home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
High Voltage Shareware
/
high1.zip
/
high1
/
DIR9
/
ACMALG01.ZIP
/
ACM642.FOR
< prev
next >
Wrap
Text File
|
1991-02-18
|
37KB
|
913 lines
C ALGORITHM 642 COLLECTED ALGORITHMS FROM ACM.
C ALGORITHM APPEARED IN ACM-TRANS. MATH. SOFTWARE, VOL.12, NO. 2,
C JUNE, 1986, PP. 150-153.
C SUBROUTINE NAME - CUBGCV
C
C--------------------------------------------------------------------------
C
C COMPUTER - VAX/DOUBLE
C
C AUTHOR - M.F.HUTCHINSON
C CSIRO DIVISION OF MATHEMATICS AND STATISTICS
C P.O. BOX 1965
C CANBERRA, ACT 2601
C AUSTRALIA
C
C LATEST REVISION - 15 AUGUST 1985
C
C PURPOSE - CUBIC SPLINE DATA SMOOTHER
C
C USAGE - CALL CUBGCV (X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER)
C
C ARGUMENTS X - VECTOR OF LENGTH N CONTAINING THE
C ABSCISSAE OF THE N DATA POINTS
C (X(I),F(I)) I=1..N. (INPUT) X
C MUST BE ORDERED SO THAT
C X(I) .LT. X(I+1).
C F - VECTOR OF LENGTH N CONTAINING THE
C ORDINATES (OR FUNCTION VALUES)
C OF THE N DATA POINTS (INPUT).
C DF - VECTOR OF LENGTH N. (INPUT/OUTPUT)
C DF(I) IS THE RELATIVE STANDARD DEVIATION
C OF THE ERROR ASSOCIATED WITH DATA POINT I.
C EACH DF(I) MUST BE POSITIVE. THE VALUES IN
C DF ARE SCALED BY THE SUBROUTINE SO THAT
C THEIR MEAN SQUARE VALUE IS 1, AND UNSCALED
C AGAIN ON NORMAL EXIT.
C THE MEAN SQUARE VALUE OF THE DF(I) IS RETURNED
C IN WK(7) ON NORMAL EXIT.
C IF THE ABSOLUTE STANDARD DEVIATIONS ARE KNOWN,
C THESE SHOULD BE PROVIDED IN DF AND THE ERROR
C VARIANCE PARAMETER VAR (SEE BELOW) SHOULD THEN
C BE SET TO 1.
C IF THE RELATIVE STANDARD DEVIATIONS ARE UNKNOWN,
C SET EACH DF(I)=1.
C N - NUMBER OF DATA POINTS (INPUT).
C N MUST BE .GE. 3.
C Y,C - SPLINE COEFFICIENTS. (OUTPUT) Y
C IS A VECTOR OF LENGTH N. C IS
C AN N-1 BY 3 MATRIX. THE VALUE
C OF THE SPLINE APPROXIMATION AT T IS
C S(T)=((C(I,3)*D+C(I,2))*D+C(I,1))*D+Y(I)
C WHERE X(I).LE.T.LT.X(I+1) AND
C D = T-X(I).
C IC - ROW DIMENSION OF MATRIX C EXACTLY
C AS SPECIFIED IN THE DIMENSION
C STATEMENT IN THE CALLING PROGRAM. (INPUT)
C VAR - ERROR VARIANCE. (INPUT/OUTPUT)
C IF VAR IS NEGATIVE (I.E. UNKNOWN) THEN
C THE SMOOTHING PARAMETER IS DETERMINED
C BY MINIMIZING THE GENERALIZED CROSS VALIDATION
C AND AN ESTIMATE OF THE ERROR VARIANCE IS
C RETURNED IN VAR.
C IF VAR IS NON-NEGATIVE (I.E. KNOWN) THEN THE
C SMOOTHING PARAMETER IS DETERMINED TO MINIMIZE
C AN ESTIMATE, WHICH DEPENDS ON VAR, OF THE TRUE
C MEAN SQUARE ERROR, AND VAR IS UNCHANGED.
C IN PARTICULAR, IF VAR IS ZERO, THEN AN
C INTERPOLATING NATURAL CUBIC SPLINE IS CALCULATED.
C VAR SHOULD BE SET TO 1 IF ABSOLUTE STANDARD
C DEVIATIONS HAVE BEEN PROVIDED IN DF (SEE ABOVE).
C JOB - JOB SELECTION PARAMETER. (INPUT)
C JOB = 0 SHOULD BE SELECTED IF POINT STANDARD ERROR
C ESTIMATES ARE NOT REQUIRED IN SE.
C JOB = 1 SHOULD BE SELECTED IF POINT STANDARD ERROR
C ESTIMATES ARE REQUIRED IN SE.
C SE - VECTOR OF LENGTH N CONTAINING BAYESIAN STANDARD
C ERROR ESTIMATES OF THE FITTED SPLINE VALUES IN Y.
C SE IS NOT REFERENCED IF JOB=0. (OUTPUT)
C WK - WORK VECTOR OF LENGTH 7*(N + 2). ON NORMAL EXIT THE
C FIRST 7 VALUES OF WK ARE ASSIGNED AS FOLLOWS:-
C
C WK(1) = SMOOTHING PARAMETER (= RHO/(RHO + 1))
C WK(2) = ESTIMATE OF THE NUMBER OF DEGREES OF
C FREEDOM OF THE RESIDUAL SUM OF SQUARES
C WK(3) = GENERALIZED CROSS VALIDATION
C WK(4) = MEAN SQUARE RESIDUAL
C WK(5) = ESTIMATE OF THE TRUE MEAN SQUARE ERROR
C AT THE DATA POINTS
C WK(6) = ESTIMATE OF THE ERROR VARIANCE
C WK(7) = MEAN SQUARE VALUE OF THE DF(I)
C
C IF WK(1)=0 (RHO=0) AN INTERPOLATING NATURAL CUBIC
C SPLINE HAS BEEN CALCULATED.
C IF WK(1)=1 (RHO=INFINITE) A LEAST SQUARES
C REGRESSION LINE HAS BEEN CALCULATED.
C WK(2) IS AN ESTIMATE OF THE NUMBER OF DEGREES OF
C FREEDOM OF THE RESIDUAL WHICH REDUCES TO THE
C USUAL VALUE OF N-2 WHEN A LEAST SQUARES REGRESSION
C LINE IS CALCULATED.
C WK(3),WK(4),WK(5) ARE CALCULATED WITH THE DF(I)
C SCALED TO HAVE MEAN SQUARE VALUE 1. THE
C UNSCALED VALUES OF WK(3),WK(4),WK(5) MAY BE
C CALCULATED BY DIVIDING BY WK(7).
C WK(6) COINCIDES WITH THE OUTPUT VALUE OF VAR IF
C VAR IS NEGATIVE ON INPUT. IT IS CALCULATED WITH
C THE UNSCALED VALUES OF THE DF(I) TO FACILITATE
C COMPARISONS WITH A PRIORI VARIANCE ESTIMATES.
C
C IER - ERROR PARAMETER. (OUTPUT)
C TERMINAL ERROR
C IER = 129, IC IS LESS THAN N-1.
C IER = 130, N IS LESS THAN 3.
C IER = 131, INPUT ABSCISSAE ARE NOT
C ORDERED SO THAT X(I).LT.X(I+1).
C IER = 132, DF(I) IS NOT POSITIVE FOR SOME I.
C IER = 133, JOB IS NOT 0 OR 1.
C
C PRECISION/HARDWARE - DOUBLE
C
C REQUIRED ROUTINES - SPINT1,SPFIT1,SPCOF1,SPERR1
C
C REMARKS THE NUMBER OF ARITHMETIC OPERATIONS REQUIRED BY THE
C SUBROUTINE IS PROPORTIONAL TO N. THE SUBROUTINE
C USES AN ALGORITHM DEVELOPED BY M.F. HUTCHINSON AND
C F.R. DE HOOG, 'SMOOTHING NOISY DATA WITH SPLINE
C FUNCTIONS', NUMER. MATH. (IN PRESS)
C
C-----------------------------------------------------------------------
C
SUBROUTINE CUBGCV(X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER)
C
C---SPECIFICATIONS FOR ARGUMENTS---
INTEGER N,IC,JOB,IER
DOUBLE PRECISION X(N),F(N),DF(N),Y(N),C(IC,3),SE(N),VAR,
. WK(0:N+1,7)
C
C---SPECIFICATIONS FOR LOCAL VARIABLES---
DOUBLE PRECISION DELTA,ERR,GF1,GF2,GF3,GF4,R1,R2,R3,R4,TAU,RATIO,
. AVH,AVDF,AVAR,ZERO,ONE,STAT(6),P,Q
C
DATA RATIO/2.0D0/
DATA TAU/1.618033989D0/
DATA ZERO,ONE/0.0D0,1.0D0/
C
C---INITIALIZE---
IER = 133
IF (JOB.LT.0 .OR. JOB.GT.1) GO TO 140
CALL SPINT1(X,AVH,F,DF,AVDF,N,Y,C,IC,WK,WK(0,4),IER)
IF (IER.NE.0) GO TO 140
AVAR = VAR
IF (VAR.GT.ZERO) AVAR = VAR*AVDF*AVDF
C
C---CHECK FOR ZERO VARIANCE---
IF (VAR.NE.ZERO) GO TO 10
R1 = ZERO
GO TO 90
C
C---FIND LOCAL MINIMUM OF GCV OR THE EXPECTED MEAN SQUARE ERROR---
10 R1 = ONE
R2 = RATIO*R1
CALL SPFIT1(X,AVH,DF,N,R2,P,Q,GF2,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
20 CALL SPFIT1(X,AVH,DF,N,R1,P,Q,GF1,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
IF (GF1.GT.GF2) GO TO 30
C
C---EXIT IF P ZERO---
IF (P.LE.ZERO) GO TO 100
R2 = R1
GF2 = GF1
R1 = R1/RATIO
GO TO 20
30 R3 = RATIO*R2
40 CALL SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
IF (GF3.GT.GF2) GO TO 50
C
C---EXIT IF Q ZERO---
IF (Q.LE.ZERO) GO TO 100
R2 = R3
GF2 = GF3
R3 = RATIO*R3
GO TO 40
50 R2 = R3
GF2 = GF3
DELTA = (R2-R1)/TAU
R4 = R1 + DELTA
R3 = R2 - DELTA
CALL SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
CALL SPFIT1(X,AVH,DF,N,R4,P,Q,GF4,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
C
C---GOLDEN SECTION SEARCH FOR LOCAL MINIMUM---
60 IF (GF3.GT.GF4) GO TO 70
R2 = R4
GF2 = GF4
R4 = R3
GF4 = GF3
DELTA = DELTA/TAU
R3 = R2 - DELTA
CALL SPFIT1(X,AVH,DF,N,R3,P,Q,GF3,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
GO TO 80
70 R1 = R3
GF1 = GF3
R3 = R4
GF3 = GF4
DELTA = DELTA/TAU
R4 = R1 + DELTA
CALL SPFIT1(X,AVH,DF,N,R4,P,Q,GF4,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
80 ERR = (R2-R1)/ (R1+R2)
IF (ERR*ERR+ONE.GT.ONE .AND. ERR.GT.1.0D-6) GO TO 60
R1 = (R1+R2)*0.5D0
C
C---CALCULATE SPLINE COEFFICIENTS---
90 CALL SPFIT1(X,AVH,DF,N,R1,P,Q,GF1,AVAR,STAT,Y,C,IC,WK,WK(0,4),
. WK(0,6),WK(0,7))
100 CALL SPCOF1(X,AVH,F,DF,N,P,Q,Y,C,IC,WK(0,6),WK(0,7))
C
C---OPTIONALLY CALCULATE STANDARD ERROR ESTIMATES---
IF (VAR.GE.ZERO) GO TO 110
AVAR = STAT(6)
VAR = AVAR/ (AVDF*AVDF)
110 IF (JOB.EQ.1) CALL SPERR1(X,AVH,DF,N,WK,P,AVAR,SE)
C
C---UNSCALE DF---
DO 120 I = 1,N
DF(I) = DF(I)*AVDF
120 CONTINUE
C
C--PUT STATISTICS IN WK---
DO 130 I = 0,5
WK(I,1) = STAT(I+1)
130 CONTINUE
WK(5,1) = STAT(6)/ (AVDF*AVDF)
WK(6,1) = AVDF*AVDF
GO TO 150
C
C---CHECK FOR ERROR CONDITION---
140 CONTINUE
C IF (IER.NE.0) CONTINUE
150 RETURN
END
SUBROUTINE SPINT1(X,AVH,Y,DY,AVDY,N,A,C,IC,R,T,IER)
C
C INITIALIZES THE ARRAYS C, R AND T FOR ONE DIMENSIONAL CUBIC
C SMOOTHING SPLINE FITTING BY SUBROUTINE SPFIT1. THE VALUES
C DF(I) ARE SCALED SO THAT THE SUM OF THEIR SQUARES IS N
C AND THE AVERAGE OF THE DIFFERENCES X(I+1) - X(I) IS CALCULATED
C IN AVH IN ORDER TO AVOID UNDERFLOW AND OVERFLOW PROBLEMS IN
C SPFIT1.
C
C SUBROUTINE SETS IER IF ELEMENTS OF X ARE NON-INCREASING,
C IF N IS LESS THAN 3, IF IC IS LESS THAN N-1 OR IF DY(I) IS
C NOT POSITIVE FOR SOME I.
C
C---SPECIFICATIONS FOR ARGUMENTS---
INTEGER N,IC,IER
DOUBLE PRECISION X(N),Y(N),DY(N),A(N),C(IC,3),R(0:N+1,3),
. T(0:N+1,2),AVH,AVDY
C
C---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER I
DOUBLE PRECISION E,F,G,H,ZERO
DATA ZERO/0.0D0/
C
C---INITIALIZATION AND INPUT CHECKING---
IER = 0
IF (N.LT.3) GO TO 60
IF (IC.LT.N-1) GO TO 70
C
C---GET AVERAGE X SPACING IN AVH---
G = ZERO
DO 10 I = 1,N - 1
H = X(I+1) - X(I)
IF (H.LE.ZERO) GO TO 80
G = G + H
10 CONTINUE
AVH = G/ (N-1)
C
C---SCALE RELATIVE WEIGHTS---
G = ZERO
DO 20 I = 1,N
IF (DY(I).LE.ZERO) GO TO 90
G = G + DY(I)*DY(I)
20 CONTINUE
AVDY = DSQRT(G/N)
C
DO 30 I = 1,N
DY(I) = DY(I)/AVDY
30 CONTINUE
C
C---INITIALIZE H,F---
H = (X(2)-X(1))/AVH
F = (Y(2)-Y(1))/H
C
C---CALCULATE A,T,R---
DO 40 I = 2,N - 1
G = H
H = (X(I+1)-X(I))/AVH
E = F
F = (Y(I+1)-Y(I))/H
A(I) = F - E
T(I,1) = 2.0D0* (G+H)/3.0D0
T(I,2) = H/3.0D0
R(I,3) = DY(I-1)/G
R(I,1) = DY(I+1)/H
R(I,2) = -DY(I)/G - DY(I)/H
40 CONTINUE
C
C---CALCULATE C = R'*R---
R(N,2) = ZERO
R(N,3) = ZERO
R(N+1,3) = ZERO
DO 50 I = 2,N - 1
C(I,1) = R(I,1)*R(I,1) + R(I,2)*R(I,2) + R(I,3)*R(I,3)
C(I,2) = R(I,1)*R(I+1,2) + R(I,2)*R(I+1,3)
C(I,3) = R(I,1)*R(I+2,3)
50 CONTINUE
RETURN
C
C---ERROR CONDITIONS---
60 IER = 130
RETURN
70 IER = 129
RETURN
80 IER = 131
RETURN
90 IER = 132
RETURN
END
SUBROUTINE SPFIT1(X,AVH,DY,N,RHO,P,Q,FUN,VAR,STAT,A,C,IC,R,T,U,V)
C
C FITS A CUBIC SMOOTHING SPLINE TO DATA WITH RELATIVE
C WEIGHTING DY FOR A GIVEN VALUE OF THE SMOOTHING PARAMETER
C RHO USING AN ALGORITHM BASED ON THAT OF C.H. REINSCH (1967),
C NUMER. MATH. 10, 177-183.
C
C THE TRACE OF THE INFLUENCE MATRIX IS CALCULATED USING AN
C ALGORITHM DEVELOPED BY M.F.HUTCHINSON AND F.R.DE HOOG (NUMER.
C MATH., IN PRESS), ENABLING THE GENERALIZED CROSS VALIDATION
C AND RELATED STATISTICS TO BE CALCULATED IN ORDER N OPERATIONS.
C
C THE ARRAYS A, C, R AND T ARE ASSUMED TO HAVE BEEN INITIALIZED
C BY THE SUBROUTINE SPINT1. OVERFLOW AND UNDERFLOW PROBLEMS ARE
C AVOIDED BY USING P=RHO/(1 + RHO) AND Q=1/(1 + RHO) INSTEAD OF
C RHO AND BY SCALING THE DIFFERENCES X(I+1) - X(I) BY AVH.
C
C THE VALUES IN DF ARE ASSUMED TO HAVE BEEN SCALED SO THAT THE
C SUM OF THEIR SQUARED VALUES IS N. THE VALUE IN VAR, WHEN IT IS
C NON-NEGATIVE, IS ASSUMED TO HAVE BEEN SCALED TO COMPENSATE FOR
C THE SCALING OF THE VALUES IN DF.
C
C THE VALUE RETURNED IN FUN IS AN ESTIMATE OF THE TRUE MEAN SQUARE
C WHEN VAR IS NON-NEGATIVE, AND IS THE GENERALIZED CROSS VALIDATION
C WHEN VAR IS NEGATIVE.
C
C---SPECIFICATIONS FOR ARGUMENTS---
INTEGER IC,N
DOUBLE PRECISION X(N),DY(N),RHO,STAT(6),A(N),C(IC,3),R(0:N+1,3),
. T(0:N+1,2),U(0:N+1),V(0:N+1),FUN,VAR,AVH,P,Q
C
C---LOCAL VARIABLES---
INTEGER I
DOUBLE PRECISION E,F,G,H,ZERO,ONE,TWO,RHO1
DATA ZERO,ONE,TWO/0.0D0,1.0D0,2.0D0/
C
C---USE P AND Q INSTEAD OF RHO TO PREVENT OVERFLOW OR UNDERFLOW---
RHO1 = ONE + RHO
P = RHO/RHO1
Q = ONE/RHO1
IF (RHO1.EQ.ONE) P = ZERO
IF (RHO1.EQ.RHO) Q = ZERO
C
C---RATIONAL CHOLESKY DECOMPOSITION OF P*C + Q*T---
F = ZERO
G = ZERO
H = ZERO
DO 10 I = 0,1
R(I,1) = ZERO
10 CONTINUE
DO 20 I = 2,N - 1
R(I-2,3) = G*R(I-2,1)
R(I-1,2) = F*R(I-1,1)
R(I,1) = ONE/ (P*C(I,1)+Q*T(I,1)-F*R(I-1,2)-G*R(I-2,3))
F = P*C(I,2) + Q*T(I,2) - H*R(I-1,2)
G = H
H = P*C(I,3)
20 CONTINUE
C
C---SOLVE FOR U---
U(0) = ZERO
U(1) = ZERO
DO 30 I = 2,N - 1
U(I) = A(I) - R(I-1,2)*U(I-1) - R(I-2,3)*U(I-2)
30 CONTINUE
U(N) = ZERO
U(N+1) = ZERO
DO 40 I = N - 1,2,-1
U(I) = R(I,1)*U(I) - R(I,2)*U(I+1) - R(I,3)*U(I+2)
40 CONTINUE
C
C---CALCULATE RESIDUAL VECTOR V---
E = ZERO
H = ZERO
DO 50 I = 1,N - 1
G = H
H = (U(I+1)-U(I))/ ((X(I+1)-X(I))/AVH)
V(I) = DY(I)* (H-G)
E = E + V(I)*V(I)
50 CONTINUE
V(N) = DY(N)* (-H)
E = E + V(N)*V(N)
C
C---CALCULATE UPPER THREE BANDS OF INVERSE MATRIX---
R(N,1) = ZERO
R(N,2) = ZERO
R(N+1,1) = ZERO
DO 60 I = N - 1,2,-1
G = R(I,2)
H = R(I,3)
R(I,2) = -G*R(I+1,1) - H*R(I+1,2)
R(I,3) = -G*R(I+1,2) - H*R(I+2,1)
R(I,1) = R(I,1) - G*R(I,2) - H*R(I,3)
60 CONTINUE
C
C---CALCULATE TRACE---
F = ZERO
G = ZERO
H = ZERO
DO 70 I = 2,N - 1
F = F + R(I,1)*C(I,1)
G = G + R(I,2)*C(I,2)
H = H + R(I,3)*C(I,3)
70 CONTINUE
F = F + TWO* (G+H)
C
C---CALCULATE STATISTICS---
STAT(1) = P
STAT(2) = F*P
STAT(3) = N*E/ (F*F)
STAT(4) = E*P*P/N
STAT(6) = E*P/F
IF (VAR.GE.ZERO) GO TO 80
STAT(5) = STAT(6) - STAT(4)
FUN = STAT(3)
GO TO 90
80 STAT(5) = DMAX1(STAT(4)-TWO*VAR*STAT(2)/N+VAR,ZERO)
FUN = STAT(5)
90 RETURN
END
SUBROUTINE SPERR1(X,AVH,DY,N,R,P,VAR,SE)
C
C CALCULATES BAYESIAN ESTIMATES OF THE STANDARD ERRORS OF THE FITTED
C VALUES OF A CUBIC SMOOTHING SPLINE BY CALCULATING THE DIAGONAL ELEMENTS
C OF THE INFLUENCE MATRIX.
C
C---SPECIFICATIONS FOR ARGUMENTS---
INTEGER N
DOUBLE PRECISION X(N),DY(N),R(0:N+1,3),SE(N),AVH,P,VAR
C
C---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER I
DOUBLE PRECISION F,G,H,F1,G1,H1,ZERO,ONE
DATA ZERO,ONE/0.0D0,1.0D0/
C
C---INITIALIZE---
H = AVH/ (X(2)-X(1))
SE(1) = ONE - P*DY(1)*DY(1)*H*H*R(2,1)
R(1,1) = ZERO
R(1,2) = ZERO
R(1,3) = ZERO
C
C---CALCULATE DIAGONAL ELEMENTS---
DO 10 I = 2,N - 1
F = H
H = AVH/ (X(I+1)-X(I))
G = -F - H
F1 = F*R(I-1,1) + G*R(I-1,2) + H*R(I-1,3)
G1 = F*R(I-1,2) + G*R(I,1) + H*R(I,2)
H1 = F*R(I-1,3) + G*R(I,2) + H*R(I+1,1)
SE(I) = ONE - P*DY(I)*DY(I)* (F*F1+G*G1+H*H1)
10 CONTINUE
SE(N) = ONE - P*DY(N)*DY(N)*H*H*R(N-1,1)
C
C---CALCULATE STANDARD ERROR ESTIMATES---
DO 20 I = 1,N
SE(I) = DSQRT(DMAX1(SE(I)*VAR,ZERO))*DY(I)
20 CONTINUE
RETURN
END
SUBROUTINE SPCOF1(X,AVH,Y,DY,N,P,Q,A,C,IC,U,V)
C
C CALCULATES COEFFICIENTS OF A CUBIC SMOOTHING SPLINE FROM
C PARAMETERS CALCULATED BY SUBROUTINE SPFIT1.
C
C---SPECIFICATIONS FOR ARGUMENTS---
INTEGER IC,N
DOUBLE PRECISION X(N),Y(N),DY(N),P,Q,A(N),C(IC,3),U(0:N+1),
. V(0:N+1),AVH
C
C---SPECIFICATIONS FOR LOCAL VARIABLES---
INTEGER I
DOUBLE PRECISION H,QH
C
C---CALCULATE A---
QH = Q/ (AVH*AVH)
DO 10 I = 1,N
A(I) = Y(I) - P*DY(I)*V(I)
U(I) = QH*U(I)
10 CONTINUE
C
C---CALCULATE C---
DO 20 I = 1,N - 1
H = X(I+1) - X(I)
C(I,3) = (U(I+1)-U(I))/ (3.0D0*H)
C(I,1) = (A(I+1)-A(I))/H - (H*C(I,3)+U(I))*H
C(I,2) = U(I)
20 CONTINUE
RETURN
END
C CUBGCV TEST DRIVER
C ------------------
C
C AUTHOR - M.F.HUTCHINSON
C CSIRO DIVISION OF WATER AND LAND RESOURCES
C GPO BOX 1666
C CANBERRA ACT 2601
C AUSTRALIA
C
C LATEST REVISION - 7 AUGUST 1986
C
C COMPUTER - VAX/DOUBLE
C
C USAGE - MAIN PROGRAM
C
C REQUIRED ROUTINES - CUBGCV,SPINT1,SPFIT1,SPCOF1,SPERR1,GGRAND
C
C REMARKS USES SUBROUTINE CUBGCV TO FIT A CUBIC SMOOTHING SPLINE
C TO 50 DATA POINTS WHICH ARE GENERATED BY ADDING A RANDOM
C VARIABLE WITH UNIFORM DENSITY IN THE INTERVAL [-0.3,0.3]
C TO 50 POINTS SAMPLED FROM THE CURVE Y=SIN(3*PI*X/2).
C RANDOM DEVIATES IN THE INTERVAL [0,1] ARE GENERATED BY THE
C DOUBLE PRECISION FUNCTION GGRAND (SIMILAR TO IMSL FUNCTION
C GGUBFS). THE ABSCISSAE ARE UNEQUALLY SPACED IN [0,1].
C
C POINT STANDARD ERROR ESTIMATES ARE RETURNED IN SE BY
C SETTING JOB=1. THE ERROR VARIANCE ESTIMATE IS RETURNED
C IN VAR. IT COMPARES FAVOURABLY WITH THE TRUE VALUE OF 0.03.
C SUMMARY STATISTICS FROM THE ARRAY WK ARE WRITTEN TO
C UNIT 6. DATA VALUES AND FITTED VALUES WITH ESTIMATED
C STANDARD ERRORS ARE ALSO WRITTEN TO UNIT 6.
C
PARAMETER (N=50, IC=49)
C
INTEGER JOB,IER
DOUBLE PRECISION X(N),F(N),Y(N),DF(N),C(IC,3),WK(7*(N+2)),
* VAR,SE(N)
DOUBLE PRECISION GGRAND,DSEED
C
C---INITIALIZE---
DSEED=1.2345D4
JOB=1
VAR=-1.0D0
C
C---CALCULATE DATA POINTS---
DO 10 I=1,N
X(I)=(I - 0.5)/N + (2.0*GGRAND(DSEED) - 1.0)/(3.0*N)
F(I)=DSIN(4.71238*X(I)) + (2.0*GGRAND(DSEED) - 1.0)*0.3
DF(I)=1.0D0
10 CONTINUE
C
C---FIT CUBIC SPLINE---
CALL CUBGCV(X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER)
C
C---WRITE OUT RESULTS---
WRITE(6,20)
20 FORMAT(' CUBGCV TEST DRIVER RESULTS:')
WRITE(6,30) IER,VAR,WK(3),WK(4),WK(2)
30 FORMAT(/' IER =',I4/' VAR =',F7.4/
* ' GENERALIZED CROSS VALIDATION =',F7.4/
* ' MEAN SQUARE RESIDUAL =',F7.4/
* ' RESIDUAL DEGREES OF FREEDOM =',F7.2)
WRITE(6,40)
40 FORMAT(/' INPUT DATA',17X,'OUTPUT RESULTS'//
* ' I X(I) F(I)',6X,' Y(I) SE(I)',
* ' C(I,1) C(I,2) C(I,3)')
DO 60 I=1,N-1
WRITE(6,50) I,X(I),F(I),Y(I),SE(I),(C(I,J),J=1,3)
50 FORMAT(I4,2F8.4,6X,2F8.4,3E12.4)
60 CONTINUE
WRITE(6,50) N,X(N),F(N),Y(N),SE(N)
STOP
END
DOUBLE PRECISION FUNCTION GGRAND(DSEED)
C
C DOUBLE PRECISION UNIFORM RANDOM NUMBER GENERATOR
C
C CONSTANTS: A = 7**5
C B = 2**31 - 1
C C = 2**31
C
C REFERENCE: IMSL MANUAL, CHAPTER G - GENERATION AND TESTING OF
C RANDOM NUMBERS
C
C---SPECIFICATIONS FOR ARGUMENTS---
DOUBLE PRECISION DSEED
C
C---SPECIFICATIONS FOR LOCAL VARIABLES---
DOUBLE PRECISION A,B,C,S
C
DATA A,B,C/16807.0D0, 2147483647.0D0, 2147483648.0D0/
C
S=DSEED
S=DMOD(A*S, B)
GGRAND=S/C
DSEED=S
RETURN
END
CUBGCV TEST DRIVER RESULTS:
IER = 0
VAR = 0.0279
GENERALIZED CROSS VALIDATION = 0.0318
MEAN SQUARE RESIDUAL = 0.0246
RESIDUAL DEGREES OF FREEDOM = 43.97
INPUT DATA OUTPUT RESULTS
I X(I) F(I) Y(I) SE(I) C(I,1) C(I,2) C(I,3)
1 0.0046 0.2222 0.0342 0.1004 0.3630E+01 0.0000E+00 0.2542E+02
2 0.0360 -0.1098 0.1488 0.0750 0.3705E+01 0.2391E+01 -0.9537E+01
3 0.0435 -0.0658 0.1767 0.0707 0.3740E+01 0.2175E+01 -0.4233E+02
4 0.0735 0.3906 0.2900 0.0594 0.3756E+01 -0.1642E+01 -0.2872E+02
5 0.0955 0.6054 0.3714 0.0558 0.3642E+01 -0.3535E+01 0.2911E+01
6 0.1078 0.3034 0.4155 0.0549 0.3557E+01 -0.3428E+01 -0.1225E+02
7 0.1269 0.7386 0.4822 0.0544 0.3412E+01 -0.4131E+01 0.2242E+02
8 0.1565 0.4616 0.5800 0.0543 0.3227E+01 -0.2143E+01 0.6415E+01
9 0.1679 0.4315 0.6165 0.0543 0.3180E+01 -0.1923E+01 -0.1860E+02
10 0.1869 0.5716 0.6762 0.0544 0.3087E+01 -0.2985E+01 -0.3274E+02
11 0.2149 0.6736 0.7595 0.0542 0.2843E+01 -0.5733E+01 -0.4435E+02
12 0.2356 0.7388 0.8155 0.0539 0.2549E+01 -0.8486E+01 -0.5472E+02
13 0.2557 1.1953 0.8630 0.0537 0.2139E+01 -0.1180E+02 -0.9784E+01
14 0.2674 1.0299 0.8864 0.0536 0.1860E+01 -0.1214E+02 0.9619E+01
15 0.2902 0.7981 0.9225 0.0534 0.1322E+01 -0.1149E+02 -0.7202E+01
16 0.3155 0.8973 0.9485 0.0532 0.7269E+00 -0.1203E+02 -0.1412E+02
17 0.3364 1.2695 0.9583 0.0530 0.2040E+00 -0.1292E+02 0.2796E+02
18 0.3557 0.7253 0.9577 0.0527 -0.2638E+00 -0.1130E+02 -0.3453E+01
19 0.3756 1.2127 0.9479 0.0526 -0.7176E+00 -0.1151E+02 0.3235E+02
20 0.3881 0.7304 0.9373 0.0525 -0.9889E+00 -0.1030E+02 0.4381E+01
21 0.4126 0.9810 0.9069 0.0525 -0.1486E+01 -0.9977E+01 0.1440E+02
22 0.4266 0.7117 0.8842 0.0525 -0.1756E+01 -0.9373E+01 -0.8925E+01
23 0.4566 0.7203 0.8227 0.0524 -0.2344E+01 -0.1018E+02 -0.2278E+02
24 0.4704 0.9242 0.7884 0.0524 -0.2637E+01 -0.1112E+02 -0.4419E+01
25 0.4914 0.7345 0.7281 0.0523 -0.3110E+01 -0.1140E+02 -0.3562E+01
26 0.5084 0.7378 0.6720 0.0524 -0.3500E+01 -0.1158E+02 0.5336E+01
27 0.5277 0.7441 0.6002 0.0525 -0.3941E+01 -0.1127E+02 0.2479E+02
28 0.5450 0.5612 0.5286 0.0527 -0.4310E+01 -0.9980E+01 0.2920E+02
29 0.5641 0.5049 0.4429 0.0529 -0.4659E+01 -0.8309E+01 0.3758E+02
30 0.5857 0.4725 0.3390 0.0531 -0.4964E+01 -0.5878E+01 0.5563E+02
31 0.6159 0.1380 0.1850 0.0531 -0.5167E+01 -0.8307E+00 0.4928E+02
32 0.6317 0.1412 0.1036 0.0531 -0.5157E+01 0.1499E+01 0.5437E+02
33 0.6446 -0.1110 0.0371 0.0531 -0.5091E+01 0.3614E+01 0.3434E+02
34 0.6707 -0.2605 -0.0927 0.0532 -0.4832E+01 0.6302E+01 0.1164E+02
35 0.6853 -0.1284 -0.1619 0.0533 -0.4640E+01 0.6812E+01 0.1617E+02
36 0.7064 -0.3452 -0.2564 0.0536 -0.4332E+01 0.7834E+01 0.4164E+01
37 0.7310 -0.5527 -0.3582 0.0538 -0.3939E+01 0.8141E+01 -0.2214E+02
38 0.7531 -0.3459 -0.4415 0.0540 -0.3611E+01 0.6674E+01 -0.9205E+01
39 0.7686 -0.5902 -0.4961 0.0541 -0.3410E+01 0.6245E+01 -0.2193E+02
40 0.7952 -0.7644 -0.5828 0.0541 -0.3125E+01 0.4494E+01 -0.4649E+02
41 0.8087 -0.5392 -0.6242 0.0541 -0.3029E+01 0.2614E+01 -0.3499E+02
42 0.8352 -0.4247 -0.7031 0.0539 -0.2964E+01 -0.1603E+00 0.2646E+01
43 0.8501 -0.6327 -0.7476 0.0538 -0.2967E+01 -0.4132E-01 0.1817E+02
44 0.8726 -0.9983 -0.8139 0.0538 -0.2942E+01 0.1180E+01 -0.6774E+01
45 0.8874 -0.9082 -0.8574 0.0542 -0.2911E+01 0.8778E+00 -0.1364E+02
46 0.9139 -0.8930 -0.9340 0.0566 -0.2893E+01 -0.2044E+00 -0.8094E+01
47 0.9271 -1.0233 -0.9723 0.0593 -0.2903E+01 -0.5258E+00 -0.1498E+02
48 0.9473 -0.8839 -1.0313 0.0665 -0.2942E+01 -0.1433E+01 0.4945E+01
49 0.9652 -1.0172 -1.0843 0.0766 -0.2989E+01 -0.1168E+01 0.1401E+02
50 0.9930 -1.2715 -1.1679 0.0998
Documentation:
C COMPUTER - VAX/DOUBLE
C
C AUTHOR - M.F.HUTCHINSON
C CSIRO DIVISION OF MATHEMATICS AND STATISTICS
C P.O. BOX 1965
C CANBERRA, ACT 2601
C AUSTRALIA
C
C LATEST REVISION - 15 AUGUST 1985
C
C PURPOSE - CUBIC SPLINE DATA SMOOTHER
C
C USAGE - CALL CUBGCV (X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER)
C
C ARGUMENTS X - VECTOR OF LENGTH N CONTAINING THE
C ABSCISSAE OF THE N DATA POINTS
C (X(I),F(I)) I=1..N. (INPUT) X
C MUST BE ORDERED SO THAT
C X(I) .LT. X(I+1).
C F - VECTOR OF LENGTH N CONTAINING THE
C ORDINATES (OR FUNCTION VALUES)
C OF THE N DATA POINTS (INPUT).
C DF - VECTOR OF LENGTH N. (INPUT/OUTPUT)
C DF(I) IS THE RELATIVE STANDARD DEVIATION
C OF THE ERROR ASSOCIATED WITH DATA POINT I.
C EACH DF(I) MUST BE POSITIVE. THE VALUES IN
C DF ARE SCALED BY THE SUBROUTINE SO THAT
C THEIR MEAN SQUARE VALUE IS 1, AND UNSCALED
C AGAIN ON NORMAL EXIT.
C THE MEAN SQUARE VALUE OF THE DF(I) IS RETURNED
C IN WK(7) ON NORMAL EXIT.
C IF THE ABSOLUTE STANDARD DEVIATIONS ARE KNOWN,
C THESE SHOULD BE PROVIDED IN DF AND THE ERROR
C VARIANCE PARAMETER VAR (SEE BELOW) SHOULD THEN
C BE SET TO 1.
C IF THE RELATIVE STANDARD DEVIATIONS ARE UNKNOWN,
C SET EACH DF(I)=1.
C N - NUMBER OF DATA POINTS (INPUT).
C N MUST BE .GE. 3.
C Y,C - SPLINE COEFFICIENTS. (OUTPUT) Y
C IS A VECTOR OF LENGTH N. C IS
C AN N-1 BY 3 MATRIX. THE VALUE
C OF THE SPLINE APPROXIMATION AT T IS
C S(T)=((C(I,3)*D+C(I,2))*D+C(I,1))*D+Y(I)
C WHERE X(I).LE.T.LT.X(I+1) AND
C D = T-X(I).
C IC - ROW DIMENSION OF MATRIX C EXACTLY
C AS SPECIFIED IN THE DIMENSION
C STATEMENT IN THE CALLING PROGRAM. (INPUT)
C VAR - ERROR VARIANCE. (INPUT/OUTPUT)
C IF VAR IS NEGATIVE (I.E. UNKNOWN) THEN
C THE SMOOTHING PARAMETER IS DETERMINED
C BY MINIMIZING THE GENERALIZED CROSS VALIDATION
C AND AN ESTIMATE OF THE ERROR VARIANCE IS
C RETURNED IN VAR.
C IF VAR IS NON-NEGATIVE (I.E. KNOWN) THEN THE
C SMOOTHING PARAMETER IS DETERMINED TO MINIMIZE
C AN ESTIMATE, WHICH DEPENDS ON VAR, OF THE TRUE
C MEAN SQUARE ERROR, AND VAR IS UNCHANGED.
C IN PARTICULAR, IF VAR IS ZERO, THEN AN
C INTERPOLATING NATURAL CUBIC SPLINE IS CALCULATED.
C VAR SHOULD BE SET TO 1 IF ABSOLUTE STANDARD
C DEVIATIONS HAVE BEEN PROVIDED IN DF (SEE ABOVE).
C JOB - JOB SELECTION PARAMETER. (INPUT)
C JOB = 0 SHOULD BE SELECTED IF POINT STANDARD ERROR
C ESTIMATES ARE NOT REQUIRED IN SE.
C JOB = 1 SHOULD BE SELECTED IF POINT STANDARD ERROR
C ESTIMATES ARE REQUIRED IN SE.
C SE - VECTOR OF LENGTH N CONTAINING BAYESIAN STANDARD
C ERROR ESTIMATES OF THE FITTED SPLINE VALUES IN Y.
C SE IS NOT REFERENCED IF JOB=0. (OUTPUT)
C WK - WORK VECTOR OF LENGTH 7*(N + 2). ON NORMAL EXIT THE
C FIRST 7 VALUES OF WK ARE ASSIGNED AS FOLLOWS:-
C
C WK(1) = SMOOTHING PARAMETER (= RHO/(RHO + 1))
C WK(2) = ESTIMATE OF THE NUMBER OF DEGREES OF
C FREEDOM OF THE RESIDUAL SUM OF SQUARES
C WK(3) = GENERALIZED CROSS VALIDATION
C WK(4) = MEAN SQUARE RESIDUAL
C WK(5) = ESTIMATE OF THE TRUE MEAN SQUARE ERROR
C AT THE DATA POINTS
C WK(6) = ESTIMATE OF THE ERROR VARIANCE
C WK(7) = MEAN SQUARE VALUE OF THE DF(I)
C
C IF WK(1)=0 (RHO=0) AN INTERPOLATING NATURAL CUBIC
C SPLINE HAS BEEN CALCULATED.
C IF WK(1)=1 (RHO=INFINITE) A LEAST SQUARES
C REGRESSION LINE HAS BEEN CALCULATED.
C WK(2) IS AN ESTIMATE OF THE NUMBER OF DEGREES OF
C FREEDOM OF THE RESIDUAL WHICH REDUCES TO THE
C USUAL VALUE OF N-2 WHEN A LEAST SQUARES REGRESSION
C LINE IS CALCULATED.
C WK(3),WK(4),WK(5) ARE CALCULATED WITH THE DF(I)
C SCALED TO HAVE MEAN SQUARE VALUE 1. THE
C UNSCALED VALUES OF WK(3),WK(4),WK(5) MAY BE
C CALCULATED BY DIVIDING BY WK(7).
C WK(6) COINCIDES WITH THE OUTPUT VALUE OF VAR IF
C VAR IS NEGATIVE ON INPUT. IT IS CALCULATED WITH
C THE UNSCALED VALUES OF THE DF(I) TO FACILITATE
C COMPARISONS WITH A PRIORI VARIANCE ESTIMATES.
C
C IER - ERROR PARAMETER. (OUTPUT)
C TERMINAL ERROR
C IER = 129, IC IS LESS THAN N-1.
C IER = 130, N IS LESS THAN 3.
C IER = 131, INPUT ABSCISSAE ARE NOT
C ORDERED SO THAT X(I).LT.X(I+1).
C IER = 132, DF(I) IS NOT POSITIVE FOR SOME I.
C IER = 133, JOB IS NOT 0 OR 1.
C
C PRECISION/HARDWARE - DOUBLE
C
C REQUIRED ROUTINES - SPINT1,SPFIT1,SPCOF1,SPERR1
C
C REMARKS THE NUMBER OF ARITHMETIC OPERATIONS REQUIRED BY THE
C SUBROUTINE IS PROPORTIONAL TO N. THE SUBROUTINE
C USES AN ALGORITHM DEVELOPED BY M.F. HUTCHINSON AND
C F.R. DE HOOG, 'SMOOTHING NOISY DATA WITH SPLINE
C FUNCTIONS', NUMER. MATH. (IN PRESS)
C
C-----------------------------------------------------------------------
C
ALGORITHM
CUBGCV calculates a natural cubic spline curve which smoothes a given set
of data points, using statistical considerations to determine the amount
of smoothing required, as described in reference 2. If the error variance
is known, it should be supplied to the routine in VAR. The degree of
smoothing is then determined by minimizing an unbiased estimate of the true
mean square error. On the other hand, if the error variance is not known, VAR
should be set to -1.0. The routine then determines the degree of smoothing
by minimizing the generalized cross validation. This is asymptotically the
same as minimizing the true mean square error (see reference 1). In this
case, an estimate of the error variance is returned in VAR which may be
compared with any a priori approximate estimates. In either case, an
estimate of the true mean square error is returned in WK(5). This estimate,
however, depends on the error variance estimate, and should only be accepted
if the error variance estimate is reckoned to be correct.
If job is set to 1, bayesian estimates of the standard error of each
smoothed data value are returned in the array SE. These also depend on
the error variance estimate and should only be accepted if the error
variance estimate is reckoned to be correct. See reference 4.
The number of arithmetic operations and the amount of storage required by
the routine are both proportional to N, so that very large data sets may be
analysed. The data points do not have to be equally spaced or uniformly
weighted. The residual and the spline coefficients are calculated in the
manner described in reference 3, while the trace and various statistics,
including the generalized cross validation, are calculated in the manner
described in reference 2.
When VAR is known, any value of N greater than 2 is acceptable. It is
advisable, however, for N to be greater than about 20 when VAR is unknown.
If the degree of smoothing done by CUBGCV when VAR is unknown is not
satisfactory, the user should try specifying the degree of smoothing by
setting VAR to a reasonable value.
References:
1. Craven, Peter and Wahba, Grace, "Smoothing noisy data with spline
functions", Numer. Math. 31, 377-403 (1979).
2. Hutchinson, M.F. and de Hoog, F.R., "Smoothing noisy data with spline
functions", Numer. Math. (in press).
3. Reinsch, C.H., "Smoothing by spline functions", Numer. Math. 10,
177-183 (1967).
4. Wahba, Grace, "Bayesian 'confidence intervals' for the cross-validated
smoothing spline", J.R.Statist. Soc. B 45, 133-150 (1983).
Example
A sequence of 50 data points are generated by adding a random variable with
uniform density in the interval [-0.3,0.3] to the curve y=sin(3*pi*x/2).
The abscissae are unequally spaced in [0,1]. Point standard error estimates
are returned in SE by setting JOB to 1. The error variance estimate is
returned in VAR. It compares favourably with the true value of 0.03.
The IMSL function GGUBFS is used to generate sample values of a uniform
variable on [0,1].
INPUT:
INTEGER N,IC,JOB,IER
DOUBLE PRECISION X(50),F(50),Y(50),DF(50),C(49,3),WK(400),
* VAR,SE(50)
DOUBLE PRECISION GGUBFS,DSEED,DN
DATA DSEED/1.2345D4/
C
N=50
IC=49
JOB=1
VAR=-1.0D0
DN=N
C
DO 10 I=1,N
X(I)=(I - 0.5)/DN + (2.0*GGUBFS(DSEED) - 1.0)/(3.0*DN)
F(I)=DSIN(4.71238*X(I)) + (2.0*GGUBFS(DSEED) - 1.0)*0.3
DF(I)=1.0D0
10 CONTINUE
CALL CUBGCV(X,F,DF,N,Y,C,IC,VAR,JOB,SE,WK,IER)
.
.
.
END
OUTPUT:
IER = 0
VAR = 0.0279
GENERALIZED CROSS VALIDATION = 0.0318
MEAN SQUARE RESIDUAL = 0.0246
RESIDUAL DEGREES OF FREEDOM = 43.97
FOR CHECKING PURPOSES THE FOLLOWING OUTPUT IS GIVEN:
X(1) = 0.0046 F(1) = 0.2222 Y(1) = 0.0342 SE(1) = 0.1004
X(21) = 0.4126 F(21) = 0.9810 Y(21) = 0.9069 SE(21) = 0.0525
X(41) = 0.8087 F(41) = -0.5392 Y(41) = -0.6242 SE(41) = 0.0541