home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Power-Programmierung
/
CD1.mdf
/
fortran
/
library
/
ssp
/
statcorr
/
canor.for
next >
Wrap
Text File
|
1985-11-29
|
6KB
|
213 lines
C
C ..................................................................
C
C SUBROUTINE CANOR
C
C PURPOSE
C COMPUTE THE CANONICAL CORRELATIONS BETWEEN TWO SETS OF
C VARIABLES. CANOR IS NORMALLY PRECEDED BY A CALL TO SUBROU-
C TINE CORRE.
C
C USAGE
C CALL CANOR (N,MP,MQ,RR,ROOTS,WLAM,CANR,CHISQ,NDF,COEFR,
C COEFL,R)
C
C DESCRIPTION OF PARAMETERS
C N - NUMBER OF OBSERVATIONS
C MP - NUMBER OF LEFT HAND VARIABLES
C MQ - NUMBER OF RIGHT HAND VARIABLES
C RR - INPUT MATRIX (ONLY UPPER TRIANGULAR PORTION OF THE
C SYMMETRIC MATRIX OF M X M, WHERE M = MP + MQ)
C CONTAINING CORRELATION COEFFICIENTS. (STORAGE MODE
C OF 1)
C ROOTS - OUTPUT VECTOR OF LENGTH MQ CONTAINING EIGENVALUES
C COMPUTED IN THE NROOT SUBROUTINE.
C WLAM - OUTPUT VECTOR OF LENGTH MQ CONTAINING LAMBDA.
C CANR - OUTPUT VECTOR OF LENGTH MQ CONTAINING CANONICAL
C CORRELATIONS.
C CHISQ - OUTPUT VECTOR OF LENGTH MQ CONTAINING THE
C VALUES OF CHI-SQUARES.
C NDF - OUTPUT VECTOR OF LENGTH MQ CONTAINING THE DEGREES
C OF FREEDOM ASSOCIATED WITH CHI-SQUARES.
C COEFR - OUTPUT MATRIX (MQ X MQ) CONTAINING MQ SETS OF
C RIGHT HAND COEFFICIENTS COLUMNWISE.
C COEFL - OUTPUT MATRIX (MP X MQ) CONTAINING MQ SETS OF
C LEFT HAND COEFFICIENTS COLUMNWISE.
C R - WORK MATRIX (M X M)
C
C REMARKS
C THE NUMBER OF LEFT HAND VARIABLES (MP) SHOULD BE GREATER
C THAN OR EQUAL TO THE NUMBER OF RIGHT HAND VARIABLES (MQ).
C THE VALUES OF CANONICAL CORRELATION, LAMBDA, CHI-SQUARE,
C DEGREES OF FREEDOM, AND CANONICAL COEFFICIENTS ARE COMPUTED
C ONLY FOR THOSE EIGENVALUES IN ROOTS WHICH ARE GREATER THAN
C ZERO.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C MINV
C NROOT (WHICH, IN TURN, CALLS THE SUBROUTINE EIGEN.)
C
C METHOD
C REFER TO W. W. COOLEY AND P. R. LOHNES, 'MULTIVARIATE PRO-
C CEDURES FOR THE BEHAVIORAL SCIENCES', JOHN WILEY AND SONS,
C 1962, CHAPTER 3.
C
C ..................................................................
C
SUBROUTINE CANOR (N,MP,MQ,RR,ROOTS,WLAM,CANR,CHISQ,NDF,COEFR,
1 COEFL,R)
DIMENSION RR(1),ROOTS(1),WLAM(1),CANR(1),CHISQ(1),NDF(1),COEFR(1),
1 COEFL(1),R(1)
C
C ...............................................................
C
C IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C
C DOUBLE PRECISION RR,ROOTS,WLAM,CANR,CHISQ,COEFR,COEFL,R,DET,SUM
C
C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C ROUTINE.
C
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
C CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENT
C 165 MUST BE CHANGED TO DSQRT. ALOG IN STATEMENT 175 MUST BE
C CHANGED TO DLOG.
C
C ...............................................................
C
C PARTITION INTERCORRELATIONS AMONG LEFT HAND VARIABLES, BETWEEN
C LEFT AND RIGHT HAND VARIABLES, AND AMONG RIGHT HAND VARIABLES.
C
M=MP+MQ
N1=0
DO 105 I=1,M
DO 105 J=1,M
IF(I-J) 102, 103, 103
102 L=I+(J*J-J)/2
GO TO 104
103 L=J+(I*I-I)/2
104 N1=N1+1
105 R(N1)=RR(L)
L=MP
DO 108 J=2,MP
N1=M*(J-1)
DO 108 I=1,MP
L=L+1
N1=N1+1
108 R(L)=R(N1)
N2=MP+1
L=0
DO 110 J=N2,M
N1=M*(J-1)
DO 110 I=1,MP
L=L+1
N1=N1+1
110 COEFL(L)=R(N1)
L=0
DO 120 J=N2,M
N1=M*(J-1)+MP
DO 120 I=N2,M
L=L+1
N1=N1+1
120 COEFR(L)=R(N1)
C
C SOLVE THE CANONICAL EQUATION
C
L=MP*MP+1
K=L+MP
CALL MINV (R,MP,DET,R(L),R(K))
C
C CALCULATE T = INVERSE OF R11 * R12
C
DO 140 I=1,MP
N2=0
DO 130 J=1,MQ
N1=I-MP
ROOTS(J)=0.0
DO 130 K=1,MP
N1=N1+MP
N2=N2+1
130 ROOTS(J)=ROOTS(J)+R(N1)*COEFL(N2)
L=I-MP
DO 140 J=1,MQ
L=L+MP
140 R(L)=ROOTS(J)
C
C CALCULATE A = R21 * T
C
L=MP*MQ
N3=L+1
DO 160 J=1,MQ
N1=0
DO 160 I=1,MQ
N2=MP*(J-1)
SUM=0.0
DO 150 K=1,MP
N1=N1+1
N2=N2+1
150 SUM=SUM+COEFL(N1)*R(N2)
L=L+1
160 R(L)=SUM
C
C CALCULATE EIGENVALUES WITH ASSOCIATED EIGENVECTORS OF THE
C INVERSE OF R22 * A
C
L=L+1
CALL NROOT (MQ,R(N3),COEFR,ROOTS,R(L))
C
C FOR EACH VALUE OF I = 1, 2, ..., MQ, CALCULATE THE FOLLOWING
C STATISTICS
C
DO 210 I=1,MQ
C
C TEST WHETHER EIGENVALUE IS GREATER THAN ZERO
C
IF(ROOTS(I)) 220, 220, 165
C
C CANONICAL CORRELATION
C
165 CANR(I)= SQRT(ROOTS(I))
C
C CHI-SQUARE
C
WLAM(I)=1.0
DO 170 J=I,MQ
170 WLAM(I)=WLAM(I)*(1.0-ROOTS(J))
FN=N
FMP=MP
FMQ=MQ
175 CHISQ(I)=-(FN-0.5*(FMP+FMQ+1.0))*ALOG(WLAM(I))
C
C DEGREES OF FREEDOM FOR CHI-SQUARE
C
N1=I-1
NDF(I)=(MP-N1)*(MQ-N1)
C
C I-TH SET OF RIGHT HAND COEFFICIENTS
C
N1=MQ*(I-1)
N2=MQ*(I-1)+L-1
DO 180 J=1,MQ
N1=N1+1
N2=N2+1
180 COEFR(N1)=R(N2)
C
C I-TH SET OF LEFT HAND COEFFICIENTS
C
DO 200 J=1,MP
N1=J-MP
N2=MQ*(I-1)
K=MP*(I-1)+J
COEFL(K)=0.0
DO 190 JJ=1,MQ
N1=N1+MP
N2=N2+1
190 COEFL(K)=COEFL(K)+R(N1)*COEFR(N2)
200 COEFL(K)=COEFL(K)/CANR(I)
210 CONTINUE
220 RETURN
END