home *** CD-ROM | disk | FTP | other *** search
- C
- C ..................................................................
- C
- C SUBROUTINE DQL16
- C
- C PURPOSE
- C TO COMPUTE INTEGRAL(EXP(-X)*FCT(X), SUMMED OVER X
- C FROM 0 TO INFINITY).
- C
- C USAGE
- C CALL DQL16 (FCT,Y)
- C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT
- C
- C DESCRIPTION OF PARAMETERS
- C FCT - THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION
- C SUBPROGRAM USED.
- C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE.
- C
- C REMARKS
- C NONE
- C
- C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
- C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X)
- C MUST BE FURNISHED BY THE USER.
- C
- C METHOD
- C EVALUATION IS DONE BY MEANS OF 16-POINT GAUSSIAN-LAGUERRE
- C QUADRATURE FORMULA, WHICH INTEGRATES EXACTLY,
- C WHENEVER FCT(X) IS A POLYNOMIAL UP TO DEGREE 31.
- C FOR REFERENCE, SEE
- C SHAO/CHEN/FRANK, TABLES OF ZEROS AND GAUSSIAN WEIGHTS OF
- C CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS AND THE RELATED
- C GENERALIZED HERMITE POLYNOMIALS, IBM TECHNICAL REPORT
- C TR00.1100 (MARCH 1964), PP.24-25.
- C
- C ..................................................................
- C
- SUBROUTINE DQL16(FCT,Y)
- C
- C
- DOUBLE PRECISION X,Y,FCT
- C
- X=.51701160339543318D2
- Y=.41614623703728552D-21*FCT(X)
- X=.41940452647688333D2
- Y=Y+.50504737000355128D-17*FCT(X)
- X=.34583398702286626D2
- Y=Y+.62979670025178678D-14*FCT(X)
- X=.28578729742882140D2
- Y=Y+.21270790332241030D-11*FCT(X)
- X=.23515905693991909D2
- Y=Y+.28623502429738816D-9*FCT(X)
- X=.19180156856753135D2
- Y=Y+.18810248410796732D-7*FCT(X)
- X=.15441527368781617D2
- Y=Y+.68283193308711996D-6*FCT(X)
- X=.12214223368866159D2
- Y=Y+.14844586873981299D-4*FCT(X)
- X=.9438314336391939D1
- Y=Y+.20427191530827846D-3*FCT(X)
- X=.70703385350482341D1
- Y=Y+.18490709435263109D-2*FCT(X)
- X=.50780186145497679D1
- Y=Y+.11299900080339453D-1*FCT(X)
- X=.34370866338932066D1
- Y=Y+.47328928694125219D-1*FCT(X)
- X=.21292836450983806D1
- Y=Y+.13629693429637754D0*FCT(X)
- X=.11410577748312269D1
- Y=Y+.26579577764421415D0*FCT(X)
- X=.46269632891508083D0
- Y=Y+.33105785495088417D0*FCT(X)
- X=.8764941047892784D-1
- Y=Y+.20615171495780099D0*FCT(X)
- RETURN
- END