home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE ALI
- C
- C PURPOSE
- C TO INTERPOLATE FUNCTION VALUE Y FOR A GIVEN ARGUMENT VALUE
- C X USING A GIVEN TABLE (ARG,VAL) OF ARGUMENT AND FUNCTION
- C VALUES.
- C
- C USAGE
- C CALL ALI (X,ARG,VAL,Y,NDIM,EPS,IER)
- C
- C DESCRIPTION OF PARAMETERS
- C X - THE ARGUMENT VALUE SPECIFIED BY INPUT.
- C ARG - THE INPUT VECTOR (DIMENSION NDIM) OF ARGUMENT
- C VALUES OF THE TABLE (NOT DESTROYED).
- C VAL - THE INPUT VECTOR (DIMENSION NDIM) OF FUNCTION
- C VALUES OF THE TABLE (DESTROYED).
- C Y - THE RESULTING INTERPOLATED FUNCTION VALUE.
- C NDIM - AN INPUT VALUE WHICH SPECIFIES THE NUMBER OF
- C POINTS IN TABLE (ARG,VAL).
- C EPS - AN INPUT CONSTANT WHICH IS USED AS UPPER BOUND
- C FOR THE ABSOLUTE ERROR.
- C IER - A RESULTING ERROR PARAMETER.
- C
- C REMARKS
- C (1) TABLE (ARG,VAL) SHOULD REPRESENT A SINGLE-VALUED
- C FUNCTION AND SHOULD BE STORED IN SUCH A WAY, THAT THE
- C DISTANCES ABS(ARG(I)-X) INCREASE WITH INCREASING
- C SUBSCRIPT I. TO GENERATE THIS ORDER IN TABLE (ARG,VAL),
- C SUBROUTINES ATSG, ATSM OR ATSE COULD BE USED IN A
- C PREVIOUS STAGE.
- C (2) NO ACTION BESIDES ERROR MESSAGE IN CASE NDIM LESS
- C THAN 1.
- C (3) INTERPOLATION IS TERMINATED EITHER IF THE DIFFERENCE
- C BETWEEN TWO SUCCESSIVE INTERPOLATED VALUES IS
- C ABSOLUTELY LESS THAN TOLERANCE EPS, OR IF THE ABSOLUTE
- C VALUE OF THIS DIFFERENCE STOPS DIMINISHING, OR AFTER
- C (NDIM-1) STEPS. FURTHER IT IS TERMINATED IF THE
- C PROCEDURE DISCOVERS TWO ARGUMENT VALUES IN VECTOR ARG
- C WHICH ARE IDENTICAL. DEPENDENT ON THESE FOUR CASES,
- C ERROR PARAMETER IER IS CODED IN THE FOLLOWING FORM
- C IER=0 - IT WAS POSSIBLE TO REACH THE REQUIRED
- C ACCURACY (NO ERROR).
- C IER=1 - IT WAS IMPOSSIBLE TO REACH THE REQUIRED
- C ACCURACY BECAUSE OF ROUNDING ERRORS.
- C IER=2 - IT WAS IMPOSSIBLE TO CHECK ACCURACY BECAUSE
- C NDIM IS LESS THAN 3, OR THE REQUIRED ACCURACY
- C COULD NOT BE REACHED BY MEANS OF THE GIVEN
- C TABLE. NDIM SHOULD BE INCREASED.
- C IER=3 - THE PROCEDURE DISCOVERED TWO ARGUMENT VALUES
- C IN VECTOR ARG WHICH ARE IDENTICAL.
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C NONE
- C
- C METHOD
- C INTERPOLATION IS DONE BY MEANS OF AITKENS SCHEME OF
- C LAGRANGE INTERPOLATION. ON RETURN Y CONTAINS AN INTERPOLATED
- C FUNCTION VALUE AT POINT X, WHICH IS IN THE SENSE OF REMARK
- C (3) OPTIMAL WITH RESPECT TO GIVEN TABLE. FOR REFERENCE, SEE
- C F.B.HILDEBRAND, INTRODUCTION TO NUMERICAL ANALYSIS,
- C MCGRAW-HILL, NEW YORK/TORONTO/LONDON, 1956, PP.49-50.
- C
- C ..................................................................
- C
- SUBROUTINE ALI(X,ARG,VAL,Y,NDIM,EPS,IER)
- C
- C
- DIMENSION ARG(1),VAL(1)
- IER=2
- DELT2=0.
- IF(NDIM-1)9,7,1
- C
- C START OF AITKEN-LOOP
- 1 DO 6 J=2,NDIM
- DELT1=DELT2
- IEND=J-1
- DO 2 I=1,IEND
- H=ARG(I)-ARG(J)
- IF(H)2,13,2
- 2 VAL(J)=(VAL(I)*(X-ARG(J))-VAL(J)*(X-ARG(I)))/H
- DELT2=ABS(VAL(J)-VAL(IEND))
- IF(J-2)6,6,3
- 3 IF(DELT2-EPS)10,10,4
- 4 IF(J-5)6,5,5
- 5 IF(DELT2-DELT1)6,11,11
- 6 CONTINUE
- C END OF AITKEN-LOOP
- C
- 7 J=NDIM
- 8 Y=VAL(J)
- 9 RETURN
- C
- C THERE IS SUFFICIENT ACCURACY WITHIN NDIM-1 ITERATION STEPS
- 10 IER=0
- GOTO 8
- C
- C TEST VALUE DELT2 STARTS OSCILLATING
- 11 IER=1
- 12 J=IEND
- GOTO 8
- C
- C THERE ARE TWO IDENTICAL ARGUMENT VALUES IN VECTOR ARG
- 13 IER=3
- GOTO 12
- END