTED INTO A
- C MONOTONIC NON-DECREASING SEQUENCE.
- C N - NUMBER OF OBSERVATIONS IN X
- C M - NUMBER OF OBSERVATIONS IN Y
- C Z - OUTPUT VARIABLE CONTAINING THE GREATEST VALUE WITH
- C RESPECT TO THE SPECTRUM OF X AND Y OF
- C SQRT((M*N)/(M+N))*ABS(FN(X)-GM(Y)) WHERE
- C FN(X) IS THE EMPIRICAL DISTRIBUTION FUNCTION OF THE
- C SET (X) AND GM(Y) IS THE EMPIRICAL DISTRIBUTION
- C FUNCTION OF THE SET (Y).
- C PROB - OUTPUT VARIABLE CONTAINING THE PROBABILITY OF
- C THE STATISTIC BEING GREATER THAN OR EQUAL TO Z IF
- C THE HYPOTHESIS THAT X AND Y ARE FROM THE SAME PDF IS
- C TRUE. E.G., PROB= 0.05 IMPLIES THAT ONE CAN REJECT
- C THE NULL HYPOTHESIS THAT THE SETS X AND Y ARE FROM
- C THE SAME DENSITY WITH 5 PER CENT PROBABILITY OF BEING
- C INCORRECT. PROB = 1. - SMIRN(Z).
- C
- C REMARKS
- C N AND M SHOULD BE GREATER THAN OR EQUAL TO 100. (SEE THE
- C MATHEMATICAL DESCRIPTION FOR THIS SUBROUTINE AND FOR THE
- C SUBROUTINE SMIRN, CONCERNING ASYMPTOTIC FORMULAE).
- C
- C DOUBLE PRECISION USAGE---IT IS DOUBTFUL THAT THE USER WILL
- C WISH TO PERFORM THIS TEST USING DOUBLE PRECISION ACCURACY.
- C IF ONE WISHES TO COMMUNICATE WITH KOLM2 IN A DOUBLE
- C PRECISION PROGRAM, HE SHOULD CALL THE FORTRAN SUPPLIED
- C PROGRAM SNGL(X) PRIOR TO CALLING KOLM2, AND CALL THE
- C FORTRAN SUPPLIED PROGRAM DBLE(X) AFTER EXITING FROM KOLM2.
- C (NOTE THAT SUBROUTINE SMIRN DOES HAVE DOUBLE PRECISION
- C CAPABILITY AS SUPPLIED BY THIS PACKAGE.)
- C
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C SMIRN
- C
- C METHOD
- C FOR REFERENCE, SEE (1) W. FELLER--ON THE KOLMOGOROV-SMIRNOV
- C LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTIONS--
- C ANNALS OF MATH. STAT., 19, 1948. 177-189,
- C (2) N. SMIRNOV--TABLE FOR ESTIMATING THE GOODNESS OF FIT
- C OF EMPIRICAL DISTRIBUTIONS--ANNALS OF MATH. STAT., 19,
- C 1948. 279-281.
- C (3) R. VON MISES--MATHEMATICAL THEORY OF PROBABILITY AND
- C STATISTICS--ACADEMIC PRESS, NEW YORK, 1964. 490-493,
- C (4) B.V. GNEDENKO--THE THEORY OF PROBABILITY--CHELSEA
- C PUBLISHING COMPANY, NEW YORK, 1962. 384-401.
- C
- C ..................................................................
- C
- SUBROUTINE KOLM2(X,Y,N,M,Z,PROB)
- DIMENSION X(1),Y(1)
- C
- C SORT X INTO ASCENDING SEQUENCE
- C
- DO 5 I=2,N
- IF(X(I)-X(I-1))1,5,5
- 1 TEMP=X(I)
- IM=I-1
- DO 3 J=1,IM
- L=I-J
- IF(TEMP-X(L))2,4,4
- 2 X(L+1)=X(L)
- 3 CONTINUE
- X(1)=TEMP
- GO TO 5
- 4 X(L+1)=TEMP
- 5 CONTINUE
- C
- C SORT Y INTO ASCENDING SEQUENCE
- C
- DO 10 I=2,M
- IF(Y(I)-Y(I-1))6,10,10
- 6 TEMP=Y(I)
- IM=I-1
- DO 8 J=1,IM
- L=I-J
- IF(TEMP-Y(L))7,9,9
- 7 Y(L+1)=Y(L)
- 8 CONTINUE
- Y(1)=TEMP
- GO TO 10
- 9 Y(L+1)=TEMP
- 10 CONTINUE
- C
- C CALCULATE D = ABS(FN-GM) OVER THE SPECTRUM OF X AND Y
- C
- XN=FLOAT(N)
- XN1=1./XN
- XM=FLOAT(M)
- XM1=1./XM
- D=0.0
- I=0
- J=0
- K=0
- L=0
- 11 IF(X(I+1)-Y(J+1))12,13,18
- 12 K=1
- GO TO 14
- 13 K=0
- 14 I=I+1
- IF(I-N)15,21,21
- 15 IF(X(I+1)-X(I))14,14,16
- 16 IF(K)17,18,17
- C
- C CHOOSE THE MAXIMUM DIFFERENCE, D
- C
- 17 D=AMAX1(D,ABS(FLOAT(I)*XN1-FLOAT(J)*XM1))
- IF(L)22,11,22
- 18 J=J+1
- IF(J-M)19,20,20
- 19 IF(Y(J+1)-Y(J))18,18,17
- 20 L=1
- GO TO 17
- 21 L=1
- GO TO 16
- C
- C CALCULATE THE STATISTIC Z
- C
- 22 Z=D*SQRT((XN*XM)/(XN+XM))
- C
- C CALCULATE THE PROBABILITY ASSOCIATED WITH Z
- C
- CALL SMIRN(Z,PROB)
- PROB=1.0-PROB
- RETURN
- END