home *** CD-ROM | disk | FTP | other *** search
/ support.isiresearchsoft.com / support.isiresearchsoft.com.zip / support.isiresearchsoft.com / RefMan / capture / sbsciupd.txt < prev    next >
Text File  |  1999-09-02  |  3KB  |  70 lines

  1.  
  2. <TITLE>SB-Science Update</A>  [<I>SB-Science Update</I>] </TITLE><PRE>
  3.  
  4. 1/1/1
  5. FN- SCISEARCH_1993 - 9300W4
  6. AN- MK85000198|
  7. GA- MK850|
  8. TI- NUCLEOSIDE TRIPHOSPHATASE-ACTIVITY ASSOCIATED WITH THE N-TERMINAL DOMAIN OF
  9. MAMMALIAN TRYPTOPHANYL-TRANSFER-RNA SYNTHETASE|
  10. LA- English|
  11. AU- Kovaleva G;   Nikitushkina T;   Kisselev L|
  12. CS- RUSSIAN ACAD SCI,ENGELHARDT INST MOLEC BIOL,32 VAVILOVA/117984/RUSSIA|
  13. JN- FEBS LETTERS,1993, V335, N2, P198-202|
  14. SN- 0014-579|
  15. PY- 1993|
  16. DT- article|
  17. SF- SciSearch|
  18. SC- BIOPHYSICS;   BIOCHEMISTRY_AND_MOLECULAR_BIOLOh|
  19. AB- Bovine tryptophanyl-tRNA synthetase (EC 6.1.1.2) deprived of Zn2+ by chelati
  20. on with the phosphonate analog of Ap(4)A hydrolized ATP(GTP) to ADP(GDP) althoug
  21. h its ability to form tryptophanyl adenylate was impaired. This hydrolytic activ
  22. ity is stimulated by Mg2+ and Mn2+ ions and inhibited by Zn2+. Monoclonal antibo
  23. dy Aml against the N-terminal domain of the enzyme completely abolished ATP(GTP)
  24. ase activity. The core peptide generated after proteolytic splitting of the N-do
  25. main lacks this activity. We suggest that the nucleotide binding site(s) differe
  26. nt from ATP sites involved in aminoacylation reaction reside(s) at the N-termina
  27. l domain(s) of the enzyme.|
  28. DE- Author Keywords: mammalian aminoacyl-transfer-rna synthetase;   atp/gtp hydr
  29. olysis;   noncanonical enzymatic activity;   zn2+ chelation;   ap(4)a phosphonat
  30. e analog|
  31. ID- Keywords Plus: transfer-rna-synthetase;   diadenosine 5',5'''-p1,p4-tetrapho
  32. sphate;   escherichia-coli;   protein;   binding;   pancreas|
  33. CR- BERESTEN_SF_1989_V184_P575 EUR_J_BIOCHEM_CJ
  34. BRADFORD_MM_1976_V72_P248 ANAL_BIOCHEM_CJ
  35. DEUTSCHER_MP_1984_V99_P373 J_CELL_BIOL_CJ
  36. ERIANI_G_1990_V347_P203 NATURE_CJ
  37. FAVOROVA_O_1989_V184_P575 EUR_J_BIOCHEM_CJ
  38. FERSHT_AR_1975_V14_P1 BIOCHEM_CJ
  39. GARRET_M_1991_V30_P7809 BIOCHEMISTRY-US_CJ
  40. GODEAU_JM_1979_V179_P407 BIOCHEM_J_CJ
  41. GOERLICH_O_1984_V23_P182 BIOCHEMISTRY-US_CJ
  42. GOERLICH_O_1982_V126_P135 EUR_J_BIOCHEM_CJ
  43. GUEDON_J_1987_V69_P1175 BIOCHIMIE_CJ
  44. KISSELEV_L_1984 PROTEIN_BIOSYNTHESIS_CJ
  45. KISSELEV_LL_1981_V120_P511 EUR_J_BIOCHEM_CJ
  46. KISSELEV_LL_1979_V59_P234 METHOD_ENZYMOL_CJ
  47. KISSELEV_LL_1990_V24_P1445 MOL_BIOL_CJ
  48. KOVALEVA_GK_1992_V309_P337 FEBS_LETT_CJ
  49. KOVALEVA_GK_1986_V20_P558 MOL_BIOL_CJ
  50. KOVALEVA_GK_1988_V22_P1307 MOL_BIOL_CJ
  51. LAEMMLI_UK_1970_V227_P680 NATURE_CJ
  52. LAPOINTE_J_1991_P35 TRANSLATION_EUKARYOT_CJ
  53. LED_JJ_1983_V136_P469 EUR_J_BIOCHEM_CJ
  54. LEMAIRE_G_1975_V51_P237 EUR_J_BIOCHEM_CJ
  55. MERKULOVA_TI_1986_V2_P179 BIOPOLIM_KLETKA_CJ
  56. MIRANDE_M_1991_V40_P95 PROG_NUCLEIC_ACID_RE_CJ
  57. NEVINSKY_GA_1979_V5_P352 BIOORG_CHIM_MOSCOW_CJ
  58. PLATEAU_P_1981_V20_P4654 BIOCHEM_CJ
  59. PRASSOLOV_VS_1975_V378_P92 BIOCHIM_BIOPHYS_ACTA_CJ
  60. ROY_LK_1968_V161_P572 BIOCHIM_BIOPHYS_ACTA_CJ
  61. SALLAFRANQUE_ML_1986_V882_P192 BIOCHIM_BIOPHYS_ACTA_CJ
  62. TAKEUCHI_Y_1992_V307_P177 FEBS_LETT_CJ
  63. TARUSSOVA_NB_1986_P195 BIOPHOSPHATES_THEIR_CJ
  64. TORNHEIM_K_1980_V103_P87 ANAL_BIOCHEM_CJ
  65. VALLEE_BL_1948_V176_P435 J_BIOL_CHEM_CJ
  66. WIERENGA_RK_1983_V302_P842 NATURE_CJ
  67. ZAMECNIK_P_1983_V134_P1 ANAL_BIOCHEM_CJ||
  68.  
  69.  
  70. </PRE>