home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Amiga Format CD 28
/
amigaformatcd28.iso
/
-seriously_amiga-
/
archivers
/
arcppc
/
src.lha
/
src
/
arclzw.c
< prev
next >
Wrap
C/C++ Source or Header
|
1998-04-08
|
22KB
|
803 lines
/*
* $Header: arclzw.c,v 1.6 88/07/31 18:49:49 hyc Exp $
*/
/*
* ARC - Archive utility - ARCLZW
*
* Version 2.03, created on 10/24/86 at 11:46:22
*
* (C) COPYRIGHT 1985,86 by System Enhancement Associates; ALL RIGHTS RESERVED
*
* By: Thom Henderson
*
* Description: This file contains the routines used to implement Lempel-Zev
* data compression, which calls for building a coding table on the fly.
* This form of compression is especially good for encoding files which
* contain repeated strings, and can often give dramatic improvements over
* traditional Huffman SQueezing.
*
* Language: Computer Innovations Optimizing C86
*
* Programming notes: In this section I am drawing heavily on the COMPRESS
* program from UNIX. The basic method is taken from "A Technique for High
* Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6
* (June 1984), pp 8-19. Also see "Knuth's Fundamental Algorithms", Donald
* Knuth, Vol 3, Section 6.4.
*
* As best as I can tell, this method works by tracing down a hash table of code
* strings where each entry has the property:
*
* if <string> <char> is in the table then <string> is in the table.
*/
#include <stdio.h>
#include "arc.h"
void putc_pak(), abort(), putc_ncr();
int getc_unp();
#if MSDOS
char *setmem();
#else
char *memset();
#endif
static void putcode();
/* definitions for older style crunching */
#define FALSE 0
#define TRUE !FALSE
#define TABSIZE 4096
#define NO_PRED 0xFFFF
#define EMPTY 0xFFFF
#define NOT_FND 0xFFFF
static unsigned short inbuf; /* partial input code storage */
static int sp; /* current stack pointer */
struct entry { /* string table entry format */
char used; /* true when this entry is in use */
unsigned char follower; /* char following string */
unsigned short next; /* ptr to next in collision list */
unsigned short predecessor; /* code for preceeding string */
}; /* string_tab[TABSIZE]; the code string table */
/* definitions for the new dynamic Lempel-Zev crunching */
#define BITS 12 /* maximum bits per code */
#define HSIZE 5003 /* 80% occupancy */
#define INIT_BITS 9 /* initial number of bits/code */
static int n_bits; /* number of bits/code */
static int maxcode; /* maximum code, given n_bits */
#define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */
static int maxcodemax = 1 << BITS; /* largest possible code (+1) */
static char buf[BITS]; /* input/output buffer */
static unsigned char lmask[9] = /* left side masks */
{
0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00
};
static unsigned char rmask[9] = /* right side masks */
{
0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff
};
static int offset; /* byte offset for code output */
static long in_count; /* length of input */
static long bytes_out; /* length of compressed output */
static long bytes_ref; /* output quality reference */
static long bytes_last; /* output size at last checkpoint */
static unsigned short ent;
/*
* To save much memory (which we badly need at this point), we overlay the
* table used by the previous version of Lempel-Zev with those used by the
* new version. Since no two of these routines will be used together, we can
* safely do this.
*/
extern long htab[HSIZE]; /* hash code table (crunch) */
extern unsigned short codetab[HSIZE]; /* string code table (crunch) */
static struct entry *string_tab=(struct entry *)htab; /* old crunch string table */
static unsigned short *prefix=codetab; /* prefix code table (uncrunch) */
static unsigned char *suffix=(unsigned char *)htab; /* suffix table (uncrunch) */
static int free_ent; /* first unused entry */
static int firstcmp; /* true at start of compression */
extern unsigned char stack[HSIZE]; /* local push/pop stack */
/*
* block compression parameters -- after all codes are used up, and
* compression rate changes, start over.
*/
static int clear_flg;
#define CHECK_GAP 2048 /* ratio check interval */
static long checkpoint;
void upd_tab();
/*
* the next two codes should not be changed lightly, as they must not lie
* within the contiguous general code space.
*/
#define FIRST 257 /* first free entry */
#define CLEAR 256 /* table clear output code */
/*
* The cl_block() routine is called at each checkpoint to determine if
* compression would likely improve by resetting the code table. The method
* chosen to determine this is based on empirical observation that, in
* general, every 2k of input data should compress at least as well as the
* first 2k of input.
*/
static void
cl_block(t) /* table clear for block compress */
FILE *t; /* our output file */
{
checkpoint = in_count + CHECK_GAP;
if (bytes_ref) {
if (bytes_out - bytes_last > bytes_ref) {
setmem(htab, HSIZE * sizeof(long), 0xff);
free_ent = FIRST;
clear_flg = 1;
putcode(CLEAR, t);
bytes_ref = 0;
}
} else
bytes_ref = bytes_out - bytes_last;
bytes_last = bytes_out; /* remember where we were */
}
/*****************************************************************
*
* Output a given code.
* Inputs:
* code: A n_bits-bit integer. If == -1, then EOF. This assumes
* that n_bits =< (LONG)wordsize - 1.
* Outputs:
* Outputs code to the file.
* Assumptions:
* Chars are 8 bits long.
* Algorithm:
* Maintain a BITS character long buffer (so that 8 codes will
* fit in it exactly). When the buffer fills up empty it and start over.
*/
static void
putcode(code, t) /* output a code */
int code; /* code to output */
FILE *t; /* where to put it */
{
int r_off = offset; /* right offset */
int bits = n_bits; /* bits to go */
char *bp = buf; /* buffer pointer */
int n; /* index */
register int ztmp;
if (code >= 0) { /* if a real code *//* Get to the first byte. */
bp += (r_off >> 3);
r_off &= 7;
/*
* Since code is always >= 8 bits, only need to mask the
* first hunk on the left.
*/
ztmp = (code << r_off) & lmask[r_off];
*bp = (*bp & rmask[r_off]) | ztmp;
bp++;
bits -= (8 - r_off);
code >>= (8 - r_off);
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if (bits >= 8) {
*bp++ = code;
code >>= 8;
bits -= 8;
}
/* Last bits. */
if (bits)
*bp = code;
offset += n_bits;
if (offset == (n_bits << 3)) {
bp = buf;
bits = n_bits;
bytes_out += bits;
do
putc_pak(*bp++, t);
while (--bits);
offset = 0;
}
/*
* If the next entry is going to be too big for the code
* size, then increase it, if possible.
*/
if (free_ent > maxcode || clear_flg > 0) {
/*
* Write the whole buffer, because the input side
* won't discover the size increase until after
* it has read it.
*/
if (offset > 0) {
bp = buf; /* reset pointer for writing */
bytes_out += n = n_bits;
while (n--)
putc_pak(*bp++, t);
}
offset = 0;
if (clear_flg) { /* reset if clearing */
maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
} else {/* else use more bits */
n_bits++;
if (n_bits == BITS)
maxcode = maxcodemax;
else
maxcode = MAXCODE(n_bits);
}
}
} else { /* dump the buffer on EOF */
bytes_out += n = (offset + 7) / 8;
if (offset > 0)
while (n--)
putc_pak(*bp++, t);
offset = 0;
}
}
/*****************************************************************
*
* Read one code from the standard input. If EOF, return -1.
* Inputs:
* cmpin
* Outputs:
* code or -1 is returned.
*/
static int
getcode(f) /* get a code */
FILE *f; /* file to get from */
{
int code;
static int offset = 0, size = 0;
int r_off, bits;
unsigned char *bp = (unsigned char *) buf;
if (clear_flg > 0 || offset >= size || free_ent > maxcode) {
/*
* If the next entry will be too big for the current code
* size, then we must increase the size. This implies
* reading a new buffer full, too.
*/
if (free_ent > maxcode) {
n_bits++;
if (n_bits == BITS)
maxcode = maxcodemax; /* won't get any bigger
* now */
else
maxcode = MAXCODE(n_bits);
}
if (clear_flg > 0) {
maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
}
for (size = 0; size < n_bits; size++) {
if ((code = getc_unp(f)) == EOF)
break;
else
buf[size] = (char) code;
}
if (size <= 0)
return -1; /* end of file */
offset = 0;
/* Round size down to integral number of codes */
size = (size << 3) - (n_bits - 1);
}
r_off = offset;
bits = n_bits;
/*
* Get to the first byte.
*/
bp += (r_off >> 3);
r_off &= 7;
/* Get first part (low order bits) */
code = (*bp++ >> r_off);
bits -= 8 - r_off;
r_off = 8 - r_off; /* now, offset into code word */
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if (bits >= 8) {
code |= *bp++ << r_off;
r_off += 8;
bits -= 8;
}
/* high order bits. */
code |= (*bp & rmask[bits]) << r_off;
offset += n_bits;
return code & MAXCODE(BITS);
}
/*
* compress a file
*
* Algorithm: use open addressing double hashing (no chaining) on the prefix
* code / next character combination. We do a variant of Knuth's algorithm D
* (vol. 3, sec. 6.4) along with G. Knott's relatively-prime secondary probe.
* Here, the modular division first probe is gives way to a faster
* exclusive-or manipulation. Also do block compression with an adaptive
* reset, where the code table is cleared when the compression ratio
* decreases, but after the table fills. The variable-length output codes
* are re-sized at this point, and a special CLEAR code is generated for the
* decompressor.
*/
void
init_cm(t) /* initialize for compression */
FILE *t; /* where compressed file goes */
{
offset = 0;
bytes_out = bytes_last = 1;
bytes_ref = 0;
clear_flg = 0;
in_count = 1;
checkpoint = CHECK_GAP;
maxcode = MAXCODE(n_bits = INIT_BITS);
free_ent = FIRST;
setmem(htab, HSIZE * sizeof(long), 0xff);
n_bits = INIT_BITS; /* set starting code size */
putc_pak(BITS, t); /* note our max code length */
firstcmp = 1; /* next byte will be first */
}
void
putc_cm(c, t) /* compress a character */
unsigned char c; /* character to compress */
FILE *t; /* where to put it */
{
static long fcode;
static int hshift;
int i;
int disp;
if (firstcmp) { /* special case for first byte */
ent = c; /* remember first byte */
hshift = 0;
for (fcode = (long) HSIZE; fcode < 65536L; fcode *= 2L)
hshift++;
hshift = 8 - hshift; /* set hash code range bound */
firstcmp = 0; /* no longer first */
return;
}
in_count++;
fcode = (long) (((long) c << BITS) + ent);
i = (c << hshift) ^ ent;/* xor hashing */
if (htab[i] == fcode) {
ent = codetab[i];
return;
} else if (htab[i] < 0) /* empty slot */
goto nomatch;
disp = HSIZE - i; /* secondary hash (after G.Knott) */
if (i == 0)
disp = 1;
probe:
if ((i -= disp) < 0)
i += HSIZE;
if (htab[i] == fcode) {
ent = codetab[i];
return;
}
if (htab[i] > 0)
goto probe;
nomatch:
putcode(ent, t);
ent = c;
if (free_ent < maxcodemax) {
codetab[i] = free_ent++; /* code -> hashtable */
htab[i] = fcode;
}
if (in_count >= checkpoint)
cl_block(t); /* check for adaptive reset */
}
long
pred_cm(t) /* finish compressing a file */
FILE *t; /* where to put it */
{
putcode(ent, t); /* put out the final code */
putcode(-1, t); /* tell output we are done */
return bytes_out; /* say how big it got */
}
/*
* Decompress a file. This routine adapts to the codes in the file building
* the string table on-the-fly; requiring no table to be stored in the
* compressed file. The tables used herein are shared with those of the
* compress() routine. See the definitions above.
*/
void
decomp(f, t) /* decompress a file */
FILE *f; /* file to read codes from */
FILE *t; /* file to write text to */
{
unsigned char *stackp;
int finchar;
int code, oldcode, incode;
if ((code = getc_unp(f)) != BITS)
abort("File packed with %d bits, I can only handle %d", code, BITS);
n_bits = INIT_BITS; /* set starting code size */
clear_flg = 0;
/*
* As above, initialize the first 256 entries in the table.
*/
maxcode = MAXCODE(n_bits = INIT_BITS);
setmem(prefix, 256 * sizeof(short), 0); /* reset decode string table */
for (code = 255; code >= 0; code--)
suffix[code] = (unsigned char) code;
free_ent = FIRST;
finchar = oldcode = getcode(f);
if (oldcode == -1) /* EOF already? */
return; /* Get out of here */
putc_ncr((unsigned char) finchar, t); /* first code must be 8 bits=char */
stackp = stack;
while ((code = getcode(f)) > -1) {
if (code == CLEAR) { /* reset string table */
setmem(prefix, 256 * sizeof(short), 0);
clear_flg = 1;
free_ent = FIRST - 1;
if ((code = getcode(f)) == -1) /* O, untimely death! */
break;
}
incode = code;
/*
* Special case for KwKwK string.
*/
if (code >= free_ent) {
if (code > free_ent) {
if (warn) {
printf("Corrupted compressed file.\n");
printf("Invalid code %d when max is %d.\n",
code, free_ent);
}
nerrs++;
return;
}
*stackp++ = finchar;
code = oldcode;
}
/*
* Generate output characters in reverse order
*/
while (code >= 256) {
*stackp++ = suffix[code];
code = prefix[code];
}
*stackp++ = finchar = suffix[code];
/*
* And put them out in forward order
*/
do
putc_ncr(*--stackp, t);
while (stackp > stack);
/*
* Generate the new entry.
*/
if ((code = free_ent) < maxcodemax) {
prefix[code] = (unsigned short) oldcode;
suffix[code] = finchar;
free_ent = code + 1;
}
/*
* Remember previous code.
*/
oldcode = incode;
}
}
/*************************************************************************
* Please note how much trouble it can be to maintain upwards *
* compatibility. All that follows is for the sole purpose of unpacking *
* files which were packed using an older method. *
*************************************************************************/
/*
* The h() pointer points to the routine to use for calculating a hash value.
* It is set in the init routines to point to either of oldh() or newh().
*
* oldh() calculates a hash value by taking the middle twelve bits of the square
* of the key.
*
* newh() works somewhat differently, and was tried because it makes ARC about
* 23% faster. This approach was abandoned because dynamic Lempel-Zev
* (above) works as well, and packs smaller also. However, inadvertent
* release of a developmental copy forces us to leave this in.
*/
static unsigned short(*h) (); /* pointer to hash function */
static unsigned short
oldh(pred, foll) /* old hash function */
unsigned short pred; /* code for preceeding string */
unsigned char foll; /* value of following char */
{
long local; /* local hash value */
local = ((pred + foll) | 0x0800) & 0xFFFF; /* create the hash key */
local *= local; /* square it */
return (local >> 6) & 0x0FFF; /* return the middle 12 bits */
}
static unsigned short
newh(pred, foll) /* new hash function */
unsigned short pred; /* code for preceeding string */
unsigned char foll; /* value of following char */
{
return (((pred + foll) & 0xFFFF) * 15073) & 0xFFF; /* faster hash */
}
/*
* The eolist() function is used to trace down a list of entries with
* duplicate keys until the last duplicate is found.
*/
static unsigned short
eolist(index) /* find last duplicate */
unsigned short index;
{
int temp;
while (temp = string_tab[index].next) /* while more duplicates */
index = temp;
return index;
}
/*
* The hash() routine is used to find a spot in the hash table for a new
* entry. It performs a "hash and linear probe" lookup, using h() to
* calculate the starting hash value and eolist() to perform the linear
* probe. This routine DOES NOT detect a table full condition. That MUST be
* checked for elsewhere.
*/
static unsigned short
hash(pred, foll) /* find spot in the string table */
unsigned short pred; /* code for preceeding string */
unsigned char foll; /* char following string */
{
unsigned short local, tempnext; /* scratch storage */
struct entry *ep; /* allows faster table handling */
local = (*h) (pred, foll); /* get initial hash value */
if (!string_tab[local].used) /* if that spot is free */
return local; /* then that's all we need */
else { /* else a collision has occured */
local = eolist(local); /* move to last duplicate */
/*
* We must find an empty spot. We start looking 101 places
* down the table from the last duplicate.
*/
tempnext = (local + 101) & 0x0FFF;
ep = &string_tab[tempnext]; /* initialize pointer */
while (ep->used) { /* while empty spot not found */
if (++tempnext == TABSIZE) { /* if we are at the end */
tempnext = 0; /* wrap to beginning of table */
ep = string_tab;
} else
++ep; /* point to next element in table */
}
/*
* local still has the pointer to the last duplicate, while
* tempnext has the pointer to the spot we found. We use
* this to maintain the chain of pointers to duplicates.
*/
string_tab[local].next = tempnext;
return tempnext;
}
}
/*
* The init_tab() routine is used to initialize our hash table. You realize,
* of course, that "initialize" is a complete misnomer.
*/
static void
init_tab()
{ /* set ground state in hash table */
unsigned int i; /* table index */
setmem((char *) string_tab, sizeof(string_tab), 0);
for (i = 0; i < 256; i++) /* list all single byte strings */
upd_tab(NO_PRED, i);
inbuf = EMPTY; /* nothing is in our buffer */
}
/*
* The upd_tab routine is used to add a new entry to the string table. As
* previously stated, no checks are made to ensure that the table has any
* room. This must be done elsewhere.
*/
void
upd_tab(pred, foll) /* add an entry to the table */
unsigned short pred; /* code for preceeding string */
unsigned short foll; /* character which follows string */
{
struct entry *ep; /* pointer to current entry */
/* calculate offset just once */
ep = &string_tab[hash(pred, foll)];
ep->used = TRUE; /* this spot is now in use */
ep->next = 0; /* no duplicates after this yet */
ep->predecessor = pred; /* note code of preceeding string */
ep->follower = foll; /* note char after string */
}
/*
* This algorithm encoded a file into twelve bit strings (three nybbles). The
* gocode() routine is used to read these strings a byte (or two) at a time.
*/
static int
gocode(fd) /* read in a twelve bit code */
FILE *fd; /* file to get code from */
{
unsigned short localbuf, returnval;
int temp;
if (inbuf == EMPTY) { /* if on a code boundary */
if ((temp = getc_unp(fd)) == EOF) /* get start of next
* code */
return EOF; /* pass back end of file status */
localbuf = temp & 0xFF; /* mask down to true byte value */
if ((temp = getc_unp(fd)) == EOF)
/* get end of code, * start of next */
return EOF; /* this should never happen */
inbuf = temp & 0xFF; /* mask down to true byte value */
returnval = ((localbuf << 4) & 0xFF0) + ((inbuf >> 4) & 0x00F);
inbuf &= 0x000F;/* leave partial code pending */
} else { /* buffer contains first nybble */
if ((temp = getc_unp(fd)) == EOF)
return EOF;
localbuf = temp & 0xFF;
returnval = localbuf + ((inbuf << 8) & 0xF00);
inbuf = EMPTY; /* note no hanging nybbles */
}
return returnval; /* pass back assembled code */
}
static void
push(c) /* push char onto stack */
int c; /* character to push */
{
stack[sp] = ((char) c); /* coerce integer into a char */
if (++sp >= TABSIZE)
abort("Stack overflow\n");
}
static int
pop()
{ /* pop character from stack */
if (sp > 0)
return ((int) stack[--sp]); /* leave ptr at next empty
* slot */
else
return EMPTY;
}
/***** LEMPEL-ZEV DECOMPRESSION *****/
static int code_count; /* needed to detect table full */
static int firstc; /* true only on first character */
void
init_ucr(new) /* get set for uncrunching */
int new; /* true to use new hash function */
{
if (new) /* set proper hash function */
h = newh;
else
h = oldh;
sp = 0; /* clear out the stack */
init_tab(); /* set up atomic code definitions */
code_count = TABSIZE - 256; /* note space left in table */
firstc = 1; /* true only on first code */
}
int
getc_ucr(f) /* get next uncrunched byte */
FILE *f; /* file containing crunched data */
{
int code, newcode;
static int oldcode, finchar;
struct entry *ep; /* allows faster table handling */
if (firstc) { /* first code is always known */
firstc = FALSE; /* but next will not be first */
oldcode = gocode(f);
return finchar = string_tab[oldcode].follower;
}
if (!sp) { /* if stack is empty */
if ((code = newcode = gocode(f)) == EOF)
return EOF;
ep = &string_tab[code]; /* initialize pointer */
if (!ep->used) {/* if code isn't known */
code = oldcode;
ep = &string_tab[code]; /* re-initialize pointer */
push(finchar);
}
while (ep->predecessor != NO_PRED) {
push(ep->follower); /* decode string backwards */
code = ep->predecessor;
ep = &string_tab[code];
}
push(finchar = ep->follower); /* save first character also */
/*
* The above loop will terminate, one way or another, with
* string_tab[code].follower equal to the first character in
* the string.
*/
if (code_count) { /* if room left in string table */
upd_tab(oldcode, finchar);
--code_count;
}
oldcode = newcode;
}
return pop(); /* return saved character */
}