home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Gold Fish 2
/
goldfish_vol2_cd1.bin
/
gnu
/
info
/
gcc.info-7
(
.txt
)
< prev
next >
Wrap
GNU Info File
|
1994-11-17
|
51KB
|
955 lines
This is Info file gcc.info, produced by Makeinfo-1.55 from the input
file gcc.texi.
This file documents the use and the internals of the GNU compiler.
Published by the Free Software Foundation 675 Massachusetts Avenue
Cambridge, MA 02139 USA
Copyright (C) 1988, 1989, 1992, 1993, 1994 Free Software Foundation,
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the sections entitled "GNU General Public License," "Funding for
Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that the sections entitled "GNU General Public
License," "Funding for Free Software," and "Protect Your Freedom--Fight
`Look And Feel'", and this permission notice, may be included in
translations approved by the Free Software Foundation instead of in the
original English.
File: gcc.info, Node: VMS Install, Next: Collect2, Prev: Sun Install, Up: Installation
Installing GNU CC on VMS
========================
The VMS version of GNU CC is distributed in a backup saveset
containing both source code and precompiled binaries.
To install the `gcc' command so you can use the compiler easily, in
the same manner as you use the VMS C compiler, you must install the VMS
CLD file for GNU CC as follows:
1. Define the VMS logical names `GNU_CC' and `GNU_CC_INCLUDE' to
point to the directories where the GNU CC executables
(`gcc-cpp.exe', `gcc-cc1.exe', etc.) and the C include files are
kept respectively. This should be done with the commands:
$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc
$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include
with the appropriate disk and directory names. These commands can
be placed in your system startup file so they will be executed
whenever the machine is rebooted. You may, if you choose, do this
via the `GCC_INSTALL.COM' script in the `[GCC]' directory.
2. Install the `GCC' command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
$ install replace sys$common:[syslib]dcltables
3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp
Now you can invoke the compiler with a command like `gcc /verbose
file.c', which is equivalent to the command `gcc -v -c file.c' in
Unix.
If you wish to use GNU C++ you must first install GNU CC, and then
perform the following steps:
1. Define the VMS logical name `GNU_GXX_INCLUDE' to point to the
directory where the preprocessor will search for the C++ header
files. This can be done with the command:
$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include
with the appropriate disk and directory name. If you are going to
be using libg++, this is where the libg++ install procedure will
install the libg++ header files.
2. Obtain the file `gcc-cc1plus.exe', and place this in the same
directory that `gcc-cc1.exe' is kept.
The GNU C++ compiler can be invoked with a command like `gcc /plus
/verbose file.cc', which is equivalent to the command `g++ -v -c
file.cc' in Unix.
We try to put corresponding binaries and sources on the VMS
distribution tape. But sometimes the binaries will be from an older
version than the sources, because we don't always have time to update
them. (Use the `/version' option to determine the version number of
the binaries and compare it with the source file `version.c' to tell
whether this is so.) In this case, you should use the binaries you get
to recompile the sources. If you must recompile, here is how:
1. Execute the command procedure `vmsconfig.com' to set up the files
`tm.h', `config.h', `aux-output.c', and `md.', and to create files
`tconfig.h' and `hconfig.h'. This procedure also creates several
linker option files used by `make-cc1.com' and a data file used by
`make-l2.com'.
$ @vmsconfig.com
2. Setup the logical names and command tables as defined above. In
addition, define the VMS logical name `GNU_BISON' to point at the
to the directories where the Bison executable is kept. This
should be done with the command:
$ assign /system /translation=concealed -
disk:[bison.] gnu_bison
You may, if you choose, use the `INSTALL_BISON.COM' script in the
`[BISON]' directory.
3. Install the `BISON' command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison
$ install replace sys$common:[syslib]dcltables
4. Type `@make-gcc' to recompile everything (alternatively, submit
the file `make-gcc.com' to a batch queue). If you wish to build
the GNU C++ compiler as well as the GNU CC compiler, you must
first edit `make-gcc.com' and follow the instructions that appear
in the comments.
5. In order to use GCC, you need a library of functions which GCC
compiled code will call to perform certain tasks, and these
functions are defined in the file `libgcc2.c'. To compile this
you should use the command procedure `make-l2.com', which will
generate the library `libgcc2.olb'. `libgcc2.olb' should be built
using the compiler built from the same distribution that
`libgcc2.c' came from, and `make-gcc.com' will automatically do
all of this for you.
To install the library, use the following commands:
$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj
The first command simply removes old modules that will be replaced
with modules from `libgcc2' under different module names. The
modules `new' and `eprintf' may not actually be present in your
`gcclib.olb'--if the VMS librarian complains about those modules
not being present, simply ignore the message and continue on with
the next command. The second command removes the modules that
came from the previous version of the library `libgcc2.c'.
Whenever you update the compiler on your system, you should also
update the library with the above procedure.
6. You may wish to build GCC in such a way that no files are written
to the directory where the source files reside. An example would
be the when the source files are on a read-only disk. In these
cases, execute the following DCL commands (substituting your
actual path names):
$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build
$ set default gcc_build:[000000]
where the directory `dua1:[gcc.source_dir]' contains the source
code, and the directory `dua0:[gcc.build_dir]' is meant to contain
all of the generated object files and executables. Once you have
done this, you can proceed building GCC as described above. (Keep
in mind that `gcc_build' is a rooted logical name, and thus the
device names in each element of the search list must be an actual
physical device name rather than another rooted logical name).
7. *If you are building GNU CC with a previous version of GNU CC, you
also should check to see that you have the newest version of the
assembler*. In particular, GNU CC version 2 treats global constant
variables slightly differently from GNU CC version 1, and GAS
version 1.38.1 does not have the patches required to work with GCC
version 2. If you use GAS 1.38.1, then `extern const' variables
will not have the read-only bit set, and the linker will generate
warning messages about mismatched psect attributes for these
variables. These warning messages are merely a nuisance, and can
safely be ignored.
If you are compiling with a version of GNU CC older than 1.33,
specify `/DEFINE=("inline=")' as an option in all the
compilations. This requires editing all the `gcc' commands in
`make-cc1.com'. (The older versions had problems supporting
`inline'.) Once you have a working 1.33 or newer GNU CC, you can
change this file back.
8. If you want to build GNU CC with the VAX C compiler, you will need
to make minor changes in `make-cccp.com' and `make-cc1.com' to
choose alternate definitions of `CC', `CFLAGS', and `LIBS'. See
comments in those files. However, you must also have a working
version of the GNU assembler (GNU as, aka GAS) as it is used as
the back-end for GNU CC to produce binary object modules and is
not included in the GNU CC sources. GAS is also needed to compile
`libgcc2' in order to build `gcclib' (see above); `make-l2.com'
expects to be able to find it operational in
`gnu_cc:[000000]gnu-as.exe'.
To use GNU CC on VMS, you need the VMS driver programs `gcc.exe',
`gcc.com', and `gcc.cld'. They are distributed with the VMS
binaries (`gcc-vms') rather than the GNU CC sources. GAS is also
included in `gcc-vms', as is Bison.
Once you have successfully built GNU CC with VAX C, you should use
the resulting compiler to rebuild itself. Before doing this, be
sure to restore the `CC', `CFLAGS', and `LIBS' definitions in
`make-cccp.com' and `make-cc1.com'. The second generation
compiler will be able to take advantage of many optimizations that
must be suppressed when building with other compilers.
Under previous versions of GNU CC, the generated code would
occasionally give strange results when linked with the sharable
`VAXCRTL' library. Now this should work.
Even with this version, however, GNU CC itself should not be linked
with the sharable `VAXCRTL'. The version of `qsort' in `VAXCRTL' has a
bug (known to be present in VMS versions V4.6 through V5.5) which
causes the compiler to fail.
The executables are generated by `make-cc1.com' and `make-cccp.com'
use the object library version of `VAXCRTL' in order to make use of the
`qsort' routine in `gcclib.olb'. If you wish to link the compiler
executables with the shareable image version of `VAXCRTL', you should
edit the file `tm.h' (created by `vmsconfig.com') to define the macro
`QSORT_WORKAROUND'.
`QSORT_WORKAROUND' is always defined when GNU CC is compiled with
VAX C, to avoid a problem in case `gcclib.olb' is not yet available.
File: gcc.info, Node: Collect2, Next: Header Dirs, Prev: VMS Install, Up: Installation
`collect2'
==========
Many target systems do not have support in the assembler and linker
for "constructors"--initialization functions to be called before the
official "start" of `main'. On such systems, GNU CC uses a utility
called `collect2' to arrange to call these functions at start time.
The program `collect2' works by linking the program once and looking
through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it creates
a new temporary `.c' file containing a table of them, compiles it, and
links the program a second time including that file.
The actual calls to the constructors are carried out by a subroutine
called `__main', which is called (automatically) at the beginning of
the body of `main' (provided `main' was compiled with GNU CC). Calling
`__main' is necessary, even when compiling C code, to allow linking C
and C++ object code together. (If you use `-nostdlib', you get an
unresolved reference to `__main', since it's defined in the standard
GCC library. Include `-lgcc' at the end of your compiler command line
to resolve this reference.)
The program `collect2' is installed as `ld' in the directory where
the passes of the compiler are installed. When `collect2' needs to
find the *real* `ld', it tries the following file names:
* `real-ld' in the directories listed in the compiler's search
directories.
* `real-ld' in the directories listed in the environment variable
`PATH'.
* The file specified in the `REAL_LD_FILE_NAME' configuration macro,
if specified.
* `ld' in the compiler's search directories, except that `collect2'
will not execute itself recursively.
* `ld' in `PATH'.
"The compiler's search directories" means all the directories where
`gcc' searches for passes of the compiler. This includes directories
that you specify with `-B'.
Cross-compilers search a little differently:
* `real-ld' in the compiler's search directories.
* `TARGET-real-ld' in `PATH'.
* The file specified in the `REAL_LD_FILE_NAME' configuration macro,
if specified.
* `ld' in the compiler's search directories.
* `TARGET-ld' in `PATH'.
`collect2' explicitly avoids running `ld' using the file name under
which `collect2' itself was invoked. In fact, it remembers up a list
of such names--in case one copy of `collect2' finds another copy (or
version) of `collect2' installed as `ld' in a second place in the
search path.
`collect2' searches for the utilities `nm' and `strip' using the
same algorithm as above for `ld'.
File: gcc.info, Node: Header Dirs, Prev: Collect2, Up: Installation
Standard Header File Directories
================================
`GCC_INCLUDE_DIR' means the same thing for native and cross. It is
where GNU CC stores its private include files, and also where GNU CC
stores the fixed include files. A cross compiled GNU CC runs
`fixincludes' on the header files in `$(tooldir)/include'. (If the
cross compilation header files need to be fixed, they must be installed
before GNU CC is built. If the cross compilation header files are
already suitable for ANSI C and GNU CC, nothing special need be done).
`GPLUS_INCLUDE_DIR' means the same thing for native and cross. It
is where `g++' looks first for header files. `libg++' installs only
target independent header files in that directory.
`LOCAL_INCLUDE_DIR' is used only for a native compiler. It is
normally `/usr/local/include'. GNU CC searches this directory so that
users can install header files in `/usr/local/include'.
`CROSS_INCLUDE_DIR' is used only for a cross compiler. GNU CC
doesn't install anything there.
`TOOL_INCLUDE_DIR' is used for both native and cross compilers. It
is the place for other packages to install header files that GNU CC will
use. For a cross-compiler, this is the equivalent of `/usr/include'.
When you build a cross-compiler, `fixincludes' processes any header
files in this directory.
File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: Installation, Up: Top
Extensions to the C Language Family
***********************************
GNU C provides several language features not found in ANSI standard
C. (The `-pedantic' option directs GNU CC to print a warning message if
any of these features is used.) To test for the availability of these
features in conditional compilation, check for a predefined macro
`__GNUC__', which is always defined under GNU CC.
These extensions are available in C and Objective C. Most of them
are also available in C++. *Note Extensions to the C++ Language: C++
Extensions, for extensions that apply *only* to C++.
* Menu:
* Statement Exprs:: Putting statements and declarations inside expressions.
* Local Labels:: Labels local to a statement-expression.
* Labels as Values:: Getting pointers to labels, and computed gotos.
* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
* Constructing Calls:: Dispatching a call to another function.
* Naming Types:: Giving a name to the type of some expression.
* Typeof:: `typeof': referring to the type of an expression.
* Lvalues:: Using `?:', `,' and casts in lvalues.
* Conditionals:: Omitting the middle operand of a `?:' expression.
* Long Long:: Double-word integers--`long long int'.
* Complex:: Data types for complex numbers.
* Zero Length:: Zero-length arrays.
* Variable Length:: Arrays whose length is computed at run time.
* Macro Varargs:: Macros with variable number of arguments.
* Subscripting:: Any array can be subscripted, even if not an lvalue.
* Pointer Arith:: Arithmetic on `void'-pointers and function pointers.
* Initializers:: Non-constant initializers.
* Constructors:: Constructor expressions give structures, unions
or arrays as values.
* Labeled Elements:: Labeling elements of initializers.
* Cast to Union:: Casting to union type from any member of the union.
* Case Ranges:: `case 1 ... 9' and such.
* Function Attributes:: Declaring that functions have no side effects,
or that they can never return.
* Function Prototypes:: Prototype declarations and old-style definitions.
* Dollar Signs:: Dollar sign is allowed in identifiers.
* Character Escapes:: `\e' stands for the character ESC.
* Variable Attributes:: Specifying attributes of variables.
* Alignment:: Inquiring about the alignment of a type or variable.
* Inline:: Defining inline functions (as fast as macros).
* Extended Asm:: Assembler instructions with C expressions as operands.
(With them you can define "built-in" functions.)
* Asm Labels:: Specifying the assembler name to use for a C symbol.
* Explicit Reg Vars:: Defining variables residing in specified registers.
* Alternate Keywords:: `__const__', `__asm__', etc., for header files.
* Incomplete Enums:: `enum foo;', with details to follow.
* Function Names:: Printable strings which are the name of the current
function.
File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions
Statements and Declarations in Expressions
==========================================
A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.
Recall that a compound statement is a sequence of statements
surrounded by braces; in this construct, parentheses go around the
braces. For example:
({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })
is a valid (though slightly more complex than necessary) expression for
the absolute value of `foo ()'.
The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type `void', and thus
effectively no value.)
This feature is especially useful in making macro definitions "safe"
(so that they evaluate each operand exactly once). For example, the
"maximum" function is commonly defined as a macro in standard C as
follows:
#define max(a,b) ((a) > (b) ? (a) : (b))
But this definition computes either A or B twice, with bad results if
the operand has side effects. In GNU C, if you know the type of the
operands (here let's assume `int'), you can define the macro safely as
follows:
#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })
Embedded statements are not allowed in constant expressions, such as
the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.
If you don't know the type of the operand, you can still do this,
but you must use `typeof' (*note Typeof::.) or type naming (*note
Naming Types::.).
File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions
Locally Declared Labels
=======================
Each statement expression is a scope in which "local labels" can be
declared. A local label is simply an identifier; you can jump to it
with an ordinary `goto' statement, but only from within the statement
expression it belongs to.
A local label declaration looks like this:
__label__ LABEL;
__label__ LABEL1, LABEL2, ...;
Local label declarations must come at the beginning of the statement
expression, right after the `({', before any ordinary declarations.
The label declaration defines the label *name*, but does not define
the label itself. You must do this in the usual way, with `LABEL:',
within the statements of the statement expression.
The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a `goto' can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be
expanded several times in one function, the label will be multiply
defined in that function. A local label avoids this problem. For
example:
#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \
value = -1; \
found: \
value; \
})
File: gcc.info, Node: Labels as Values, Next: Nested Functions, Prev: Local Labels, Up: C Extensions
Labels as Values
================
You can get the address of a label defined in the current function
(or a containing function) with the unary operator `&&'. The value has
type `void *'. This value is a constant and can be used wherever a
constant of that type is valid. For example:
void *ptr;
...
ptr = &&foo;
To use these values, you need to be able to jump to one. This is
done with the computed goto statement(1), `goto *EXP;'. For example,
goto *ptr;
Any expression of type `void *' is allowed.
One way of using these constants is in initializing a static array
that will serve as a jump table:
static void *array[] = { &&foo, &&bar, &&hack };
Then you can select a label with indexing, like this:
goto *array[i];
Note that this does not check whether the subscript is in bounds--array
indexing in C never does that.
Such an array of label values serves a purpose much like that of the
`switch' statement. The `switch' statement is cleaner, so use that
rather than an array unless the problem does not fit a `switch'
statement very well.
Another use of label values is in an interpreter for threaded code.
The labels within the interpreter function can be stored in the
threaded code for super-fast dispatching.
You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way
to avoid this is to store the label address only in automatic variables
and never pass it as an argument.
---------- Footnotes ----------
(1) The analogous feature in Fortran is called an assigned goto,
but that name seems inappropriate in C, where one can do more than
simply store label addresses in label variables.
File: gcc.info, Node: Nested Functions, Next: Constructing Calls, Prev: Labels as Values, Up: C Extensions
Nested Functions
================
A "nested function" is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested function's
name is local to the block where it is defined. For example, here we
define a nested function named `square', and call it twice:
foo (double a, double b)
{
double square (double z) { return z * z; }
return square (a) + square (b);
}
The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is
called "lexical scoping". For example, here we show a nested function
which uses an inherited variable named `offset':
bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }
int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...
}
Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block,
before the first statement in the block.
It is possible to call the nested function from outside the scope of
its name by storing its address or passing the address to another
function:
hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }
intermediate (store, size);
}
Here, the function `intermediate' receives the address of `store' as
an argument. If `intermediate' calls `store', the arguments given to
`store' are used to store into `array'. But this technique works only
so long as the containing function (`hack', in this example) does not
exit.
If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try
to call it after a containing scope level has exited, and if it refers
to some of the variables that are no longer in scope, you may be lucky,
but it's not wise to take the risk. If, however, the nested function
does not refer to anything that has gone out of scope, you should be
safe.
GNU CC implements taking the address of a nested function using a
technique called "trampolines". A paper describing them is available
from `maya.idiap.ch' in directory `pub/tmb', file `usenix88-lexic.ps.Z'.
A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (*note Local Labels::.). Such a jump returns instantly to the
containing function, exiting the nested function which did the `goto'
and any intermediate functions as well. Here is an example:
bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...
...
return 0;
/* Control comes here from `access'
if it detects an error. */
failure:
return -1;
}
A nested function always has internal linkage. Declaring one with
`extern' is erroneous. If you need to declare the nested function
before its definition, use `auto' (which is otherwise meaningless for
function declarations).
bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];
}
...
}
File: gcc.info, Node: Constructing Calls, Next: Naming Types, Prev: Nested Functions, Up: C Extensions
Constructing Function Calls
===========================
Using the built-in functions described below, you can record the
arguments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.
You can also record the return value of that function call, and
later return that value, without knowing what data type the function
tried to return (as long as your caller expects that data type).
`__builtin_apply_args ()'
This built-in function returns a pointer of type `void *' to data
describing how to perform a call with the same arguments as were
passed to the current function.
The function saves the arg pointer register, structure value
address, and all registers that might be used to pass arguments to
a function into a block of memory allocated on the stack. Then it
returns the address of that block.
`__builtin_apply (FUNCTION, ARGUMENTS, SIZE)'
This built-in function invokes FUNCTION (type `void (*)()') with a
copy of the parameters described by ARGUMENTS (type `void *') and
SIZE (type `int').
The value of ARGUMENTS should be the value returned by
`__builtin_apply_args'. The argument SIZE specifies the size of
the stack argument data, in bytes.
This function returns a pointer of type `void *' to data describing
how to return whatever value was returned by FUNCTION. The data
is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for SIZE. The
value is used by `__builtin_apply' to compute the amount of data
that should be pushed on the stack and copied from the incoming
argument area.
`__builtin_return (RESULT)'
This built-in function returns the value described by RESULT from
the containing function. You should specify, for RESULT, a value
returned by `__builtin_apply'.
File: gcc.info, Node: Naming Types, Next: Typeof, Prev: Constructing Calls, Up: C Extensions
Naming an Expression's Type
===========================
You can give a name to the type of an expression using a `typedef'
declaration with an initializer. Here is how to define NAME as a type
name for the type of EXP:
typedef NAME = EXP;
This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
"maximum" macro that operates on any arithmetic type:
#define max(a,b) \
({typedef _ta = (a), _tb = (b); \
_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for `a' and `b'. Eventually we
hope to design a new form of declaration syntax that allows you to
declare variables whose scopes start only after their initializers;
this will be a more reliable way to prevent such conflicts.
File: gcc.info, Node: Typeof, Next: Lvalues, Prev: Naming Types, Up: C Extensions
Referring to a Type with `typeof'
=================================
Another way to refer to the type of an expression is with `typeof'.
The syntax of using of this keyword looks like `sizeof', but the
construct acts semantically like a type name defined with `typedef'.
There are two ways of writing the argument to `typeof': with an
expression or with a type. Here is an example with an expression:
typeof (x[0](1))
This assumes that `x' is an array of functions; the type described is
that of the values of the functions.
Here is an example with a typename as the argument:
typeof (int *)
Here the type described is that of pointers to `int'.
If you are writing a header file that must work when included in
ANSI C programs, write `__typeof__' instead of `typeof'. *Note
Alternate Keywords::.
A `typeof'-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or
inside of `sizeof' or `typeof'.
* This declares `y' with the type of what `x' points to.
typeof (*x) y;
* This declares `y' as an array of such values.
typeof (*x) y[4];
* This declares `y' as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration using `typeof', and why it
might be a useful way to write, let's rewrite it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) y;
Thus, `array (pointer (char), 4)' is the type of arrays of 4
pointers to `char'.
File: gcc.info, Node: Lvalues, Next: Conditionals, Prev: Typeof, Up: C Extensions
Generalized Lvalues
===================
Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you
can take their addresses or store values into them.
Standard C++ allows compound expressions and conditional expressions
as lvalues, and permits casts to reference type, so use of this
extension is deprecated for C++ code.
For example, a compound expression can be assigned, provided the last
expression in the sequence is an lvalue. These two expressions are
equivalent:
(a, b) += 5
a, (b += 5)
Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:
&(a, b)
a, &b
A conditional expression is a valid lvalue if its type is not void
and the true and false branches are both valid lvalues. For example,
these two expressions are equivalent:
(a ? b : c) = 5
(a ? b = 5 : (c = 5))
A cast is a valid lvalue if its operand is an lvalue. A simple
assignment whose left-hand side is a cast works by converting the
right-hand side first to the specified type, then to the type of the
inner left-hand side expression. After this is stored, the value is
converted back to the specified type to become the value of the
assignment. Thus, if `a' has type `char *', the following two
expressions are equivalent:
(int)a = 5
(int)(a = (char *)(int)5)
An assignment-with-arithmetic operation such as `+=' applied to a
cast performs the arithmetic using the type resulting from the cast,
and then continues as in the previous case. Therefore, these two
expressions are equivalent:
(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))
You cannot take the address of an lvalue cast, because the use of its
address would not work out coherently. Suppose that `&(int)f' were
permitted, where `f' has type `float'. Then the following statement
would try to store an integer bit-pattern where a floating point number
belongs:
*&(int)f = 1;
This is quite different from what `(int)f = 1' would do--that would
convert 1 to floating point and store it. Rather than cause this
inconsistency, we think it is better to prohibit use of `&' on a cast.
If you really do want an `int *' pointer with the address of `f',
you can simply write `(int *)&f'.
File: gcc.info, Node: Conditionals, Next: Long Long, Prev: Lvalues, Up: C Extensions
Conditionals with Omitted Operands
==================================
The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the
conditional expression.
Therefore, the expression
x ? : y
has the value of `x' if that is nonzero; otherwise, the value of `y'.
This example is perfectly equivalent to
x ? x : y
In this simple case, the ability to omit the middle operand is not
especially useful. When it becomes useful is when the first operand
does, or may (if it is a macro argument), contain a side effect. Then
repeating the operand in the middle would perform the side effect
twice. Omitting the middle operand uses the value already computed
without the undesirable effects of recomputing it.
File: gcc.info, Node: Long Long, Next: Complex, Prev: Conditionals, Up: C Extensions
Double-Word Integers
====================
GNU C supports data types for integers that are twice as long as
`long int'. Simply write `long long int' for a signed integer, or
`unsigned long long int' for an unsigned integer. To make an integer
constant of type `long long int', add the suffix `LL' to the integer.
To make an integer constant of type `unsigned long long int', add the
suffix `ULL' to the integer.
You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types
are open-coded on all types of machines. Multiplication is open-coded
if the machine supports fullword-to-doubleword a widening multiply
instruction. Division and shifts are open-coded only on machines that
provide special support. The operations that are not open-coded use
special library routines that come with GNU CC.
There may be pitfalls when you use `long long' types for function
arguments, unless you declare function prototypes. If a function
expects type `int' for its argument, and you pass a value of type `long
long int', confusion will result because the caller and the subroutine
will disagree about the number of bytes for the argument. Likewise, if
the function expects `long long int' and you pass `int'. The best way
to avoid such problems is to use prototypes.
File: gcc.info, Node: Complex, Next: Zero Length, Prev: Long Long, Up: C Extensions
Complex Numbers
===============
GNU C supports complex data types. You can declare both complex
integer types and complex floating types, using the keyword
`__complex__'.
For example, `__complex__ double x;' declares `x' as a variable
whose real part and imaginary part are both of type `double'.
`__complex__ short int y;' declares `y' to have real and imaginary
parts of type `short int'; this is not likely to be useful, but it
shows that the set of complex types is complete.
To write a constant with a complex data type, use the suffix `i' or
`j' (either one; they are equivalent). For example, `2.5fi' has type
`__complex__ float' and `3i' has type `__complex__ int'. Such a
constant always has a pure imaginary value, but you can form any
complex value you like by adding one to a real constant.
To extract the real part of a complex-valued expression EXP, write
`__real__ EXP'. Likewise, use `__imag__' to extract the imaginary part.
The operator `~' performs complex conjugation when used on a value
with a complex type.
GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it's even possible for the real part to be in a register while
the imaginary part is on the stack (or vice-versa). None of the
supported debugging info formats has a way to represent noncontiguous
allocation like this, so GNU CC describes a noncontiguous complex
variable as if it were two separate variables of noncomplex type. If
the variable's actual name is `foo', the two fictitious variables are
named `foo$real' and `foo$imag'. You can examine and set these two
fictitious variables with your debugger.
A future version of GDB will know how to recognize such pairs and
treat them as a single variable with a complex type.
File: gcc.info, Node: Zero Length, Next: Variable Length, Prev: Complex, Up: C Extensions
Arrays of Length Zero
=====================
Zero-length arrays are allowed in GNU C. They are very useful as
the last element of a structure which is really a header for a
variable-length object:
struct line {
int length;
char contents[0];
};
{
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
}
In standard C, you would have to give `contents' a length of 1, which
means either you waste space or complicate the argument to `malloc'.
File: gcc.info, Node: Variable Length, Next: Macro Varargs, Prev: Zero Length, Up: C Extensions
Arrays of Variable Length
=========================
Variable-length automatic arrays are allowed in GNU C. These arrays
are declared like any other automatic arrays, but with a length that is
not a constant expression. The storage is allocated at the point of
declaration and deallocated when the brace-level is exited. For
example:
FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);
}
Jumping or breaking out of the scope of the array name deallocates
the storage. Jumping into the scope is not allowed; you get an error
message for it.
You can use the function `alloca' to get an effect much like
variable-length arrays. The function `alloca' is available in many
other C implementations (but not in all). On the other hand,
variable-length arrays are more elegant.
There are other differences between these two methods. Space
allocated with `alloca' exists until the containing *function* returns.
The space for a variable-length array is deallocated as soon as the
array name's scope ends. (If you use both variable-length arrays and
`alloca' in the same function, deallocation of a variable-length array
will also deallocate anything more recently allocated with `alloca'.)
You can also use variable-length arrays as arguments to functions:
struct entry
tester (int len, char data[len][len])
{
...
}
The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
`sizeof'.
If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list--another GNU extension.
struct entry
tester (int len; char data[len][len], int len)
{
...
}
The `int len' before the semicolon is a "parameter forward
declaration", and it serves the purpose of making the name `len' known
when the declaration of `data' is parsed.
You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the "real"
parameter declarations. Each forward declaration must match a "real"
declaration in parameter name and data type.
File: gcc.info, Node: Macro Varargs, Next: Subscripting, Prev: Variable Length, Up: C Extensions
Macros with Variable Numbers of Arguments
=========================================
In GNU C, a macro can accept a variable number of arguments, much as
a function can. The syntax for defining the macro looks much like that
used for a function. Here is an example:
#define eprintf(format, args...) \
fprintf (stderr, format , ## args)
Here `args' is a "rest argument": it takes in zero or more
arguments, as many as the call contains. All of them plus the commas
between them form the value of `args', which is substituted into the
macro body where `args' is used. Thus, we have this expansion:
eprintf ("%s:%d: ", input_file_name, line_number)
==>
fprintf (stderr, "%s:%d: " , input_file_name, line_number)
Note that the comma after the string constant comes from the definition
of `eprintf', whereas the last comma comes from the value of `args'.
The reason for using `##' is to handle the case when `args' matches
no arguments at all. In this case, `args' has an empty value. In this
case, the second comma in the definition becomes an embarrassment: if
it got through to the expansion of the macro, we would get something
like this:
fprintf (stderr, "success!\n" , )
which is invalid C syntax. `##' gets rid of the comma, so we get the
following instead:
fprintf (stderr, "success!\n")
This is a special feature of the GNU C preprocessor: `##' before a
rest argument that is empty discards the preceding sequence of
non-whitespace characters from the macro definition. (If another macro
argument precedes, none of it is discarded.)
It might be better to discard the last preprocessor token instead of
the last preceding sequence of non-whitespace characters; in fact, we
may someday change this feature to do so. We advise you to write the
macro definition so that the preceding sequence of non-whitespace
characters is just a single token, so that the meaning will not change
if we change the definition of this feature.
File: gcc.info, Node: Subscripting, Next: Pointer Arith, Prev: Macro Varargs, Up: C Extensions
Non-Lvalue Arrays May Have Subscripts
=====================================
Subscripting is allowed on arrays that are not lvalues, even though
the unary `&' operator is not. For example, this is valid in GNU C
though not valid in other C dialects:
struct foo {int a[4];};
struct foo f();
bar (int index)
{
return f().a[index];
}
File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions
Arithmetic on `void'- and Function-Pointers
===========================================
In GNU C, addition and subtraction operations are supported on
pointers to `void' and on pointers to functions. This is done by
treating the size of a `void' or of a function as 1.
A consequence of this is that `sizeof' is also allowed on `void' and
on function types, and returns 1.
The option `-Wpointer-arith' requests a warning if these extensions
are used.
File: gcc.info, Node: Initializers, Next: Constructors, Prev: Pointer Arith, Up: C Extensions
Non-Constant Initializers
=========================
As in standard C++, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU C.
Here is an example of an initializer with run-time varying elements:
foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
...
}
File: gcc.info, Node: Constructors, Next: Labeled Elements, Prev: Initializers, Up: C Extensions
Constructor Expressions
=======================
GNU C supports constructor expressions. A constructor looks like a
cast containing an initializer. Its value is an object of the type
specified in the cast, containing the elements specified in the
initializer.
Usually, the specified type is a structure. Assume that `struct
foo' and `structure' are declared as shown:
struct foo {int a; char b[2];} structure;
Here is an example of constructing a `struct foo' with a constructor:
structure = ((struct foo) {x + y, 'a', 0});
This is equivalent to writing the following:
{
struct foo temp = {x + y, 'a', 0};
structure = temp;
}
You can also construct an array. If all the elements of the
constructor are (made up of) simple constant expressions, suitable for
use in initializers, then the constructor is an lvalue and can be
coerced to a pointer to its first element, as shown here:
char **foo = (char *[]) { "x", "y", "z" };
Array constructors whose elements are not simple constants are not
very useful, because the constructor is not an lvalue. There are only
two valid ways to use it: to subscript it, or initialize an array
variable with it. The former is probably slower than a `switch'
statement, while the latter does the same thing an ordinary C
initializer would do. Here is an example of subscripting an array
constructor:
output = ((int[]) { 2, x, 28 }) [input];
Constructor expressions for scalar types and union types are is also
allowed, but then the constructor expression is equivalent to a cast.
File: gcc.info, Node: Labeled Elements, Next: Cast to Union, Prev: Constructors, Up: C Extensions
Labeled Elements in Initializers
================================
Standard C requires the elements of an initializer to appear in a
fixed order, the same as the order of the elements in the array or
structure being initialized.
In GNU C you can give the elements in any order, specifying the array
indices or structure field names they apply to. This extension is not
implemented in GNU C++.
To specify an array index, write `[INDEX]' or `[INDEX] =' before the
element value. For example,
int a[6] = { [4] 29, [2] = 15 };
is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };
The index values must be constant expressions, even if the array being
initialized is automatic.
To initialize a range of elements to the same value, write `[FIRST
... LAST] = VALUE'. For example,
int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
Note that the length of the array is the highest value specified plus
In a structure initializer, specify the name of a field to initialize
with `FIELDNAME:' before the element value. For example, given the
following structure,
struct point { int x, y; };
the following initialization
struct point p = { y: yvalue, x: xvalue };
is equivalent to
struct point p = { xvalue, yvalue };
Another syntax which has the same meaning is `.FIELDNAME ='., as
shown here:
struct point p = { .y = yvalue, .x = xvalue };
You can also use an element label (with either the colon syntax or
the period-equal syntax) when initializing a union, to specify which
element of the union should be used. For example,
union foo { int i; double d; };
union foo f = { d: 4 };
will convert 4 to a `double' to store it in the union using the second
element. By contrast, casting 4 to type `union foo' would store it
into the union as the integer `i', since it is an integer. (*Note Cast
to Union::.)
You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that
does not have a label applies to the next consecutive element of the
array or structure. For example,
int a[6] = { [1] = v1, v2, [4] = v4 };
is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };
Labeling the elements of an array initializer is especially useful
when the indices are characters or belong to an `enum' type. For
example:
int whitespace[256]
= { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };