home *** CD-ROM | disk | FTP | other *** search
- -----------------------------------------------------------------------------
- -- Standard Library: Complex numbers
- --
- -- Suitable for use with Hugs 98
- -----------------------------------------------------------------------------
-
- module Complex(Complex((:+)), realPart, imagPart, conjugate, mkPolar,
- cis, polar, magnitude, phase) where
-
- infix 6 :+
-
- data (RealFloat a) => Complex a = !a :+ !a
- deriving (Eq,Read,Show)
-
- realPart, imagPart :: (RealFloat a) => Complex a -> a
- realPart (x:+y) = x
- imagPart (x:+y) = y
-
- conjugate :: (RealFloat a) => Complex a -> Complex a
- conjugate (x:+y) = x :+ (-y)
-
- mkPolar :: (RealFloat a) => a -> a -> Complex a
- mkPolar r theta = r * cos theta :+ r * sin theta
-
- cis :: (RealFloat a) => a -> Complex a
- cis theta = cos theta :+ sin theta
-
- polar :: (RealFloat a) => Complex a -> (a,a)
- polar z = (magnitude z, phase z)
-
- magnitude, phase :: (RealFloat a) => Complex a -> a
- magnitude (x:+y) = scaleFloat k
- (sqrt ((scaleFloat mk x)^2 + (scaleFloat mk y)^2))
- where k = max (exponent x) (exponent y)
- mk = - k
- phase (0:+0) = 0
- phase (x:+y) = atan2 y x
-
- instance (RealFloat a) => Num (Complex a) where
- (x:+y) + (x':+y') = (x+x') :+ (y+y')
- (x:+y) - (x':+y') = (x-x') :+ (y-y')
- (x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')
- negate (x:+y) = negate x :+ negate y
- abs z = magnitude z :+ 0
- signum 0 = 0
- signum z@(x:+y) = x/r :+ y/r where r = magnitude z
- fromInteger n = fromInteger n :+ 0
- fromInt n = fromInt n :+ 0
-
- instance (RealFloat a) => Fractional (Complex a) where
- (x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
- where x'' = scaleFloat k x'
- y'' = scaleFloat k y'
- k = - max (exponent x') (exponent y')
- d = x'*x'' + y'*y''
- fromRational a = fromRational a :+ 0
- fromDouble a = fromDouble a :+ 0
-
- instance (RealFloat a) => Floating (Complex a) where
- pi = pi :+ 0
- exp (x:+y) = expx * cos y :+ expx * sin y
- where expx = exp x
- log z = log (magnitude z) :+ phase z
- sqrt 0 = 0
- sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)
- where (u,v) = if x < 0 then (v',u') else (u',v')
- v' = abs y / (u'*2)
- u' = sqrt ((magnitude z + abs x) / 2)
- sin (x:+y) = sin x * cosh y :+ cos x * sinh y
- cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
- tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
- where sinx = sin x
- cosx = cos x
- sinhy = sinh y
- coshy = cosh y
- sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
- cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
- tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
- where siny = sin y
- cosy = cos y
- sinhx = sinh x
- coshx = cosh x
- asin z@(x:+y) = y':+(-x')
- where (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
- acos z@(x:+y) = y'':+(-x'')
- where (x'':+y'') = log (z + ((-y'):+x'))
- (x':+y') = sqrt (1 - z*z)
- atan z@(x:+y) = y':+(-x')
- where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
- asinh z = log (z + sqrt (1+z*z))
- acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
- atanh z = log ((1+z) / sqrt (1-z*z))
-
- -----------------------------------------------------------------------------
-