home *** CD-ROM | disk | FTP | other *** search
-
- The Logic Symbols font
- by Scott Pakin
-
-
- Valid characters in the Logic Symbols font:
-
- &d0DSet operators&d@
- N (N) -- Intersection
- U (U) -- Union
- G (G) -- Subset
- H (H) -- Not a subset
- C (C) -- Proper subset
- D (D) -- Not a proper subset
- = (=) -- Set equivalence
- < (<) -- Set nonequivalence
- ' (') -- Set nonmembership
-
- &d0DPredefined sets&d@
- O (O) -- Empty set
- P (P) -- Universal set
-
- &d0DPropositional calculus&d@
- ^ (^) -- And
- v (v) -- Or
- ~ (~) -- Not
- > (>) or ) ()) -- Implies (if...then)
- - (-) or # (#) -- Equivalence (if and only if)
-
- &d0DPredicate calculus and miscellaneous&d@
- A (A) -- For all
- E (E) -- There exists
- e (e) -- Membership
- f (f) -- Nonmembership
- : (:) -- Therefore
-
-
-
- &d0DSample usages:&d@
-
- p>q p-q pvq p^q ~p p)q p#q
-
- P=Q P<Q PUQ PNQ PCQ PDQ PGQ PHQ
-
- P'=Q O'=P P''=O
-
- Ax,yeA,(x>y)-(xv~y)
- Ax,yeA,(x)y)#(xv~y)
-
- (AP)(P<P>PCP)
-
- Ep|(pfO)^(peP)
-
- :P=Q
-
-
-
- &d0DExample:&d@ Prove that set union distributes over set intersection.
-
- In set notation, we must prove that for any A,B,CGP,
- AU(BNC)=(AUB)N(AUC). To do so, we can show that the left side
- of the equation can be transformed into the right side of the equation. By
- the definitions of set union and intersection, we can rewrite the left side
- of our initial equation as (xeA)v[(yeB)^(zeC)] Because v distributes
- over ^, we can distribute the v over the ^ in the previous expression
- to get [(xeA)v(yeB)]^[(xeA)v(zeC)]. Again using the definitions
- of set union and intersection, we can rewrite the above as (AUB)N(AUC).
- Because we have shown that, through the use of binary operators, AU(BNC)
- can be transformed into (AUB)N(AUC), we can conclude that
- AU(BNC)=(AUB)N(AUC), which is what we are trying to prove.