home *** CD-ROM | disk | FTP | other *** search
/ GEMini Atari / GEMini_Atari_CD-ROM_Walnut_Creek_December_1993.iso / files / math / gp / users.toc < prev    next >
Encoding:
Text File  |  1993-07-28  |  18.7 KB  |  354 lines

  1. Chapter 1: Overview of the {\fam \bffam \tenbf {\write \index {!PARI!1!}}PARI} System\dotfill1
  2. \hskip 0.5cm1.1\ Introduction.\dotfill1
  3. {\sevenrm \hskip 1cmImplementation notes.\dotfill1}
  4. \hskip 0.5cm1.2\ The PARI {\write \index {!types!1!}}types.\dotfill1
  5. {\sevenrm \hskip 1cm1.2.1\ Integers and reals\dotfill2}
  6. {\sevenrm \hskip 1cm1.2.2\ Integermods, rational numbers (irreducible or not), $p$-adic numbers, polymods, and rational functions\dotfill3}
  7. {\sevenrm \hskip 1cm1.2.3\ Complex numbers ($a+bi$) and quadratic numbers\dotfill3}
  8. {\sevenrm \hskip 1cm1.2.4\ Polynomials, power series, vectors and matrices\dotfill3}
  9. {\sevenrm \hskip 1cm1.2.5\ Exact and imprecise objects\dotfill3}
  10. {\sevenrm \hskip 1cm1.2.6\ What is {\write \index {!zero!3!}}zero?\dotfill3}
  11. {\sevenrm \hskip 1cm1.2.7\ Scalar types\dotfill4}
  12. \hskip 0.5cm1.3\ Operations and functions.\dotfill4
  13. {\sevenrm \hskip 1cm1.3.1\ The PARI philosophy\dotfill4}
  14. {\sevenrm \hskip 1cm1.3.2\ Standard operations\dotfill4}
  15. {\sevenrm \hskip 1cm1.3.3\ Conversions and similar functions\dotfill5}
  16. {\sevenrm \hskip 1cm1.3.4\ Transcendental functions\dotfill5}
  17. {\sevenrm \hskip 1cm1.3.5\ Arithmetic functions\dotfill5}
  18. {\sevenrm \hskip 1cm1.3.6\ Other functions\dotfill5}
  19. Chapter 2: Specific use of the {\fam \bffam \tenbf {\write \index {!GP!7!}}GP} calculator\dotfill7
  20. \hskip 0.5cm2.1\ Metacommands.\dotfill7
  21. {\sevenrm \hskip 1cm2.1.1\ $\delimiter "26E30F \delimiter "26E30F $\dotfill7}
  22. {\sevenrm \hskip 1cm2.1.2\ $\delimiter "26E30F ${\fam \bffam \tenbf b}\dotfill7}
  23. {\sevenrm \hskip 1cm2.1.3\ $\delimiter "26E30F ${\fam \bffam \tenbf c}\dotfill8}
  24. {\sevenrm \hskip 1cm2.1.4\ $\delimiter "26E30F ${\fam \bffam \tenbf d}\dotfill8}
  25. {\sevenrm \hskip 1cm2.1.5\ $\delimiter "26E30F ${\fam \bffam \tenbf k}\dotfill8}
  26. {\sevenrm \hskip 1cm2.1.6\ $\delimiter "26E30F ${\fam \bffam \tenbf l}\dotfill8}
  27. {\sevenrm \hskip 1cm2.1.7\ $\delimiter "26E30F ${\fam \bffam \tenbf p}\dotfill8}
  28. {\sevenrm \hskip 1cm2.1.8\ $\delimiter "26E30F ${\fam \bffam \tenbf q}\dotfill8}
  29. {\sevenrm \hskip 1cm2.1.9\ $\delimiter "26E30F ${\fam \bffam \tenbf r}\dotfill8}
  30. {\sevenrm \hskip 1cm2.1.10\ $\delimiter "26E30F ${\fam \bffam \tenbf s}\dotfill8}
  31. {\sevenrm \hskip 1cm2.1.11\ $\delimiter "26E30F ${\fam \bffam \tenbf s}$( n )$\dotfill8}
  32. {\sevenrm \hskip 1cm2.1.12\ $\delimiter "26E30F ${\fam \bffam \tenbf t}\dotfill8}
  33. {\sevenrm \hskip 1cm2.1.13\ $\delimiter "26E30F ${\fam \bffam \tenbf v}\dotfill8}
  34. {\sevenrm \hskip 1cm2.1.14\ $\delimiter "26E30F ${\fam \bffam \tenbf w}\dotfill8}
  35. {\sevenrm \hskip 1cm2.1.15\ $\delimiter "26E30F ${\fam \bffam \tenbf x}\dotfill8}
  36. {\sevenrm \hskip 1cm2.1.16\ \#\dotfill8}
  37. \hskip 0.5cm2.2\ Defaults and {\write \index {!output formats!9!}}output formats.\dotfill9
  38. {\sevenrm \hskip 1cm2.2.1\ $\delimiter "26E30F ${\write \index {!precision!9!}}precision\dotfill9}
  39. {\sevenrm \hskip 1cm2.2.2\ $\delimiter "26E30F ${\write \index {!serieslength!9!}}serieslength\dotfill9}
  40. {\sevenrm \hskip 1cm2.2.3\ $\delimiter "26E30F ${\write \index {!format!9!}}format\dotfill9}
  41. {\sevenrm \hskip 1cm2.2.4\ $\delimiter "26E30F ${\write \index {!prompt!9!}}prompt\dotfill9}
  42. {\sevenrm \hskip 1cm2.2.5\ Raw and beautifier format\dotfill9}
  43. {\sevenrm \hskip 1cm2.2.6\ Note on the output formats.\dotfill9}
  44. \hskip 0.5cm2.3\ Input formats for the PARI types.\dotfill10
  45. {\sevenrm \hskip 1cm2.3.1\ {\write \index {!Integer!10!}}Integers\dotfill10}
  46. {\sevenrm \hskip 1cm2.3.2\ {\write \index {!Real number!10!}}Real numbers\dotfill10}
  47. {\sevenrm \hskip 1cm2.3.3\ {\write \index {!Integermod!10!}}Integermods\dotfill10}
  48. {\sevenrm \hskip 1cm2.3.4\ {\write \index {!Rational number!10!}}Rational numbers\dotfill10}
  49. {\sevenrm \hskip 1cm2.3.5\ {\write \index {!Complex number!10!}}Complex numbers\dotfill10}
  50. {\sevenrm \hskip 1cm2.3.6\ $p$-adic numbers\dotfill10}
  51. {\sevenrm \hskip 1cm2.3.7\ {\write \index {!Quadratic number!11!}}Quadratic numbers\dotfill11}
  52. {\sevenrm \hskip 1cm2.3.8\ {\write \index {!Polymod!11!}}Polymods\dotfill11}
  53. {\sevenrm \hskip 1cm2.3.9\ {\write \index {!Polynomial!11!}}Polynomials\dotfill11}
  54. {\sevenrm \hskip 1cm2.3.10\ {\write \index {!Power series!11!}}Power series\dotfill11}
  55. {\sevenrm \hskip 1cm2.3.11\ {\write \index {!Rational function!11!}}Rational functions\dotfill11}
  56. {\sevenrm \hskip 1cm2.3.12\ {\write \index {!Binary quadratic form!11!}}Binary quadratic forms of positive discriminant\dotfill11}
  57. {\sevenrm \hskip 1cm2.3.13\ {\write \index {!Binary quadratic form!11!}}Binary quadratic forms of negative discriminant\dotfill11}
  58. {\sevenrm \hskip 1cm2.3.14\ Row and column vectors\dotfill12}
  59. {\sevenrm \hskip 1cm2.3.15\ Matrices\dotfill12}
  60. \hskip 0.5cm2.4\ The general GP input line.\dotfill12
  61. Chapter 3: Functions and Operations available in PARI and GP\dotfill13
  62. \hskip 0.5cm3.1\ Standard monadic or dyadic operators.\dotfill13
  63. {\sevenrm \hskip 1cm3.1.1\ $\pm $\dotfill13}
  64. {\sevenrm \hskip 1cm3.1.2\ $+$, $-$\dotfill13}
  65. {\sevenrm \hskip 1cm3.1.3\ $*$\dotfill13}
  66. {\sevenrm \hskip 1cm3.1.4\ $/$\dotfill13}
  67. {\sevenrm \hskip 1cm3.1.5\ $\delimiter "26E30F $\dotfill13}
  68. {\sevenrm \hskip 1cm3.1.6\ $\%$\dotfill13}
  69. {\sevenrm \hskip 1cm3.1.7\ {\write \index {!divres!14!}}divres\dotfill14}
  70. {\sevenrm \hskip 1cm3.1.8\ $\mathaccent "705E {}$\dotfill14}
  71. {\sevenrm \hskip 1cm3.1.9\ comparison and {\write \index {!boolean operators!14!}}boolean operators\dotfill14}
  72. {\sevenrm \hskip 1cm3.1.10\ sign\dotfill14}
  73. {\sevenrm \hskip 1cm3.1.11\ {\write \index {!max!14!}}max\dotfill14}
  74. {\sevenrm \hskip 1cmImportant remark.\dotfill14}
  75. \hskip 0.5cm3.2\ Conversions and similar elementary functions\dotfill15
  76. {\sevenrm \hskip 1cm3.2.1\ binary\dotfill15}
  77. {\sevenrm \hskip 1cm3.2.2\ bittest\dotfill15}
  78. {\sevenrm \hskip 1cm3.2.3\ {\write \index {!ceil!15!}}ceil\dotfill15}
  79. {\sevenrm \hskip 1cm3.2.4\ {\write \index {!changevar!15!}}changevar\dotfill15}
  80. {\sevenrm \hskip 1cm3.2.5\ {\write \index {!components!15!}}components of a PARI object\dotfill15}
  81. {\sevenrm \hskip 1cm3.2.6\ conj\dotfill16}
  82. {\sevenrm \hskip 1cm3.2.7\ cvtoi\dotfill16}
  83. {\sevenrm \hskip 1cm3.2.8\ denom\dotfill16}
  84. {\sevenrm \hskip 1cm3.2.9\ floor\dotfill16}
  85. {\sevenrm \hskip 1cm3.2.10\ frac\dotfill16}
  86. {\sevenrm \hskip 1cm3.2.11\ imag\dotfill16}
  87. {\sevenrm \hskip 1cm3.2.12\ length\dotfill17}
  88. {\sevenrm \hskip 1cm3.2.13\ lift\dotfill17}
  89. {\sevenrm \hskip 1cm3.2.14\ mod\dotfill17}
  90. {\sevenrm \hskip 1cm3.2.15\ modp\dotfill17}
  91. {\sevenrm \hskip 1cm3.2.16\ norm\dotfill17}
  92. {\sevenrm \hskip 1cm3.2.17\ norml2\dotfill17}
  93. {\sevenrm \hskip 1cm3.2.18\ numer\dotfill17}
  94. {\sevenrm \hskip 1cm3.2.19\ poly\dotfill17}
  95. {\sevenrm \hskip 1cm3.2.20\ prec\dotfill18}
  96. {\sevenrm \hskip 1cm3.2.21\ quadgen\dotfill18}
  97. {\sevenrm \hskip 1cm3.2.22\ quadpoly\dotfill18}
  98. {\sevenrm \hskip 1cm3.2.23\ real\dotfill18}
  99. {\sevenrm \hskip 1cm3.2.24\ rndtoi\dotfill18}
  100. {\sevenrm \hskip 1cm3.2.25\ round\dotfill18}
  101. {\sevenrm \hskip 1cm3.2.26\ series\dotfill19}
  102. {\sevenrm \hskip 1cm3.2.27\ setprecision\dotfill19}
  103. {\sevenrm \hskip 1cm3.2.28\ setserieslength\dotfill19}
  104. {\sevenrm \hskip 1cm3.2.29\ trunc\dotfill19}
  105. {\sevenrm \hskip 1cm3.2.30\ type\dotfill19}
  106. {\sevenrm \hskip 1cm3.2.31\ valuation\dotfill19}
  107. {\sevenrm \hskip 1cm3.2.32\ vec\dotfill20}
  108. \hskip 0.5cm3.3\ Transcendental functions.\dotfill20
  109. {\sevenrm \hskip 1cm3.3.1\ $\mathaccent "705E {}$\dotfill20}
  110. {\sevenrm \hskip 1cm3.3.2\ abs\dotfill21}
  111. {\sevenrm \hskip 1cm3.3.3\ acos\dotfill21}
  112. {\sevenrm \hskip 1cm3.3.4\ acosh\dotfill21}
  113. {\sevenrm \hskip 1cm3.3.5\ agm\dotfill21}
  114. {\sevenrm \hskip 1cm3.3.6\ asin\dotfill21}
  115. {\sevenrm \hskip 1cm3.3.7\ asinh\dotfill21}
  116. {\sevenrm \hskip 1cm3.3.8\ atan\dotfill21}
  117. {\sevenrm \hskip 1cm3.3.9\ atanh\dotfill21}
  118. {\sevenrm \hskip 1cm3.3.10\ bernreal\dotfill21}
  119. {\sevenrm \hskip 1cm3.3.11\ bernvec\dotfill21}
  120. {\sevenrm \hskip 1cm3.3.12\ cos\dotfill21}
  121. {\sevenrm \hskip 1cm3.3.13\ cosh\dotfill22}
  122. {\sevenrm \hskip 1cm3.3.14\ dilog\dotfill22}
  123. {\sevenrm \hskip 1cm3.3.15\ eint1\dotfill22}
  124. {\sevenrm \hskip 1cm3.3.16\ erfc\dotfill22}
  125. {\sevenrm \hskip 1cm3.3.17\ eta\dotfill22}
  126. {\sevenrm \hskip 1cm3.3.18\ euler\dotfill22}
  127. {\sevenrm \hskip 1cm3.3.19\ exp\dotfill22}
  128. {\sevenrm \hskip 1cm3.3.20\ gamh\dotfill22}
  129. {\sevenrm \hskip 1cm3.3.21\ gamma\dotfill22}
  130. {\sevenrm \hskip 1cm3.3.22\ hyperu\dotfill22}
  131. {\sevenrm \hskip 1cm3.3.23\ incgam\dotfill22}
  132. {\sevenrm \hskip 1cm3.3.24\ jbesselh\dotfill23}
  133. {\sevenrm \hskip 1cm3.3.25\ jell\dotfill23}
  134. {\sevenrm \hskip 1cm3.3.26\ kbessel\dotfill23}
  135. {\sevenrm \hskip 1cm3.3.27\ ln\dotfill23}
  136. {\sevenrm \hskip 1cm3.3.28\ lngamma\dotfill23}
  137. {\sevenrm \hskip 1cm3.3.29\ logagm\dotfill23}
  138. {\sevenrm \hskip 1cm3.3.30\ pi\dotfill23}
  139. {\sevenrm \hskip 1cm3.3.31\ polylog\dotfill23}
  140. {\sevenrm \hskip 1cm3.3.32\ polylogd\dotfill23}
  141. {\sevenrm \hskip 1cm3.3.33\ polylogp\dotfill24}
  142. {\sevenrm \hskip 1cm3.3.34\ psi\dotfill24}
  143. {\sevenrm \hskip 1cm3.3.35\ sin\dotfill24}
  144. {\sevenrm \hskip 1cm3.3.36\ sinh\dotfill24}
  145. {\sevenrm \hskip 1cm3.3.37\ sqr\dotfill24}
  146. {\sevenrm \hskip 1cm3.3.38\ sqrt\dotfill24}
  147. {\sevenrm \hskip 1cm3.3.39\ tan\dotfill24}
  148. {\sevenrm \hskip 1cm3.3.40\ tanh\dotfill24}
  149. {\sevenrm \hskip 1cm3.3.41\ teich\dotfill24}
  150. {\sevenrm \hskip 1cm3.3.42\ wf\dotfill24}
  151. {\sevenrm \hskip 1cm3.3.43\ wf2\dotfill24}
  152. {\sevenrm \hskip 1cm3.3.44\ zeta\dotfill25}
  153. \hskip 0.5cm3.4\ Arithmetic functions.\dotfill25
  154. {\sevenrm \hskip 1cm3.4.1\ bezout\dotfill25}
  155. {\sevenrm \hskip 1cm3.4.2\ bigomega\dotfill25}
  156. {\sevenrm \hskip 1cm3.4.3\ bin\dotfill25}
  157. {\sevenrm \hskip 1cm3.4.4\ boundcf\dotfill25}
  158. {\sevenrm \hskip 1cm3.4.5\ boundfact\dotfill25}
  159. {\sevenrm \hskip 1cm3.4.6\ cf\dotfill25}
  160. {\sevenrm \hskip 1cm3.4.7\ cf2\dotfill26}
  161. {\sevenrm \hskip 1cm3.4.8\ chinese\dotfill26}
  162. {\sevenrm \hskip 1cm3.4.9\ classno\dotfill26}
  163. {\sevenrm \hskip 1cm3.4.10\ content\dotfill26}
  164. {\sevenrm \hskip 1cm3.4.11\ divisors\dotfill26}
  165. {\sevenrm \hskip 1cm3.4.12\ fact\dotfill26}
  166. {\sevenrm \hskip 1cm3.4.13\ factfq\dotfill26}
  167. {\sevenrm \hskip 1cm3.4.14\ factmod\dotfill26}
  168. {\sevenrm \hskip 1cm3.4.15\ factor\dotfill27}
  169. {\sevenrm \hskip 1cm3.4.16\ fibo\dotfill27}
  170. {\sevenrm \hskip 1cm3.4.17\ gcd\dotfill27}
  171. {\sevenrm \hskip 1cm3.4.18\ hclassno\dotfill27}
  172. {\sevenrm \hskip 1cm3.4.19\ hilb\dotfill27}
  173. {\sevenrm \hskip 1cm3.4.20\ isfund\dotfill27}
  174. {\sevenrm \hskip 1cm3.4.21\ isprime\dotfill27}
  175. {\sevenrm \hskip 1cm3.4.22\ ispsp\dotfill27}
  176. {\sevenrm \hskip 1cm3.4.23\ isqrt\dotfill27}
  177. {\sevenrm \hskip 1cm3.4.24\ issqfree\dotfill27}
  178. {\sevenrm \hskip 1cm3.4.25\ issquare\dotfill28}
  179. {\sevenrm \hskip 1cm3.4.26\ kronecker\dotfill28}
  180. {\sevenrm \hskip 1cm3.4.27\ lcm\dotfill28}
  181. {\sevenrm \hskip 1cm3.4.28\ mu\dotfill28}
  182. {\sevenrm \hskip 1cm3.4.29\ nextprime\dotfill28}
  183. {\sevenrm \hskip 1cm3.4.30\ numdiv\dotfill28}
  184. {\sevenrm \hskip 1cm3.4.31\ omega\dotfill28}
  185. {\sevenrm \hskip 1cm3.4.32\ order\dotfill28}
  186. {\sevenrm \hskip 1cm3.4.33\ pf\dotfill28}
  187. {\sevenrm \hskip 1cm3.4.34\ phi\dotfill28}
  188. {\sevenrm \hskip 1cm3.4.35\ pnqn\dotfill28}
  189. {\sevenrm \hskip 1cm3.4.36\ prime\dotfill29}
  190. {\sevenrm \hskip 1cm3.4.37\ primes\dotfill29}
  191. {\sevenrm \hskip 1cm3.4.38\ primroot\dotfill29}
  192. {\sevenrm \hskip 1cm3.4.39\ qfi\dotfill29}
  193. {\sevenrm \hskip 1cm3.4.40\ qfr\dotfill29}
  194. {\sevenrm \hskip 1cm3.4.41\ regula\dotfill29}
  195. {\sevenrm \hskip 1cm3.4.42\ sigma\dotfill29}
  196. {\sevenrm \hskip 1cm3.4.43\ sigmak\dotfill29}
  197. {\sevenrm \hskip 1cm3.4.44\ smallfact\dotfill29}
  198. {\sevenrm \hskip 1cm3.4.45\ unit\dotfill29}
  199. \hskip 0.5cm3.5\ Functions related to elliptic curves.\dotfill29
  200. {\sevenrm \hskip 1cm3.5.1\ addell\dotfill30}
  201. {\sevenrm \hskip 1cm3.5.2\ anell\dotfill30}
  202. {\sevenrm \hskip 1cm3.5.3\ apell\dotfill30}
  203. {\sevenrm \hskip 1cm3.5.4\ apell2\dotfill30}
  204. {\sevenrm \hskip 1cm3.5.5\ chell\dotfill30}
  205. {\sevenrm \hskip 1cm3.5.6\ chptell\dotfill30}
  206. {\sevenrm \hskip 1cm3.5.7\ globalred\dotfill30}
  207. {\sevenrm \hskip 1cm3.5.8\ hell\dotfill31}
  208. {\sevenrm \hskip 1cm3.5.9\ hell2\dotfill31}
  209. {\sevenrm \hskip 1cm3.5.10\ initell\dotfill31}
  210. {\sevenrm \hskip 1cm3.5.11\ isoncurve\dotfill32}
  211. {\sevenrm \hskip 1cm3.5.12\ localred\dotfill32}
  212. {\sevenrm \hskip 1cm3.5.13\ matell\dotfill32}
  213. {\sevenrm \hskip 1cm3.5.14\ ordell\dotfill32}
  214. {\sevenrm \hskip 1cm3.5.15\ powell\dotfill32}
  215. {\sevenrm \hskip 1cm3.5.16\ smallinitell\dotfill32}
  216. {\sevenrm \hskip 1cm3.5.17\ subell\dotfill32}
  217. {\sevenrm \hskip 1cm3.5.18\ zell\dotfill33}
  218. \hskip 0.5cm3.6\ Polynomial and power series functions.\dotfill33
  219. {\sevenrm \hskip 1cm3.6.1\ apprpadic\dotfill33}
  220. {\sevenrm \hskip 1cm3.6.2\ base\dotfill33}
  221. {\sevenrm \hskip 1cm3.6.3\ convol\dotfill33}
  222. {\sevenrm \hskip 1cm3.6.4\ deriv\dotfill33}
  223. {\sevenrm \hskip 1cm3.6.5\ disc\dotfill33}
  224. {\sevenrm \hskip 1cm3.6.6\ discf\dotfill33}
  225. {\sevenrm \hskip 1cm3.6.7\ eval\dotfill34}
  226. {\sevenrm \hskip 1cm3.6.8\ factoredbase\dotfill34}
  227. {\sevenrm \hskip 1cm3.6.9\ factoreddiscf\dotfill34}
  228. {\sevenrm \hskip 1cm3.6.10\ factoredpolred\dotfill34}
  229. {\sevenrm \hskip 1cm3.6.11\ factorpadic\dotfill34}
  230. {\sevenrm \hskip 1cm3.6.12\ factpol\dotfill34}
  231. {\sevenrm \hskip 1cm3.6.13\ integ\dotfill34}
  232. {\sevenrm \hskip 1cm3.6.14\ laplace\dotfill34}
  233. {\sevenrm \hskip 1cm3.6.15\ legendre\dotfill34}
  234. {\sevenrm \hskip 1cm3.6.16\ newtonpoly\dotfill35}
  235. {\sevenrm \hskip 1cm3.6.17\ ordred\dotfill35}
  236. {\sevenrm \hskip 1cm3.6.18\ polint\dotfill35}
  237. {\sevenrm \hskip 1cm3.6.19\ polred\dotfill35}
  238. {\sevenrm \hskip 1cm3.6.20\ polredreal\dotfill35}
  239. {\sevenrm \hskip 1cm3.6.21\ polsym\dotfill35}
  240. {\sevenrm \hskip 1cm3.6.22\ recip\dotfill35}
  241. {\sevenrm \hskip 1cm3.6.23\ resultant\dotfill35}
  242. {\sevenrm \hskip 1cm3.6.24\ reverse\dotfill35}
  243. {\sevenrm \hskip 1cm3.6.25\ rootmod\dotfill35}
  244. {\sevenrm \hskip 1cm3.6.26\ rootmod2\dotfill36}
  245. {\sevenrm \hskip 1cm3.6.27\ rootpadic\dotfill36}
  246. {\sevenrm \hskip 1cm3.6.28\ roots\dotfill36}
  247. {\sevenrm \hskip 1cm3.6.29\ smallbase\dotfill36}
  248. {\sevenrm \hskip 1cm3.6.30\ smalldiscf\dotfill36}
  249. {\sevenrm \hskip 1cm3.6.31\ smallpolred\dotfill36}
  250. {\sevenrm \hskip 1cm3.6.32\ sturm\dotfill36}
  251. {\sevenrm \hskip 1cm3.6.33\ sturmpart\dotfill36}
  252. {\sevenrm \hskip 1cm3.6.34\ subst\dotfill36}
  253. {\sevenrm \hskip 1cm3.6.35\ taylor\dotfill36}
  254. {\sevenrm \hskip 1cm3.6.36\ tchebi\dotfill37}
  255. \hskip 0.5cm3.7\ Vectors, matrices and linear algebra.\dotfill37
  256. {\sevenrm \hskip 1cm3.7.1\ adj\dotfill37}
  257. {\sevenrm \hskip 1cm3.7.2\ algdep\dotfill37}
  258. {\sevenrm \hskip 1cm3.7.3\ algdep2\dotfill37}
  259. {\sevenrm \hskip 1cm3.7.4\ char\dotfill37}
  260. {\sevenrm \hskip 1cm3.7.5\ char2\dotfill37}
  261. {\sevenrm \hskip 1cm3.7.6\ concat\dotfill37}
  262. {\sevenrm \hskip 1cm3.7.7\ det\dotfill37}
  263. {\sevenrm \hskip 1cm3.7.8\ eigen\dotfill38}
  264. {\sevenrm \hskip 1cm3.7.9\ extract\dotfill38}
  265. {\sevenrm \hskip 1cm3.7.10\ gauss\dotfill38}
  266. {\sevenrm \hskip 1cm3.7.11\ hermite\dotfill38}
  267. {\sevenrm \hskip 1cm3.7.12\ hess\dotfill38}
  268. {\sevenrm \hskip 1cm3.7.13\ hilbert\dotfill38}
  269. {\sevenrm \hskip 1cm3.7.14\ indsort\dotfill38}
  270. {\sevenrm \hskip 1cm3.7.15\ jacobi\dotfill38}
  271. {\sevenrm \hskip 1cm3.7.16\ ker\dotfill38}
  272. {\sevenrm \hskip 1cm3.7.17\ keri\dotfill38}
  273. {\sevenrm \hskip 1cm3.7.18\ kerr\dotfill39}
  274. {\sevenrm \hskip 1cm3.7.19\ image\dotfill39}
  275. {\sevenrm \hskip 1cm3.7.20\ lindep\dotfill39}
  276. {\sevenrm \hskip 1cm3.7.21\ lindep2\dotfill39}
  277. {\sevenrm \hskip 1cm3.7.22\ lll\dotfill39}
  278. {\sevenrm \hskip 1cm3.7.23\ lllgram\dotfill39}
  279. {\sevenrm \hskip 1cm3.7.24\ lllrat\dotfill39}
  280. {\sevenrm \hskip 1cm3.7.25\ mat\dotfill39}
  281. {\sevenrm \hskip 1cm3.7.26\ matextract\dotfill39}
  282. {\sevenrm \hskip 1cm3.7.27\ minim\dotfill40}
  283. {\sevenrm \hskip 1cm3.7.28\ pascal\dotfill40}
  284. {\sevenrm \hskip 1cm3.7.29\ rank\dotfill40}
  285. {\sevenrm \hskip 1cm3.7.30\ signat\dotfill40}
  286. {\sevenrm \hskip 1cm3.7.31\ smith\dotfill40}
  287. {\sevenrm \hskip 1cm3.7.32\ sort\dotfill40}
  288. {\sevenrm \hskip 1cm3.7.33\ sqred\dotfill40}
  289. {\sevenrm \hskip 1cm3.7.34\ supplement\dotfill40}
  290. {\sevenrm \hskip 1cm3.7.35\ trace\dotfill40}
  291. {\sevenrm \hskip 1cm3.7.36\ trans\dotfill41}
  292. \hskip 0.5cm3.8\ Sums, products, integrals and similar functions.\dotfill41
  293. {\sevenrm \hskip 1cm3.8.1\ divsum\dotfill41}
  294. {\sevenrm \hskip 1cm3.8.2\ hvector\dotfill41}
  295. {\sevenrm \hskip 1cm3.8.3\ (numerical) integration\dotfill41}
  296. {\sevenrm \hskip 1cm3.8.4\ intgen\dotfill41}
  297. {\sevenrm \hskip 1cm3.8.5\ intinf\dotfill41}
  298. {\sevenrm \hskip 1cm3.8.6\ intnum\dotfill41}
  299. {\sevenrm \hskip 1cm3.8.7\ intopen\dotfill42}
  300. {\sevenrm \hskip 1cm3.8.8\ matrix\dotfill42}
  301. {\sevenrm \hskip 1cm3.8.9\ plot\dotfill42}
  302. {\sevenrm \hskip 1cm3.8.10\ ploth\dotfill42}
  303. {\sevenrm \hskip 1cm3.8.11\ ploth2\dotfill42}
  304. {\sevenrm \hskip 1cm3.8.12\ prod\dotfill42}
  305. {\sevenrm \hskip 1cm3.8.13\ prodeuler\dotfill42}
  306. {\sevenrm \hskip 1cm3.8.14\ prodinf\dotfill42}
  307. {\sevenrm \hskip 1cm3.8.15\ prodinf1\dotfill43}
  308. {\sevenrm \hskip 1cm3.8.16\ solve\dotfill43}
  309. {\sevenrm \hskip 1cm3.8.17\ sum\dotfill43}
  310. {\sevenrm \hskip 1cm3.8.18\ sumalt\dotfill43}
  311. {\sevenrm \hskip 1cm3.8.19\ suminf\dotfill43}
  312. {\sevenrm \hskip 1cm3.8.20\ sumpos\dotfill43}
  313. {\sevenrm \hskip 1cm3.8.21\ vector\dotfill43}
  314. {\sevenrm \hskip 1cm3.8.22\ vvector\dotfill43}
  315. \hskip 0.5cm3.9\ Programming under GP and user-defined functions.\dotfill43
  316. {\sevenrm \hskip 1cm3.9.1\ {\write \index {!Variables!43!}}Variables and symbolic expressions\dotfill43}
  317. {\sevenrm \hskip 1cm3.9.2\ {\write \index {!Expression!44!}}Expressions and {\write \index {!expression sequence!44!}}expression sequences\dotfill44}
  318. {\sevenrm \hskip 1cm3.9.3\ Control statements\dotfill44}
  319. {\sevenrm \hskip 1.5cm3.9.3.1\ for\dotfill45}
  320. {\sevenrm \hskip 1.5cm3.9.3.2\ fordiv\dotfill45}
  321. {\sevenrm \hskip 1.5cm3.9.3.3\ forprime\dotfill45}
  322. {\sevenrm \hskip 1.5cm3.9.3.4\ forstep\dotfill45}
  323. {\sevenrm \hskip 1.5cm3.9.3.5\ if\dotfill45}
  324. {\sevenrm \hskip 1.5cm3.9.3.6\ until\dotfill45}
  325. {\sevenrm \hskip 1.5cm3.9.3.7\ while\dotfill45}
  326. {\sevenrm \hskip 1cm3.9.4\ Specific functions used in GP programming\dotfill45}
  327. {\sevenrm \hskip 1.5cm3.9.4.1\ kill\dotfill45}
  328. {\sevenrm \hskip 1.5cm3.9.4.2\ pprint\dotfill45}
  329. {\sevenrm \hskip 1.5cm3.9.4.3\ pprint1\dotfill45}
  330. {\sevenrm \hskip 1.5cm3.9.4.4\ print\dotfill45}
  331. {\sevenrm \hskip 1.5cm3.9.4.5\ print1\dotfill45}
  332. {\sevenrm \hskip 1.5cm3.9.4.6\ reorder\dotfill45}
  333. {\sevenrm \hskip 1.5cm3.9.4.7\ texprint\dotfill46}
  334. {\sevenrm \hskip 1cm3.9.5\ User defined functions\dotfill46}
  335. {\sevenrm \hskip 1cm3.9.6\ Special {\write \index {!editing character!46!}}editing characters\dotfill46}
  336. {\sevenrm \hskip 1cm3.9.7\ The GP/PARI {\write \index {!programming!47!}}programming language\dotfill47}
  337. \hskip 0.5cm3.10\ Using GP under {\write \index {!gnuemacs!48!}}gnuemacs.\dotfill48
  338. Chapter 4: Programming PARI in Library Mode\dotfill51
  339. \hskip 0.5cm4.1\ Introduction: initializations, universal objects, input and output.\dotfill51
  340. {\sevenrm \hskip 1cm4.1.1\ Initializations and universal objects.\dotfill51}
  341. {\sevenrm \hskip 1cm4.1.2\ Input and output.\dotfill52}
  342. \hskip 0.5cm4.2\ Creation, destruction, and implementation of the PARI objects.\dotfill53
  343. {\sevenrm \hskip 1cm4.2.1\ Creation of PARI objects.\dotfill54}
  344. {\sevenrm \hskip 1cm4.2.2\ Implementation of the PARI types\dotfill54}
  345. {\sevenrm \hskip 1cm4.2.3\ Assignment and copying of PARI objects\dotfill57}
  346. {\sevenrm \hskip 1cm4.2.4\ Destruction of PARI objects and garbage collection\dotfill58}
  347. {\sevenrm \hskip 1cm4.2.5\ Some tricks and hints\dotfill60}
  348. \hskip 0.5cm4.3\ A complete program.\dotfill61
  349. Appendix A : Installation Guide for the UNIX Versions\dotfill67
  350. Appendix B : A sample Makefile\dotfill69
  351. Appendix C : A complete program\dotfill71
  352. Appendix D : Summary of available Constants\dotfill73
  353. Index\dotfill73
  354.