home *** CD-ROM | disk | FTP | other *** search
- /*
- * vecmath.c
- *
- * Copyright (C) 1989, 1991, Craig E. Kolb
- * All rights reserved.
- *
- * This software may be freely copied, modified, and redistributed
- * provided that this copyright notice is preserved on all copies.
- *
- * You may not distribute this software, in whole or in part, as part of
- * any commercial product without the express consent of the authors.
- *
- * There is no warranty or other guarantee of fitness of this software
- * for any purpose. It is provided solely "as is".
- *
- * $Id: vecmath.c,v 4.0 91/07/17 14:33:02 kolb Exp Locker: kolb $
- *
- * $Log: vecmath.c,v $
- * Revision 4.0 91/07/17 14:33:02 kolb
- * Initial version.
- *
- */
- #include "common.h"
-
- /*
- * Normalize a vector, return original length.
- */
- Float
- VecNormalize(a)
- register Vector *a;
- {
- Float d;
-
- d = sqrt(a->x*a->x + a->y*a->y + a->z*a->z);
- if(equal(d, 0.))
- return 0.;
- a->x /= d;
- a->y /= d;
- a->z /= d;
-
- return d;
- }
-
- /*
- * Compute cross-product of a and b, place normalized result in o. Returns
- * length of result before normalization.
- */
- Float
- VecNormCross(a, b, r)
- Vector *a, *b, *r;
- {
- VecCross(a, b, r);
- return VecNormalize(r);
- }
-
- /*
- * Compute cross-product of a and b, place result in o.
- */
- void
- VecCross(a, b, r)
- Vector *a, *b, *r;
- {
- r->x = (a->y * b->z) - (a->z * b->y);
- r->y = (a->z * b->x) - (a->x * b->z);
- r->z = (a->x * b->y) - (a->y * b->x);
- }
-
- /*
- * Calculate direction of refracted ray using Heckbert's formula. Returns TRUE
- * if a total internal reflection occurs.
- */
- int
- Refract(dir, from_index, to_index, I, N, cos1)
- Float from_index, to_index, cos1;
- Vector *dir, *I, *N;
- {
- Float kn, cos2, k;
- Vector nrm;
-
- if (cos1 < 0.) {
- /*
- * Hit the 'backside' of a surface -- flip the normal.
- */
- nrm.x = -N->x;
- nrm.y = -N->y;
- nrm.z = -N->z;
- cos1 = -cos1;
- } else
- nrm = *N;
-
- kn = from_index / to_index;
- cos2 = 1. - kn*kn*(1. - cos1*cos1);
- if (cos2 < 0.)
- return TRUE; /* Total internal reflection. */
- k = kn * cos1 - sqrt(cos2);
- VecComb(kn, *I, k, nrm, dir);
- return FALSE;
- }
-
- /*
- * Given a vector, find two additional vectors such that all three
- * are mutually perpendicular and uaxis X vaxis = vector. The given
- * vector need not be normalized. uaxis and vaxis are normalized.
- */
- void
- VecCoordSys(vector, uaxis, vaxis)
- Vector *vector, *uaxis, *vaxis;
- {
- uaxis->x = -vector->y;
- uaxis->y = vector->x;
- uaxis->z = 0.;
- if (VecNormalize(uaxis) == 0.) {
- uaxis->x = vector->z;
- uaxis->y = 0.;
- uaxis->z = -vector->x;
- if (VecNormalize(uaxis) == 0.)
- RLerror(RL_WARN,
- "VecCoordSys passed degenerate vector.\n",0,0,0);
- }
- (void)VecNormCross(vector, uaxis, vaxis);
- }
-
- /*
- * Modify given normal by "bumping" it.
- */
- void
- MakeBump(norm, dpdu, dpdv, fu, fv)
- Vector *norm, *dpdu, *dpdv; /* normal, surface derivatives */
- Float fu, fv; /* bump function partial derivatives in uv */
- {
- Vector tmp1, tmp2;
-
- VecCross(norm, dpdv, &tmp1);
- VecScale(fu, tmp1, &tmp1);
- VecCross(norm, dpdu, &tmp2);
- VecScale(fv, tmp2, &tmp2);
- VecSub(tmp1, tmp2, &tmp1);
- VecAdd(*norm, tmp1, norm);
- (void)VecNormalize(norm);
- }
-