home *** CD-ROM | disk | FTP | other *** search
- /* svdecomp - SVD decomposition routines. */
- /* Taken from Numerical Recipies. */
- /* XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney */
- /* Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz */
- /* You may give out copies of this software; for conditions see the */
- /* file COPYING included with this distribution. */
-
- #include "xlisp.h"
- #include "osdef.h"
- #ifdef ANSI
- #include "xlproto.h"
- #include "xlsproto.h"
- #else
- #include "xlfun.h"
- #include "xlsfun.h"
- #endif ANSI
-
- #ifdef ANSI
- double PYTHAG(double,double);
- void sort_sv(int,int,int,RMatrix,RVector,RMatrix);
- #else
- double PYTHAG();
- void sort_sv();
- #endif ANSI
-
- static double PYTHAG(a, b)
- double a, b;
- {
- double at = fabs(a), bt = fabs(b), ct, result;
-
- if (at > bt) { ct = bt / at; result = at * sqrt(1.0 + ct * ct); }
- else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); }
- else result = 0.0;
- return(result);
- }
-
- #define SWAPD(a, b) (temp = (a), (a) = (b), (b) = temp)
-
- static void sort_sv(m, n, k, a, w, v)
- int m, n, k;
- RMatrix a, v;
- RVector w;
- {
- int i, j;
- double temp;
-
- for (i = k; (i < n - 1) && (w[i] < w[i+1]); i++) {
- SWAPD(w[i], w[i+1]);
- for (j = 0; j < m; j++) SWAPD(a[j][i], a[j][i+1]);
- for (j = 0; j < n; j++) SWAPD(v[j][i], v[j][i+1]);
- }
- }
-
- static double maxarg1, maxarg2;
- #undef Max /* defined in xlsdef.h JKL */
- #define Max(a, b) (maxarg1 = (a), maxarg2 = (b), (maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
- #define SIGN(a, b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
-
- svdcmp(a, m, n, w, v)
- RMatrix a, v;
- RVector w;
- int m, n;
- {
- int flag, i, its, j, jj, k, l, nm;
- double c, f, h, s, x, y, z;
- double anorm = 0.0, g = 0.0, scale = 0.0;
- RVector rv1;
-
- if (m < n) return(FALSE); /* flag an error if m < n */
-
- rv1 = rvector(n);
-
- /* Householder reduction to bidiagonal form */
- for (i = 0; i < n; i++) {
-
- /* left-hand reduction */
- l = i + 1;
- rv1[i] = scale * g;
- g = s = scale = 0.0;
- if (i < m) {
- for (k = i; k < m; k++) scale += fabs(a[k][i]);
- if (scale) {
- for (k = i; k < m; k++) {
- a[k][i] /= scale;
- s += a[k][i] * a[k][i];
- }
- f = a[i][i];
- g = -SIGN(sqrt(s), f);
- h = f * g - s;
- a[i][i] = f - g;
- if (i != n - 1) {
- for (j = l; j < n; j++) {
- for (s = 0.0, k = i; k < m; k++) s += a[k][i] * a[k][j];
- f = s / h;
- for (k = i; k < m; k++) a[k][j] += f * a[k][i];
- }
- }
- for (k = i; k < m; k++) a[k][i] *= scale;
- }
- }
- w[i] = scale * g;
-
- /* right-hand reduction */
- g = s = scale = 0.0;
- if (i < m && i != n - 1) {
- for (k = l; k < n; k++) scale += fabs(a[i][k]);
- if (scale) {
- for (k = l; k < n; k++) {
- a[i][k] /= scale;
- s += a[i][k] * a[i][k];
- }
- f = a[i][l];
- g = -SIGN(sqrt(s), f);
- h = f * g - s;
- a[i][l] = f - g;
- for (k = l; k < n; k++) rv1[k] = a[i][k] / h;
- if (i != m - 1) {
- for (j = l; j < m; j++) {
- for (s = 0.0, k = l; k < n; k++) s += a[j][k] * a[i][k];
- for (k = l; k < n; k++) a[j][k] += s * rv1[k];
- }
- }
- for (k = l; k < n; k++) a[i][k] *= scale;
- }
- }
- anorm = Max(anorm, (fabs(w[i]) + fabs(rv1[i])));
- }
-
- /* accumulate the right-hand transformation */
- for (i = n - 1; i >= 0; i--) {
- if (i < n - 1) {
- if (g) {
- for (j = l; j < n; j++)
- v[j][i] = (a[i][j] / a[i][l]) / g;
- for (j = l; j < n; j++) {
- for (s = 0.0, k = l; k < n; k++) s += a[i][k] * v[k][j];
- for (k = l; k < n; k++) v[k][j] += s * v[k][i];
- }
- }
- for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
- }
- v[i][i] = 1.0;
- g = rv1[i];
- l = i;
- }
-
- /* accumulate the left-hand transformation */
- for (i = n - 1; i >= 0; i--) {
- l = i + 1;
- g = w[i];
- if (i < n - 1)
- for (j = l; j < n; j++) a[i][j] = 0.0;
- if (g) {
- g = 1.0 / g;
- if (i != n - 1) {
- for (j = l; j < n; j++) {
- for (s = 0.0, k = l; k < m; k++) s += a[k][i] * a[k][j];
- f = (s / a[i][i]) * g;
- for (k = i; k < m; k++) a[k][j] += f * a[k][i];
- }
- }
- for (j = i; j < m; j++) a[j][i] *= g;
- }
- else {
- for (j = i; j < m; j++) a[j][i] = 0.0;
- }
- ++a[i][i];
- }
-
- /* diagonalize the bidiagonal form */
- for (k = n - 1; k >= 0; k--) { /* loop over singular values */
- for (its = 0; its < 30; its++) { /* loop over allowed iterations */
- flag = 1;
- for (l = k; l >= 0; l--) { /* test for splitting */
- nm = l - 1;
- if (fabs(rv1[l]) + anorm == anorm) {
- flag = 0;
- break;
- }
- if (fabs(w[nm]) + anorm == anorm) break;
- }
- if (flag) {
- c = 0.0;
- s = 1.0;
- for (i = l; i <= k; i++) {
- f = s * rv1[i];
- if (fabs(f) + anorm != anorm) {
- g = w[i];
- h = PYTHAG(f, g);
- w[i] = h;
- if (h == 0.0) {
- char s[100];
- sprintf(s, "h = %f, f = %f, g = %f\n", f, g);
- stdputstr(s);
- }
- h = 1.0 / h;
- c = g * h;
- s = (- f * h);
- for (j = 0; j < m; j++) {
- y = a[j][nm];
- z = a[j][i];
- a[j][nm] = y * c + z * s;
- a[j][i] = z * c - y * s;
- }
- }
- }
- }
- z = w[k];
- if (l == k) { /* convergence */
- if (z < 0.0) { /* make singular value nonnegative */
- w[k] = -z;
- for (j = 0; j < n; j++) v[j][k] = (-v[j][k]);
- }
- sort_sv(m, n, k, a, w, v);
- break;
- }
- if (its >= 30) {
- free_vector((Vector)rv1); /* cast added JKL */
- return(FALSE); /* return an error flag */
- }
-
- /* shift from bottom 2 x 2 minor */
- x = w[l];
- nm = k - 1;
- y = w[nm];
- g = rv1[nm];
- h = rv1[k];
- f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
- g = PYTHAG(f, 1.0);
- f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
-
- /* next QR transformation */
- c = s = 1.0;
- for (j = l; j <= nm; j++) {
- i = j + 1;
- g = rv1[i];
- y = w[i];
- h = s * g;
- g = c * g;
- z = PYTHAG(f, h);
- rv1[j] = z;
- c = f / z;
- s = h / z;
- f = x * c + g * s;
- g = g * c - x * s;
- h = y * s;
- y = y * c;
- for (jj = 0; jj < n; jj++) {
- x = v[jj][j];
- z = v[jj][i];
- v[jj][j] = x * c + z * s;
- v[jj][i] = z * c - x * s;
- }
- z = PYTHAG(f, h);
- w[j] = z;
- if (z) {
- z = 1.0 / z;
- c = f * z;
- s = h * z;
- }
- f = (c * g) + (s * y);
- x = (c * y) - (s * g);
- for (jj = 0; jj < m; jj++) {
- y = a[jj][j];
- z = a[jj][i];
- a[jj][j] = y * c + z * s;
- a[jj][i] = z * c - y * s;
- }
- }
- rv1[l] = 0.0;
- rv1[k] = f;
- w[k] = x;
- }
- }
- free_vector((Vector)rv1); /* cast added JKL */
- return(TRUE);
- }
-
-