home *** CD-ROM | disk | FTP | other *** search
/ Amiga Format CD 28 / amigaformatcd28.iso / -websites- / amidoom / adoom_src-0.7.lha / ADoom_src / p_sight.c < prev    next >
C/C++ Source or Header  |  1997-12-25  |  7KB  |  350 lines

  1. // Emacs style mode select   -*- C++ -*- 
  2. //-----------------------------------------------------------------------------
  3. //
  4. // $Id:$
  5. //
  6. // Copyright (C) 1993-1996 by id Software, Inc.
  7. //
  8. // This source is available for distribution and/or modification
  9. // only under the terms of the DOOM Source Code License as
  10. // published by id Software. All rights reserved.
  11. //
  12. // The source is distributed in the hope that it will be useful,
  13. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. // FITNESS FOR A PARTICULAR PURPOSE. See the DOOM Source Code License
  15. // for more details.
  16. //
  17. // $Log:$
  18. //
  19. // DESCRIPTION:
  20. //    LineOfSight/Visibility checks, uses REJECT Lookup Table.
  21. //
  22. //-----------------------------------------------------------------------------
  23.  
  24. static const char
  25. rcsid[] = "$Id: p_sight.c,v 1.3 1997/01/28 22:08:28 b1 Exp $";
  26.  
  27.  
  28. #include "doomdef.h"
  29.  
  30. #include "i_system.h"
  31. #include "p_local.h"
  32.  
  33. // State.
  34. #include "r_state.h"
  35.  
  36. //
  37. // P_CheckSight
  38. //
  39. fixed_t        sightzstart;        // eye z of looker
  40. fixed_t        topslope;
  41. fixed_t        bottomslope;        // slopes to top and bottom of target
  42.  
  43. divline_t    strace;            // from t1 to t2
  44. fixed_t        t2x;
  45. fixed_t        t2y;
  46.  
  47. int        sightcounts[2];
  48.  
  49.  
  50. //
  51. // P_DivlineSide
  52. // Returns side 0 (front), 1 (back), or 2 (on).
  53. //
  54. int
  55. P_DivlineSide
  56. ( fixed_t    x,
  57.   fixed_t    y,
  58.   divline_t*    node )
  59. {
  60.     fixed_t    dx;
  61.     fixed_t    dy;
  62.     fixed_t    left;
  63.     fixed_t    right;
  64.  
  65.     if (!node->dx)
  66.     {
  67.     if (x==node->x)
  68.         return 2;
  69.     
  70.     if (x <= node->x)
  71.         return node->dy > 0;
  72.  
  73.     return node->dy < 0;
  74.     }
  75.     
  76.     if (!node->dy)
  77.     {
  78.     if (x==node->y)
  79.         return 2;
  80.  
  81.     if (y <= node->y)
  82.         return node->dx < 0;
  83.  
  84.     return node->dx > 0;
  85.     }
  86.     
  87.     dx = (x - node->x);
  88.     dy = (y - node->y);
  89.  
  90.     left =  (node->dy>>FRACBITS) * (dx>>FRACBITS);
  91.     right = (dy>>FRACBITS) * (node->dx>>FRACBITS);
  92.     
  93.     if (right < left)
  94.     return 0;    // front side
  95.     
  96.     if (left == right)
  97.     return 2;
  98.     return 1;        // back side
  99. }
  100.  
  101.  
  102. //
  103. // P_InterceptVector2
  104. // Returns the fractional intercept point
  105. // along the first divline.
  106. // This is only called by the addthings and addlines traversers.
  107. //
  108. fixed_t
  109. P_InterceptVector2
  110. ( divline_t*    v2,
  111.   divline_t*    v1 )
  112. {
  113.     fixed_t    frac;
  114.     fixed_t    num;
  115.     fixed_t    den;
  116.     
  117.     den = FixedMul (v1->dy>>8,v2->dx) - FixedMul(v1->dx>>8,v2->dy);
  118.  
  119.     if (den == 0)
  120.     return 0;
  121.     //    I_Error ("P_InterceptVector: parallel");
  122.     
  123.     num = FixedMul ( (v1->x - v2->x)>>8 ,v1->dy) + 
  124.     FixedMul ( (v2->y - v1->y)>>8 , v1->dx);
  125.     frac = FixedDiv (num , den);
  126.  
  127.     return frac;
  128. }
  129.  
  130. //
  131. // P_CrossSubsector
  132. // Returns true
  133. //  if strace crosses the given subsector successfully.
  134. //
  135. boolean P_CrossSubsector (int num)
  136. {
  137.     seg_t*        seg;
  138.     line_t*        line;
  139.     int            s1;
  140.     int            s2;
  141.     int            count;
  142.     subsector_t*    sub;
  143.     sector_t*        front;
  144.     sector_t*        back;
  145.     fixed_t        opentop;
  146.     fixed_t        openbottom;
  147.     divline_t        divl;
  148.     vertex_t*        v1;
  149.     vertex_t*        v2;
  150.     fixed_t        frac;
  151.     fixed_t        slope;
  152.     
  153. #ifdef RANGECHECK
  154.     if (num>=numsubsectors)
  155.     I_Error ("P_CrossSubsector: ss %i with numss = %i",
  156.          num,
  157.          numsubsectors);
  158. #endif
  159.  
  160.     sub = &subsectors[num];
  161.     
  162.     // check lines
  163.     count = sub->numlines;
  164.     seg = &segs[sub->firstline];
  165.  
  166.     for ( ; count ; seg++, count--)
  167.     {
  168.     line = seg->linedef;
  169.  
  170.     // allready checked other side?
  171.     if (line->validcount == validcount)
  172.         continue;
  173.     
  174.     line->validcount = validcount;
  175.         
  176.     v1 = line->v1;
  177.     v2 = line->v2;
  178.     s1 = P_DivlineSide (v1->x,v1->y, &strace);
  179.     s2 = P_DivlineSide (v2->x, v2->y, &strace);
  180.  
  181.     // line isn't crossed?
  182.     if (s1 == s2)
  183.         continue;
  184.     
  185.     divl.x = v1->x;
  186.     divl.y = v1->y;
  187.     divl.dx = v2->x - v1->x;
  188.     divl.dy = v2->y - v1->y;
  189.     s1 = P_DivlineSide (strace.x, strace.y, &divl);
  190.     s2 = P_DivlineSide (t2x, t2y, &divl);
  191.  
  192.     // line isn't crossed?
  193.     if (s1 == s2)
  194.         continue;    
  195.  
  196.     // stop because it is not two sided anyway
  197.     // might do this after updating validcount?
  198.     if ( !(line->flags & ML_TWOSIDED) )
  199.         return false;
  200.     
  201.     // crosses a two sided line
  202.     front = seg->frontsector;
  203.     back = seg->backsector;
  204.  
  205.     // no wall to block sight with?
  206.     if (front->floorheight == back->floorheight
  207.         && front->ceilingheight == back->ceilingheight)
  208.         continue;    
  209.  
  210.     // possible occluder
  211.     // because of ceiling height differences
  212.     if (front->ceilingheight < back->ceilingheight)
  213.         opentop = front->ceilingheight;
  214.     else
  215.         opentop = back->ceilingheight;
  216.  
  217.     // because of ceiling height differences
  218.     if (front->floorheight > back->floorheight)
  219.         openbottom = front->floorheight;
  220.     else
  221.         openbottom = back->floorheight;
  222.         
  223.     // quick test for totally closed doors
  224.     if (openbottom >= opentop)    
  225.         return false;        // stop
  226.     
  227.     frac = P_InterceptVector2 (&strace, &divl);
  228.         
  229.     if (front->floorheight != back->floorheight)
  230.     {
  231.         slope = FixedDiv (openbottom - sightzstart , frac);
  232.         if (slope > bottomslope)
  233.         bottomslope = slope;
  234.     }
  235.         
  236.     if (front->ceilingheight != back->ceilingheight)
  237.     {
  238.         slope = FixedDiv (opentop - sightzstart , frac);
  239.         if (slope < topslope)
  240.         topslope = slope;
  241.     }
  242.         
  243.     if (topslope <= bottomslope)
  244.         return false;        // stop                
  245.     }
  246.     // passed the subsector ok
  247.     return true;        
  248. }
  249.  
  250.  
  251.  
  252. //
  253. // P_CrossBSPNode
  254. // Returns true
  255. //  if strace crosses the given node successfully.
  256. //
  257. boolean P_CrossBSPNode (int bspnum)
  258. {
  259.     node_t*    bsp;
  260.     int        side;
  261.  
  262.     if (bspnum & NF_SUBSECTOR)
  263.     {
  264.     if (bspnum == -1)
  265.         return P_CrossSubsector (0);
  266.     else
  267.         return P_CrossSubsector (bspnum&(~NF_SUBSECTOR));
  268.     }
  269.         
  270.     bsp = &nodes[bspnum];
  271.     
  272.     // decide which side the start point is on
  273.     side = P_DivlineSide (strace.x, strace.y, (divline_t *)bsp);
  274.     if (side == 2)
  275.     side = 0;    // an "on" should cross both sides
  276.  
  277.     // cross the starting side
  278.     if (!P_CrossBSPNode (bsp->children[side]) )
  279.     return false;
  280.     
  281.     // the partition plane is crossed here
  282.     if (side == P_DivlineSide (t2x, t2y,(divline_t *)bsp))
  283.     {
  284.     // the line doesn't touch the other side
  285.     return true;
  286.     }
  287.     
  288.     // cross the ending side        
  289.     return P_CrossBSPNode (bsp->children[side^1]);
  290. }
  291.  
  292.  
  293. //
  294. // P_CheckSight
  295. // Returns true
  296. //  if a straight line between t1 and t2 is unobstructed.
  297. // Uses REJECT.
  298. //
  299. boolean
  300. P_CheckSight
  301. ( mobj_t*    t1,
  302.   mobj_t*    t2 )
  303. {
  304.     int        s1;
  305.     int        s2;
  306.     int        pnum;
  307.     int        bytenum;
  308.     int        bitnum;
  309.     
  310.     // First check for trivial rejection.
  311.  
  312.     // Determine subsector entries in REJECT table.
  313.     s1 = (t1->subsector->sector - sectors);
  314.     s2 = (t2->subsector->sector - sectors);
  315.     pnum = s1*numsectors + s2;
  316.     bytenum = pnum>>3;
  317.     bitnum = 1 << (pnum&7);
  318.  
  319.     // Check in REJECT table.
  320.     if (rejectmatrix[bytenum]&bitnum)
  321.     {
  322.     sightcounts[0]++;
  323.  
  324.     // can't possibly be connected
  325.     return false;    
  326.     }
  327.  
  328.     // An unobstructed LOS is possible.
  329.     // Now look from eyes of t1 to any part of t2.
  330.     sightcounts[1]++;
  331.  
  332.     validcount++;
  333.     
  334.     sightzstart = t1->z + t1->height - (t1->height>>2);
  335.     topslope = (t2->z+t2->height) - sightzstart;
  336.     bottomslope = (t2->z) - sightzstart;
  337.     
  338.     strace.x = t1->x;
  339.     strace.y = t1->y;
  340.     t2x = t2->x;
  341.     t2y = t2->y;
  342.     strace.dx = t2->x - t1->x;
  343.     strace.dy = t2->y - t1->y;
  344.  
  345.     // the head node is the last node output
  346.     return P_CrossBSPNode (numnodes-1);    
  347. }
  348.  
  349.  
  350.