home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
HAM Radio 1
/
HamRadio.cdr
/
misc
/
src0131
/
ip.c
< prev
next >
Wrap
C/C++ Source or Header
|
1991-01-26
|
13KB
|
524 lines
/* Upper half of IP, consisting of send/receive primitives, including
* fragment reassembly, for higher level protocols.
* Not needed when running as a standalone gateway.
* Copyright 1991 Phil Karn, KA9Q
*/
#include "global.h"
#include "mbuf.h"
#include "timer.h"
#include "internet.h"
#include "netuser.h"
#include "iface.h"
#include "pktdrvr.h"
#include "ip.h"
#include "icmp.h"
static struct mbuf *fraghandle __ARGS((struct ip *ip,struct mbuf *bp));
static void ip_timeout __ARGS((void *arg));
static void free_reasm __ARGS((struct reasm *rp));
static void freefrag __ARGS((struct frag *fp));
static struct reasm *lookup_reasm __ARGS((struct ip *ip));
static struct reasm *creat_reasm __ARGS((struct ip *ip));
static struct frag *newfrag __ARGS((int16 offset,int16 last,struct mbuf *bp));
struct mib_entry Ip_mib[20] = {
"", 0,
"ipForwarding", 1,
"ipDefaultTTL", MAXTTL,
"ipInReceives", 0,
"ipInHdrErrors", 0,
"ipInAddrErrors", 0,
"ipForwDatagrams", 0,
"ipInUnknownProtos", 0,
"ipInDiscards", 0,
"ipInDelivers", 0,
"ipOutRequests", 0,
"ipOutDiscards", 0,
"ipOutNoRoutes", 0,
"ipReasmTimeout", TLB,
"ipReasmReqds", 0,
"ipReasmOKs", 0,
"ipReasmFails", 0,
"ipFragOKs", 0,
"ipFragFails", 0,
"ipFragCreates", 0,
};
struct reasm *Reasmq;
static struct raw_ip *Raw_ip;
#define INSERT 0
#define APPEND 1
#define PREPEND 2
/* Send an IP datagram. Modeled after the example interface on p 32 of
* RFC 791
*/
int
ip_send(source,dest,protocol,tos,ttl,bp,length,id,df)
int32 source; /* source address */
int32 dest; /* Destination address */
char protocol; /* Protocol */
char tos; /* Type of service */
char ttl; /* Time-to-live */
struct mbuf *bp; /* Data portion of datagram */
int16 length; /* Optional length of data portion */
int16 id; /* Optional identification */
char df; /* Don't-fragment flag */
{
struct mbuf *tbp;
struct ip ip; /* Pointer to IP header */
static int16 id_cntr; /* Datagram serial number */
struct phdr phdr;
ipOutRequests++;
if(source == INADDR_ANY)
source = locaddr(dest);
if(length == 0 && bp != NULLBUF)
length = len_p(bp);
if(id == 0)
id = id_cntr++;
if(ttl == 0)
ttl = ipDefaultTTL;
/* Fill in IP header */
ip.version = IPVERSION;
ip.tos = tos;
ip.length = IPLEN + length;
ip.id = id;
ip.offset = 0;
ip.flags.mf = 0;
ip.flags.df = df;
ip.ttl = ttl;
ip.protocol = protocol;
ip.source = source;
ip.dest = dest;
ip.optlen = 0;
if((tbp = htonip(&ip,bp,0)) == NULLBUF){
free_p(bp);
return -1;
}
if((bp = pushdown(tbp,sizeof(phdr))) == NULLBUF){
free_p(tbp);
return -1;
}
if(ismyaddr(ip.dest)){
/* Pretend it has been sent by the loopback interface before
* it appears in the receive queue
*/
phdr.iface = &Loopback;
Loopback.ipsndcnt++;
Loopback.rawsndcnt++;
} else
phdr.iface = NULLIF;
phdr.type = CL_NONE;
memcpy(&bp->data[0],(char *)&phdr,sizeof(phdr));
enqueue(&Hopper,bp);
return 0;
}
/* Reassemble incoming IP fragments and dispatch completed datagrams
* to the proper transport module
*/
void
ip_recv(iface,ip,bp,rxbroadcast)
struct iface *iface; /* Incoming interface */
struct ip *ip; /* Extracted IP header */
struct mbuf *bp; /* Data portion */
int rxbroadcast; /* True if received on subnet broadcast address */
{
/* Function to call with completed datagram */
register struct raw_ip *rp;
struct mbuf *bp1,*tbp;
int rxcnt = 0;
register struct iplink *ipp;
/* If we have a complete packet, call the next layer
* to handle the result. Note that fraghandle passes back
* a length field that does NOT include the IP header
*/
if((bp = fraghandle(ip,bp)) == NULLBUF)
return; /* Not done yet */
ipInDelivers++;
for(rp = Raw_ip;rp != NULLRIP;rp = rp->next){
if(rp->protocol != ip->protocol)
continue;
rxcnt++;
/* Duplicate the data portion, and put the header back on */
dup_p(&bp1,bp,0,len_p(bp));
if(bp1 != NULLBUF && (tbp = htonip(ip,bp1,1)) != NULLBUF){
enqueue(&rp->rcvq,tbp);
if(rp->r_upcall != NULLVFP)
(*rp->r_upcall)(rp);
} else {
free_p(bp1);
}
}
/* Look it up in the transport protocol table */
for(ipp = Iplink;ipp->funct != NULL;ipp++){
if(ipp->proto == ip->protocol)
break;
}
if(ipp->funct != NULL){
/* Found, call transport protocol */
(*ipp->funct)(iface,ip,bp,rxbroadcast);
} else {
/* Not found */
if(rxcnt == 0){
/* Send an ICMP Protocol Unknown response... */
ipInUnknownProtos++;
/* ...unless it's a broadcast */
if(!rxbroadcast){
icmp_output(ip,bp,ICMP_DEST_UNREACH,
ICMP_PROT_UNREACH,NULLICMP);
}
}
free_p(bp);
}
}
/* Process IP datagram fragments
* If datagram is complete, return it with ip->length containing the data
* length (MINUS header); otherwise return NULLBUF
*/
static
struct mbuf *
fraghandle(ip,bp)
struct ip *ip; /* IP header, host byte order */
struct mbuf *bp; /* The fragment itself */
{
register struct reasm *rp; /* Pointer to reassembly descriptor */
struct frag *lastfrag,*nextfrag,*tfp;
struct mbuf *tbp;
int16 i;
int16 last; /* Index of first byte beyond fragment */
last = ip->offset + ip->length - (IPLEN + ip->optlen);
rp = lookup_reasm(ip);
if(ip->offset == 0 && !ip->flags.mf){
/* Complete datagram received. Discard any earlier fragments */
if(rp != NULLREASM){
free_reasm(rp);
ipReasmOKs++;
}
return bp;
}
ipReasmReqds++;
if(rp == NULLREASM){
/* First fragment; create new reassembly descriptor */
if((rp = creat_reasm(ip)) == NULLREASM){
/* No space for descriptor, drop fragment */
ipReasmFails++;
free_p(bp);
return NULLBUF;
}
}
/* Keep restarting timer as long as we keep getting fragments */
stop_timer(&rp->timer);
start_timer(&rp->timer);
/* If this is the last fragment, we now know how long the
* entire datagram is; record it
*/
if(!ip->flags.mf)
rp->length = last;
/* Set nextfrag to the first fragment which begins after us,
* and lastfrag to the last fragment which begins before us
*/
lastfrag = NULLFRAG;
for(nextfrag = rp->fraglist;nextfrag != NULLFRAG;nextfrag = nextfrag->next){
if(nextfrag->offset > ip->offset)
break;
lastfrag = nextfrag;
}
/* Check for overlap with preceeding fragment */
if(lastfrag != NULLFRAG && ip->offset < lastfrag->last){
/* Strip overlap from new fragment */
i = lastfrag->last - ip->offset;
pullup(&bp,NULLCHAR,i);
if(bp == NULLBUF)
return NULLBUF; /* Nothing left */
ip->offset += i;
}
/* Look for overlap with succeeding segments */
for(; nextfrag != NULLFRAG; nextfrag = tfp){
tfp = nextfrag->next; /* save in case we delete fp */
if(nextfrag->offset >= last)
break; /* Past our end */
/* Trim the front of this entry; if nothing is
* left, remove it.
*/
i = last - nextfrag->offset;
pullup(&nextfrag->buf,NULLCHAR,i);
if(nextfrag->buf == NULLBUF){
/* superseded; delete from list */
if(nextfrag->prev != NULLFRAG)
nextfrag->prev->next = nextfrag->next;
else
rp->fraglist = nextfrag->next;
if(tfp->next != NULLFRAG)
nextfrag->next->prev = nextfrag->prev;
freefrag(nextfrag);
} else
nextfrag->offset = last;
}
/* Lastfrag now points, as before, to the fragment before us;
* nextfrag points at the next fragment. Check to see if we can
* join to either or both fragments.
*/
i = INSERT;
if(lastfrag != NULLFRAG && lastfrag->last == ip->offset)
i |= APPEND;
if(nextfrag != NULLFRAG && nextfrag->offset == last)
i |= PREPEND;
switch(i){
case INSERT: /* Insert new desc between lastfrag and nextfrag */
tfp = newfrag(ip->offset,last,bp);
tfp->prev = lastfrag;
tfp->next = nextfrag;
if(lastfrag != NULLFRAG)
lastfrag->next = tfp; /* Middle of list */
else
rp->fraglist = tfp; /* First on list */
if(nextfrag != NULLFRAG)
nextfrag->prev = tfp;
break;
case APPEND: /* Append to lastfrag */
append(&lastfrag->buf,bp);
lastfrag->last = last; /* Extend forward */
break;
case PREPEND: /* Prepend to nextfrag */
tbp = nextfrag->buf;
nextfrag->buf = bp;
append(&nextfrag->buf,tbp);
nextfrag->offset = ip->offset; /* Extend backward */
break;
case (APPEND|PREPEND):
/* Consolidate by appending this fragment and nextfrag
* to lastfrag and removing the nextfrag descriptor
*/
append(&lastfrag->buf,bp);
append(&lastfrag->buf,nextfrag->buf);
nextfrag->buf = NULLBUF;
lastfrag->last = nextfrag->last;
/* Finally unlink and delete the now unneeded nextfrag */
lastfrag->next = nextfrag->next;
if(nextfrag->next != NULLFRAG)
nextfrag->next->prev = lastfrag;
freefrag(nextfrag);
break;
}
if(rp->fraglist->offset == 0 && rp->fraglist->next == NULLFRAG
&& rp->length != 0){
/* We've gotten a complete datagram, so extract it from the
* reassembly buffer and pass it on.
*/
bp = rp->fraglist->buf;
rp->fraglist->buf = NULLBUF;
/* Tell IP the entire length */
ip->length = rp->length + (IPLEN + ip->optlen);
free_reasm(rp);
ipReasmOKs++;
return bp;
} else
return NULLBUF;
}
/* Arrange for receipt of raw IP datagrams */
struct raw_ip *
raw_ip(protocol,r_upcall)
int protocol;
void (*r_upcall)();
{
register struct raw_ip *rp;
rp = (struct raw_ip *)callocw(1,sizeof(struct raw_ip));
rp->protocol = protocol;
rp->r_upcall = r_upcall;
rp->next = Raw_ip;
if(rp->next != NULLRIP)
rp->next->prev = rp;
Raw_ip = rp;
return rp;
}
/* Free a raw IP descriptor */
void
del_ip(rpp)
struct raw_ip *rpp;
{
register struct raw_ip *rp;
/* Do sanity check on arg */
for(rp = Raw_ip;rp != NULLRIP;rp = rp->next)
if(rp == rpp)
break;
if(rp == NULLRIP)
return; /* Doesn't exist */
/* Unlink */
if(rp->prev != NULLRIP)
rp->prev->next = rp->next;
else
Raw_ip = rp->next;
if(rp->next != NULLRIP)
rp->next->prev = rp->prev;
/* Free resources */
free_q(&rp->rcvq);
free((char *)rp);
}
static struct reasm *
lookup_reasm(ip)
struct ip *ip;
{
register struct reasm *rp;
for(rp = Reasmq;rp != NULLREASM;rp = rp->next){
if(ip->source == rp->source && ip->dest == rp->dest
&& ip->protocol == rp->protocol && ip->id == rp->id)
return rp;
}
return NULLREASM;
}
#ifdef FOO
static
int16
hash_reasm(source,dest,protocol,id)
int32 source;
int32 dest,
char protocol;
int16 id;
{
register unsigned int hval;
hval = loword(source);
hval ^= hiword(source);
hval ^= loword(dest);
hval ^= hiword(dest);
hval ^= uchar(protocol);
hval ^= id;
return hval % RHASH;
}
#endif
/* Create a reassembly descriptor,
* put at head of reassembly list
*/
static struct reasm *
creat_reasm(ip)
register struct ip *ip;
{
register struct reasm *rp;
if((rp = (struct reasm *)calloc(1,sizeof(struct reasm))) == NULLREASM)
return rp; /* No space for descriptor */
rp->source = ip->source;
rp->dest = ip->dest;
rp->id = ip->id;
rp->protocol = ip->protocol;
set_timer(&rp->timer,ipReasmTimeout * 1000);
rp->timer.func = ip_timeout;
rp->timer.arg = rp;
rp->next = Reasmq;
if(rp->next != NULLREASM)
rp->next->prev = rp;
Reasmq = rp;
return rp;
}
/* Free all resources associated with a reassembly descriptor */
static void
free_reasm(rp)
register struct reasm *rp;
{
register struct frag *fp;
stop_timer(&rp->timer);
/* Remove from list of reassembly descriptors */
if(rp->prev != NULLREASM)
rp->prev->next = rp->next;
else
Reasmq = rp->next;
if(rp->next != NULLREASM)
rp->next->prev = rp->prev;
/* Free any fragments on list, starting at beginning */
while((fp = rp->fraglist) != NULLFRAG){
rp->fraglist = fp->next;
free_p(fp->buf);
free((char *)fp);
}
free((char *)rp);
}
/* Handle reassembly timeouts by deleting all reassembly resources */
static void
ip_timeout(arg)
void *arg;
{
register struct reasm *rp;
rp = (struct reasm *)arg;
free_reasm(rp);
ipReasmFails++;
}
/* Create a fragment */
static
struct frag *
newfrag(offset,last,bp)
int16 offset,last;
struct mbuf *bp;
{
struct frag *fp;
if((fp = (struct frag *)calloc(1,sizeof(struct frag))) == NULLFRAG){
/* Drop fragment */
free_p(bp);
return NULLFRAG;
}
fp->buf = bp;
fp->offset = offset;
fp->last = last;
return fp;
}
/* Delete a fragment, return next one on queue */
static
void
freefrag(fp)
struct frag *fp;
{
free_p(fp->buf);
free((char *)fp);
}
/* In red alert mode, blow away the whole reassembly queue. Otherwise crunch
* each fragment on each reassembly descriptor
*/
void
ip_garbage(red)
int red;
{
struct reasm *rp,*rp1;
struct frag *fp;
struct raw_ip *rwp;
/* Run through the reassembly queue */
for(rp = Reasmq;rp != NULLREASM;rp = rp1){
rp1 = rp->next;
if(red){
free_reasm(rp);
} else {
for(fp = rp->fraglist;fp != NULLFRAG;fp = fp->next){
mbuf_crunch(&fp->buf);
}
}
}
/* Run through the raw IP queue */
for(rwp = Raw_ip;rwp != NULLRIP;rwp = rwp->next)
mbuf_crunch(&rwp->rcvq);
}