home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Frozen Fish 1: Amiga
/
FrozenFish-Apr94.iso
/
bbs
/
gnu
/
libm-src.lha
/
src
/
amiga
/
libm
/
vax
/
argred.s
next >
Wrap
Text File
|
1993-09-23
|
21KB
|
790 lines
# Copyright (c) 1985 Regents of the University of California.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. All advertising materials mentioning features or use of this software
# must display the following acknowledgement:
# This product includes software developed by the University of
# California, Berkeley and its contributors.
# 4. Neither the name of the University nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
#
# @(#)argred.s 5.4 (Berkeley) 10/9/90
#
.data
.align 2
_sccsid:
.asciz "@(#)argred.s 1.1 (Berkeley) 8/21/85; 5.4 (ucb.elefunt) 10/9/90"
# libm$argred implements Bob Corbett's argument reduction and
# libm$sincos implements Peter Tang's double precision sin/cos.
#
# Note: The two entry points libm$argred and libm$sincos are meant
# to be used only by _sin, _cos and _tan.
#
# method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett
# S. McDonald, April 4, 1985
#
.globl libm$argred
.globl libm$sincos
.text
.align 1
libm$argred:
#
# Compare the argument with the largest possible that can
# be reduced by table lookup. r3 := |x| will be used in table_lookup .
#
movd r0,r3
bgeq abs1
mnegd r3,r3
abs1:
cmpd r3,$0d+4.55530934770520019583e+01
blss small_arg
jsb trigred
rsb
small_arg:
jsb table_lookup
rsb
#
# At this point,
# r0 contains the quadrant number, 0, 1, 2, or 3;
# r2/r1 contains the reduced argument as a D-format number;
# r3 contains a F-format extension to the reduced argument;
# r4 contains a 0 or 1 corresponding to a sin or cos entry.
#
libm$sincos:
#
# Compensate for a cosine entry by adding one to the quadrant number.
#
addl2 r4,r0
#
# Polyd clobbers r5-r0 ; save X in r7/r6 .
# This can be avoided by rewriting trigred .
#
movd r1,r6
#
# Likewise, save alpha in r8 .
# This can be avoided by rewriting trigred .
#
movf r3,r8
#
# Odd or even quadrant? cosine if odd, sine otherwise.
# Save floor(quadrant/2) in r9 ; it determines the final sign.
#
rotl $-1,r0,r9
blss cosine
sine:
muld2 r1,r1 # Xsq = X * X
cmpw $0x2480,r1 # [zl] Xsq > 2^-56?
blss 1f # [zl] yes, go ahead and do polyd
clrq r1 # [zl] work around 11/780 FPA polyd bug
1:
polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7
mulf3 $0f3.0,r8,r4 # beta = 3 * alpha
mulf2 r0,r4 # beta = Q * beta
addf2 r8,r4 # beta = alpha + beta
muld2 r6,r0 # S(X) = X * Q
# cvtfd r4,r4 ... r5 = 0 after a polyd.
addd2 r4,r0 # S(X) = beta + S(X)
addd2 r6,r0 # S(X) = X + S(X)
brb done
cosine:
muld2 r6,r6 # Xsq = X * X
beql zero_arg
mulf2 r1,r8 # beta = X * alpha
polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7
subd3 r0,r8,r0 # beta = beta - Q
subw2 $0x80,r6 # Xsq = Xsq / 2
addd2 r0,r6 # Xsq = Xsq + beta
zero_arg:
subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq
done:
blbc r9,even
mnegd r0,r0
even:
rsb
.data
.align 2
sin_coef:
.double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8..
.double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8..
.double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382..
.double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278..
.double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d..
.double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50
.double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554
.double 0d+0.00000000000000000000e+00 # s0 = 0
cos_coef:
.double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE..
.double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA..
.double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E..
.double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8..
.double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE..
.double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E
.double 0d+0.00000000000000000000e+00 # s1 = 0
.double 0d+0.00000000000000000000e+00 # s0 = 0
#
# Multiples of pi/2 expressed as the sum of three doubles,
#
# trailing: n * pi/2 , n = 0, 1, 2, ..., 29
# trailing[n] ,
#
# middle: n * pi/2 , n = 0, 1, 2, ..., 29
# middle[n] ,
#
# leading: n * pi/2 , n = 0, 1, 2, ..., 29
# leading[n] ,
#
# where
# leading[n] := (n * pi/2) rounded,
# middle[n] := (n * pi/2 - leading[n]) rounded,
# trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded .
trailing:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing
.double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing
.double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing
.double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing
.double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing
.double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing
.double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing
.double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing
.double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing
.double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing
.double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing
.double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing
.double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing
.double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing
.double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing
.double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing
.double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing
.double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing
.double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing
.double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing
.double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing
.double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing
.double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing
.double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing
.double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing
.double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing
.double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing
.double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing
.double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing
.double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing
middle:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle
.double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle
.double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle
.double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle
.double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle
.double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle
.double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle
.double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle
.double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle
.double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle
.double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle
.double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle
.double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle
.double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle
.double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle
.double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle
.double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle
.double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle
.double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle
.double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle
.double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle
.double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle
.double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle
.double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle
.double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle
.double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle
.double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle
.double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle
.double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle
.double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle
leading:
.double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading
.double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading
.double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading
.double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading
.double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading
.double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading
.double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading
.double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading
.double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading
.double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading
.double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading
.double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading
.double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading
.double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading
.double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading
.double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading
.double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading
.double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading
.double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading
.double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading
.double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading
.double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading
.double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading
.double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading
.double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading
.double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading
.double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading
.double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading
.double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading
.double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading
twoOverPi:
.double 0d+6.36619772367581343076e-01
.text
.align 1
table_lookup:
muld3 r3,twoOverPi,r0
cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded
mull3 $8,r0,r5
subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly
subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded
subd2 r1,r3 # r = (p - q)
subd2 middle(r5),r3 # r = r - middle n*pi/2
subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded
#
# If the original argument was negative,
# negate the reduce argument and
# adjust the octant/quadrant number.
#
tstw 4(ap)
bgeq abs2
mnegf r1,r1
mnegf r3,r3
# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
subb3 r0,$4,r0
abs2:
#
# Clear all unneeded octant/quadrant bits.
#
# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
bicb2 $0xfc,r0
rsb
#
# p.0
.text
.align 2
#
# Only 256 (actually 225) bits of 2/pi are needed for VAX double
# precision; this was determined by enumerating all the nearest
# machine integer multiples of pi/2 using continued fractions.
# (8a8d3673775b7ff7 required the most bits.) -S.McD
#
.long 0
.long 0
.long 0xaef1586d
.long 0x9458eaf7
.long 0x10e4107f
.long 0xd8a5664f
.long 0x4d377036
.long 0x09d5f47d
.long 0x91054a7f
.long 0xbe60db93
bits2opi:
.long 0x00000028
.long 0
#
# Note: wherever you see the word `octant', read `quadrant'.
# Currently this code is set up for pi/2 argument reduction.
# By uncommenting/commenting the appropriate lines, it will
# also serve as a pi/4 argument reduction code.
#
# p.1
# Trigred preforms argument reduction
# for the trigonometric functions. It
# takes one input argument, a D-format
# number in r1/r0 . The magnitude of
# the input argument must be greater
# than or equal to 1/2 . Trigred produces
# three results: the number of the octant
# occupied by the argument, the reduced
# argument, and an extension of the
# reduced argument. The octant number is
# returned in r0 . The reduced argument
# is returned as a D-format number in
# r2/r1 . An 8 bit extension of the
# reduced argument is returned as an
# F-format number in r3.
# p.2
trigred:
#
# Save the sign of the input argument.
#
movw r0,-(sp)
#
# Extract the exponent field.
#
extzv $7,$7,r0,r2
#
# Convert the fraction part of the input
# argument into a quadword integer.
#
bicw2 $0xff80,r0
bisb2 $0x80,r0 # -S.McD
rotl $16,r0,r0
rotl $16,r1,r1
#
# If r1 is negative, add 1 to r0 . This
# adjustment is made so that the two's
# complement multiplications done later
# will produce unsigned results.
#
bgeq posmid
incl r0
posmid:
# p.3
#
# Set r3 to the address of the first quadword
# used to obtain the needed portion of 2/pi .
# The address is longword aligned to ensure
# efficient access.
#
ashl $-3,r2,r3
bicb2 $3,r3
subl3 r3,$bits2opi,r3
#
# Set r2 to the size of the shift needed to
# obtain the correct portion of 2/pi .
#
bicb2 $0xe0,r2
# p.4
#
# Move the needed 128 bits of 2/pi into
# r11 - r8 . Adjust the numbers to allow
# for unsigned multiplication.
#
ashq r2,(r3),r10
subl2 $4,r3
ashq r2,(r3),r9
bgeq signoff1
incl r11
signoff1:
subl2 $4,r3
ashq r2,(r3),r8
bgeq signoff2
incl r10
signoff2:
subl2 $4,r3
ashq r2,(r3),r7
bgeq signoff3
incl r9
signoff3:
# p.5
#
# Multiply the contents of r0/r1 by the
# slice of 2/pi in r11 - r8 .
#
emul r0,r8,$0,r4
emul r0,r9,r5,r5
emul r0,r10,r6,r6
emul r1,r8,$0,r7
emul r1,r9,r8,r8
emul r1,r10,r9,r9
emul r1,r11,r10,r10
addl2 r4,r8
adwc r5,r9
adwc r6,r10
# p.6
#
# If there are more than five leading zeros
# after the first two quotient bits or if there
# are more than five leading ones after the first
# two quotient bits, generate more fraction bits.
# Otherwise, branch to code to produce the result.
#
bicl3 $0xc1ffffff,r10,r4
beql more1
cmpl $0x3e000000,r4
bneq result
more1:
# p.7
#
# generate another 32 result bits.
#
subl2 $4,r3
ashq r2,(r3),r5
bgeq signoff4
emul r1,r6,$0,r4
addl2 r1,r5
emul r0,r6,r5,r5
addl2 r0,r6
brb addbits1
signoff4:
emul r1,r6,$0,r4
emul r0,r6,r5,r5
addbits1:
addl2 r5,r7
adwc r6,r8
adwc $0,r9
adwc $0,r10
# p.8
#
# Check for massive cancellation.
#
bicl3 $0xc0000000,r10,r6
# bneq more2 -S.McD Test was backwards
beql more2
cmpl $0x3fffffff,r6
bneq result
more2:
# p.9
#
# If massive cancellation has occurred,
# generate another 24 result bits.
# Testing has shown there will always be
# enough bits after this point.
#
subl2 $4,r3
ashq r2,(r3),r5
bgeq signoff5
emul r0,r6,r4,r5
addl2 r0,r6
brb addbits2
signoff5:
emul r0,r6,r4,r5
addbits2:
addl2 r6,r7
adwc $0,r8
adwc $0,r9
adwc $0,r10
# p.10
#
# The following code produces the reduced
# argument from the product bits contained
# in r10 - r7 .
#
result:
#
# Extract the octant number from r10 .
#
# extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD
extzv $30,$2,r10,r0
#
# Clear the octant bits in r10 .
#
# bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD
bicl2 $0xc0000000,r10
#
# Zero the sign flag.
#
clrl r5
# p.11
#
# Check to see if the fraction is greater than
# or equal to one-half. If it is, add one
# to the octant number, set the sign flag
# on, and replace the fraction with 1 minus
# the fraction.
#
# bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD
bitl $0x20000000,r10
beql small
incl r0
incl r5
# subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD
subl3 r10,$0x3fffffff,r10
mcoml r9,r9
mcoml r8,r8
mcoml r7,r7
small:
# p.12
#
## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD
# Test whether the first 30 bits of the
# fraction are zero.
#
tstl r10
beql tiny
#
# Find the position of the first one bit in r10 .
#
cvtld r10,r1
extzv $7,$7,r1,r1
#
# Compute the size of the shift needed.
#
subl3 r1,$32,r6
#
# Shift up the high order 64 bits of the
# product.
#
ashq r6,r9,r10
ashq r6,r8,r9
brb mult
# p.13
#
# Test to see if the sign bit of r9 is on.
#
tiny:
tstl r9
bgeq tinier
#
# If it is, shift the product bits up 32 bits.
#
movl $32,r6
movq r8,r10
tstl r10
brb mult
# p.14
#
# Test whether r9 is zero. It is probably
# impossible for both r10 and r9 to be
# zero, but until proven to be so, the test
# must be made.
#
tinier:
beql zero
#
# Find the position of the first one bit in r9 .
#
cvtld r9,r1
extzv $7,$7,r1,r1
#
# Compute the size of the shift needed.
#
subl3 r1,$32,r1
addl3 $32,r1,r6
#
# Shift up the high order 64 bits of the
# product.
#
ashq r1,r8,r10
ashq r1,r7,r9
brb mult
# p.15
#
# The following code sets the reduced
# argument to zero.
#
zero:
clrl r1
clrl r2
clrl r3
brw return
# p.16
#
# At this point, r0 contains the octant number,
# r6 indicates the number of bits the fraction
# has been shifted, r5 indicates the sign of
# the fraction, r11/r10 contain the high order
# 64 bits of the fraction, and the condition
# codes indicate where the sign bit of r10
# is on. The following code multiplies the
# fraction by pi/2 .
#
mult:
#
# Save r11/r10 in r4/r1 . -S.McD
movl r11,r4
movl r10,r1
#
# If the sign bit of r10 is on, add 1 to r11 .
#
bgeq signoff6
incl r11
signoff6:
# p.17
#
# Move pi/2 into r3/r2 .
#
movq $0xc90fdaa22168c235,r2
#
# Multiply the fraction by the portion of pi/2
# in r2 .
#
emul r2,r10,$0,r7
emul r2,r11,r8,r7
#
# Multiply the fraction by the portion of pi/2
# in r3 .
emul r3,r10,$0,r9
emul r3,r11,r10,r10
#
# Add the product bits together.
#
addl2 r7,r9
adwc r8,r10
adwc $0,r11
#
# Compensate for not sign extending r8 above.-S.McD
#
tstl r8
bgeq signoff6a
decl r11
signoff6a:
#
# Compensate for r11/r10 being unsigned. -S.McD
#
addl2 r2,r10
adwc r3,r11
#
# Compensate for r3/r2 being unsigned. -S.McD
#
addl2 r1,r10
adwc r4,r11
# p.18
#
# If the sign bit of r11 is zero, shift the
# product bits up one bit and increment r6 .
#
blss signon
incl r6
ashq $1,r10,r10
tstl r9
bgeq signoff7
incl r10
signoff7:
signon:
# p.19
#
# Shift the 56 most significant product
# bits into r9/r8 . The sign extension
# will be handled later.
#
ashq $-8,r10,r8
#
# Convert the low order 8 bits of r10
# into an F-format number.
#
cvtbf r10,r3
#
# If the result of the conversion was
# negative, add 1 to r9/r8 .
#
bgeq chop
incl r8
adwc $0,r9
#
# If r9 is now zero, branch to special
# code to handle that possibility.
#
beql carryout
chop:
# p.20
#
# Convert the number in r9/r8 into
# D-format number in r2/r1 .
#
rotl $16,r8,r2
rotl $16,r9,r1
#
# Set the exponent field to the appropriate
# value. Note that the extra bits created by
# sign extension are now eliminated.
#
subw3 r6,$131,r6
insv r6,$7,$9,r1
#
# Set the exponent field of the F-format
# number in r3 to the appropriate value.
#
tstf r3
beql return
# extzv $7,$8,r3,r4 -S.McD
extzv $7,$7,r3,r4
addw2 r4,r6
# subw2 $217,r6 -S.McD
subw2 $64,r6
insv r6,$7,$8,r3
brb return
# p.21
#
# The following code generates the appropriate
# result for the unlikely possibility that
# rounding the number in r9/r8 resulted in
# a carry out.
#
carryout:
clrl r1
clrl r2
subw3 r6,$132,r6
insv r6,$7,$9,r1
tstf r3
beql return
extzv $7,$8,r3,r4
addw2 r4,r6
subw2 $218,r6
insv r6,$7,$8,r3
# p.22
#
# The following code makes an needed
# adjustments to the signs of the
# results or to the octant number, and
# then returns.
#
return:
#
# Test if the fraction was greater than or
# equal to 1/2 . If so, negate the reduced
# argument.
#
blbc r5,signoff8
mnegf r1,r1
mnegf r3,r3
signoff8:
# p.23
#
# If the original argument was negative,
# negate the reduce argument and
# adjust the octant number.
#
tstw (sp)+
bgeq signoff9
mnegf r1,r1
mnegf r3,r3
# subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD
subb3 r0,$4,r0
signoff9:
#
# Clear all unneeded octant bits.
#
# bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD
bicb2 $0xfc,r0
#
# Return.
#
rsb