home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE BISER
- C
- C PURPOSE
- C TO COMPUTE THE BISERIAL CORRELATION COEFFICIENT BETWEEN TWO
- C CONTINUOUS VARIABLES WHEN ONE OF THEM HAS BEEN ARTIFICIALLY
- C DICHOTOMIZED.
- C
- C USAGE
- C CALL BISER (N,A,B,HI,ANS,IER)
- C
- C DESCRIPTION OF PARAMETERS
- C N - NUMBER OF OBSERVATIONS
- C A - INPUT VECTOR OF LENGTH N CONTAINING THE CONTINUOUS
- C VARIABLE
- C B - INPUT VECTOR OF LENGTH N CONTAINING THE DICHOTOMIZED
- C VARIABLE
- C HI - INPUT - NUMERICAL CODE TO INDICATE THE HIGHER CATEGORY
- C OF THE DICHOTOMIZED VARIABLE. ANY VALUE IN VECTOR B
- C EQUAL TO OR GREATER THAN HI WILL BE CLASSIFIED INTO
- C THE HIGHER CATEGORY.
- C ANS - OUTPUT VECTOR OF LENGTH 8 CONTAINING THE FOLLOWING
- C ANS(1) - MEAN OF VARIABLE A
- C ANS(2) - STANDARD DEVIATION OF VARIABLE A
- C ANS(3) - PROPORTION OF THE CASES IN THE HIGHER
- C CATEGORY OF VARIABLE B
- C ANS(4) - PROPORTION OF THE CASES IN THE LOWER
- C CATEGORY OF VARIABLE B
- C ANS(5) - MEAN OF VARIABLE A FOR THOSE CASES FALLING
- C INTO THE HIGHER CATEGORY OF VARIABLE B
- C ANS(6) - MEAN OF VARIABLE A FOR THOSE CASES FALLING
- C INTO THE LOWER CATEGORY OF VARIABLE B
- C ANS(7) - BISERIAL CORRELATION COEFFICIENT
- C ANS(8) - STANDARD ERROR OF BISERIAL CORRELATION
- C COEFFICIENT
- C IER - 1, IF NO CASES ARE IN THE LOWER CATEGORY OF VARIABLE
- C B.
- C -1, IF ALL CASES ARE IN THE LOWER CATEGORY OF
- C VARIABLE B.
- C 0, OTHERWISE.
- C IF IER IS NON-ZERO, ANS(I)=10**75,I=5,...,8.
- C
- C REMARKS
- C THE VALUES OF THE DICHOTOMIZED VARIABLE, B, MUST BE IN
- C NUMERIC FORM. THEY CANNOR BE SPECIFIED BY MEANS OF
- C ALPHABETIC OR SPECIAL CHARACTERS.
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C NDTRI
- C
- C METHOD
- C REFER TO P. HORST, 'PSYCHOLOGICAL MEASUREMENT AND
- C PREDICTION', P.95-96 (WADSWORTH, 1966).
- C
- C ..................................................................
- C
- SUBROUTINE BISER (N,A,B,HI,ANS,IER)
- C
- DIMENSION A(1),B(1),ANS(1)
- C
- C COMPUTE MEAN AND STANDARD DEVIATION OF VARIABLE A
- C
- IER=0
- SUM=0.0
- SUM2=0.0
- DO 10 I=1,N
- SUM=SUM+A(I)
- 10 SUM2=SUM2+A(I)*A(I)
- FN=N
- ANS(1)=SUM/FN
- ANS(2)=(SUM2-ANS(1)*SUM)/(FN-1.0)
- ANS(2)= SQRT(ANS(2))
- C
- C FIND PROPORTIONS OF CASES IN THE HIGHER AND LOWER CATEGORIES
- C
- P=0.0
- SUM=0.0
- SUM2=0.0
- DO 30 I=1,N
- IF(B(I)-HI) 20, 25, 25
- 20 SUM2=SUM2+A(I)
- GO TO 30
- 25 P=P+1.0
- SUM=SUM+A(I)
- 30 CONTINUE
- ANS(4)=1.0
- ANS(3)=0.0
- Q=FN-P
- IF (P) 35,35,40
- 35 IER=-1
- GO TO 50
- 40 ANS(5)=SUM/P
- IF (Q) 45,45,60
- 45 IER=1
- ANS(4)=0.0
- ANS(3)=1.0
- 50 DO 55 I=5,8
- 55 ANS(I)=1.E38
- GO TO 65
- 60 ANS(6)=SUM2/Q
- P=P/FN
- Q=1.0-P
- C
- C FIND ORDINATE OF THE NORMAL DISTRIBUTION CURVE AT THE POINT OF
- C DIVISION BETWEEN SEGMENTS CONTAINING P AND Q PROPORTIONS
- C
- CALL NDTRI (Q,X,Y,ER)
- C
- C COMPUTE THE BISERIAL COEFFICIENT OF CORRELATION
- C
- R=((ANS(5)-ANS(1))/ANS(2))*(P/Y)
- C
- C COMPUTE THE STANDARD ERROR OF R
- C
- ANS(8)=( SQRT(P*Q)/Y-R*R)/SQRT(FN)
- C
- C STORE RESULTS
- C
- ANS(3)=P
- ANS(4)=Q
- ANS(7)=R
- C
- 65 RETURN
- END
- ANS(6)=SUM2/Q
- P=P/FN
- Q=1.0-P
- C
-