home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
SRCSUPP.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
12KB
|
499 lines
/* Copyright (c) 1992 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)srcsupp.c 2.6 8/28/92 LBL";
#endif
/*
* Support routines for source objects and materials
*/
#include "ray.h"
#include "otypes.h"
#include "source.h"
#include "cone.h"
#include "face.h"
#define SRCINC 4 /* realloc increment for array */
SRCREC *source = NULL; /* our list of sources */
int nsources = 0; /* the number of sources */
SRCFUNC sfun[NUMOTYPE]; /* source dispatch table */
initstypes() /* initialize source dispatch table */
{
extern VSMATERIAL mirror_vs, direct1_vs, direct2_vs;
extern int fsetsrc(), ssetsrc(), sphsetsrc(), cylsetsrc(), rsetsrc();
extern int nopart(), flatpart(), cylpart();
extern double fgetplaneq(), rgetplaneq();
extern double fgetmaxdisk(), rgetmaxdisk();
static SOBJECT fsobj = {fsetsrc, flatpart, fgetplaneq, fgetmaxdisk};
static SOBJECT ssobj = {ssetsrc, nopart};
static SOBJECT sphsobj = {sphsetsrc, nopart};
static SOBJECT cylsobj = {cylsetsrc, cylpart};
static SOBJECT rsobj = {rsetsrc, flatpart, rgetplaneq, rgetmaxdisk};
sfun[MAT_MIRROR].mf = &mirror_vs;
sfun[MAT_DIRECT1].mf = &direct1_vs;
sfun[MAT_DIRECT2].mf = &direct2_vs;
sfun[OBJ_FACE].of = &fsobj;
sfun[OBJ_SOURCE].of = &ssobj;
sfun[OBJ_SPHERE].of = &sphsobj;
sfun[OBJ_CYLINDER].of = &cylsobj;
sfun[OBJ_RING].of = &rsobj;
}
int
newsource() /* allocate new source in our array */
{
if (nsources == 0)
source = (SRCREC *)malloc(SRCINC*sizeof(SRCREC));
else if (nsources%SRCINC == 0)
source = (SRCREC *)realloc((char *)source,
(unsigned)(nsources+SRCINC)*sizeof(SRCREC));
if (source == NULL)
return(-1);
source[nsources].sflags = 0;
source[nsources].nhits = 1;
source[nsources].ntests = 2; /* initial hit probability = 1/2 */
return(nsources++);
}
setflatss(src) /* set sampling for a flat source */
register SRCREC *src;
{
double mult;
register int i;
src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
for (i = 0; i < 3; i++)
if (src->snorm[i] < 0.6 && src->snorm[i] > -0.6)
break;
src->ss[SV][i] = 1.0;
fcross(src->ss[SU], src->ss[SV], src->snorm);
mult = .5 * sqrt( src->ss2 / DOT(src->ss[SU],src->ss[SU]) );
for (i = 0; i < 3; i++)
src->ss[SU][i] *= mult;
fcross(src->ss[SV], src->snorm, src->ss[SU]);
}
fsetsrc(src, so) /* set a face as a source */
register SRCREC *src;
OBJREC *so;
{
register FACE *f;
register int i, j;
double d;
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
src->so = so;
/* get the face */
f = getface(so);
/* find the center */
for (j = 0; j < 3; j++) {
src->sloc[j] = 0.0;
for (i = 0; i < f->nv; i++)
src->sloc[j] += VERTEX(f,i)[j];
src->sloc[j] /= (double)f->nv;
}
if (!inface(src->sloc, f))
objerror(so, USER, "cannot hit center");
src->sflags |= SFLAT;
VCOPY(src->snorm, f->norm);
src->ss2 = f->area;
/* find maximum radius */
src->srad = 0.;
for (i = 0; i < f->nv; i++) {
d = dist2(VERTEX(f,i), src->sloc);
if (d > src->srad)
src->srad = d;
}
src->srad = sqrt(src->srad);
/* compute size vectors */
if (f->nv == 4 || (f->nv == 5 && /* parallelogram case */
dist2(VERTEX(f,0),VERTEX(f,4)) <= FTINY*FTINY))
for (j = 0; j < 3; j++) {
src->ss[SU][j] = .5*(VERTEX(f,1)[j]-VERTEX(f,0)[j]);
src->ss[SV][j] = .5*(VERTEX(f,3)[j]-VERTEX(f,0)[j]);
}
else
setflatss(src);
}
ssetsrc(src, so) /* set a source as a source */
register SRCREC *src;
register OBJREC *so;
{
double theta;
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
src->so = so;
if (so->oargs.nfargs != 4)
objerror(so, USER, "bad arguments");
src->sflags |= SDISTANT;
VCOPY(src->sloc, so->oargs.farg);
if (normalize(src->sloc) == 0.0)
objerror(so, USER, "zero direction");
theta = PI/180.0/2.0 * so->oargs.farg[3];
if (theta <= FTINY)
objerror(so, USER, "zero size");
src->ss2 = 2.0*PI * (1.0 - cos(theta));
/* the following is approximate */
src->srad = sqrt(src->ss2/PI);
VCOPY(src->snorm, src->sloc);
setflatss(src); /* hey, whatever works */
src->ss[SW][0] = src->ss[SW][1] = src->ss[SW][2] = 0.0;
}
sphsetsrc(src, so) /* set a sphere as a source */
register SRCREC *src;
register OBJREC *so;
{
register int i;
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
src->so = so;
if (so->oargs.nfargs != 4)
objerror(so, USER, "bad # arguments");
if (so->oargs.farg[3] <= FTINY)
objerror(so, USER, "illegal radius");
VCOPY(src->sloc, so->oargs.farg);
src->srad = so->oargs.farg[3];
src->ss2 = PI * src->srad * src->srad;
for (i = 0; i < 3; i++)
src->ss[SU][i] = src->ss[SV][i] = src->ss[SW][i] = 0.0;
for (i = 0; i < 3; i++)
src->ss[i][i] = .7236 * so->oargs.farg[3];
}
rsetsrc(src, so) /* set a ring (disk) as a source */
register SRCREC *src;
OBJREC *so;
{
register CONE *co;
src->sa.success = 2*AIMREQT-1; /* bitch on second failure */
src->so = so;
/* get the ring */
co = getcone(so, 0);
VCOPY(src->sloc, CO_P0(co));
if (CO_R0(co) > 0.0)
objerror(so, USER, "cannot hit center");
src->sflags |= SFLAT;
VCOPY(src->snorm, co->ad);
src->srad = CO_R1(co);
src->ss2 = PI * src->srad * src->srad;
setflatss(src);
}
cylsetsrc(src, so) /* set a cylinder as a source */
register SRCREC *src;
OBJREC *so;
{
register CONE *co;
register int i;
src->sa.success = 4*AIMREQT-1; /* bitch on fourth failure */
src->so = so;
/* get the cylinder */
co = getcone(so, 0);
if (CO_R0(co) > .2*co->al) /* heuristic constraint */
objerror(so, WARNING, "source aspect too small");
src->sflags |= SCYL;
for (i = 0; i < 3; i++)
src->sloc[i] = .5 * (CO_P1(co)[i] + CO_P0(co)[i]);
src->srad = .5*co->al;
src->ss2 = 2.*CO_R0(co)*co->al;
/* set sampling vectors */
for (i = 0; i < 3; i++)
src->ss[SU][i] = .5 * co->al * co->ad[i];
src->ss[SV][0] = src->ss[SV][1] = src->ss[SV][2] = 0.0;
for (i = 0; i < 3; i++)
if (co->ad[i] < 0.6 && co->ad[i] > -0.6)
break;
src->ss[SV][i] = 1.0;
fcross(src->ss[SW], src->ss[SV], co->ad);
normalize(src->ss[SW]);
for (i = 0; i < 3; i++)
src->ss[SW][i] *= .8559 * CO_R0(co);
fcross(src->ss[SV], src->ss[SW], co->ad);
}
SPOT *
makespot(m) /* make a spotlight */
register OBJREC *m;
{
register SPOT *ns;
if ((ns = (SPOT *)m->os) != NULL)
return(ns);
if ((ns = (SPOT *)malloc(sizeof(SPOT))) == NULL)
return(NULL);
ns->siz = 2.0*PI * (1.0 - cos(PI/180.0/2.0 * m->oargs.farg[3]));
VCOPY(ns->aim, m->oargs.farg+4);
if ((ns->flen = normalize(ns->aim)) == 0.0)
objerror(m, USER, "zero focus vector");
m->os = (char *)ns;
return(ns);
}
spotout(r, s, dist) /* check if we're outside spot region */
register RAY *r;
register SPOT *s;
int dist;
{
double d;
FVECT vd;
if (s == NULL)
return(0);
if (dist) { /* distant source */
vd[0] = s->aim[0] - r->rorg[0];
vd[1] = s->aim[1] - r->rorg[1];
vd[2] = s->aim[2] - r->rorg[2];
d = DOT(r->rdir,vd);
/* wrong side?
if (d <= FTINY)
return(1); */
d = DOT(vd,vd) - d*d;
if (PI*d > s->siz)
return(1); /* out */
return(0); /* OK */
}
/* local source */
if (s->siz < 2.0*PI * (1.0 + DOT(s->aim,r->rdir)))
return(1); /* out */
return(0); /* OK */
}
double
fgetmaxdisk(ocent, op) /* get center and squared radius of face */
FVECT ocent;
OBJREC *op;
{
double maxrad2;
double d;
register int i, j;
register FACE *f;
f = getface(op);
if (f->area == 0.)
return(0.);
for (i = 0; i < 3; i++) {
ocent[i] = 0.;
for (j = 0; j < f->nv; j++)
ocent[i] += VERTEX(f,j)[i];
ocent[i] /= (double)f->nv;
}
d = DOT(ocent,f->norm);
for (i = 0; i < 3; i++)
ocent[i] += (f->offset - d)*f->norm[i];
maxrad2 = 0.;
for (j = 0; j < f->nv; j++) {
d = dist2(VERTEX(f,j), ocent);
if (d > maxrad2)
maxrad2 = d;
}
return(maxrad2);
}
double
rgetmaxdisk(ocent, op) /* get center and squared radius of ring */
FVECT ocent;
OBJREC *op;
{
register CONE *co;
co = getcone(op, 0);
VCOPY(ocent, CO_P0(co));
return(CO_R1(co)*CO_R1(co));
}
double
fgetplaneq(nvec, op) /* get plane equation for face */
FVECT nvec;
OBJREC *op;
{
register FACE *fo;
fo = getface(op);
VCOPY(nvec, fo->norm);
return(fo->offset);
}
double
rgetplaneq(nvec, op) /* get plane equation for ring */
FVECT nvec;
OBJREC *op;
{
register CONE *co;
co = getcone(op, 0);
VCOPY(nvec, co->ad);
return(DOT(nvec, CO_P0(co)));
}
commonspot(sp1, sp2, org) /* set sp1 to intersection of sp1 and sp2 */
register SPOT *sp1, *sp2;
FVECT org;
{
FVECT cent;
double rad2, cos1, cos2;
cos1 = 1. - sp1->siz/(2.*PI);
cos2 = 1. - sp2->siz/(2.*PI);
if (sp2->siz >= 2.*PI-FTINY) /* BIG, just check overlap */
return(DOT(sp1->aim,sp2->aim) >= cos1*cos2 -
sqrt((1.-cos1*cos1)*(1.-cos2*cos2)));
/* compute and check disks */
rad2 = intercircle(cent, sp1->aim, sp2->aim,
1./(cos1*cos1) - 1., 1./(cos2*cos2) - 1.);
if (rad2 <= FTINY || normalize(cent) == 0.)
return(0);
VCOPY(sp1->aim, cent);
sp1->siz = 2.*PI*(1. - 1./sqrt(1.+rad2));
return(1);
}
commonbeam(sp1, sp2, dir) /* set sp1 to intersection of sp1 and sp2 */
register SPOT *sp1, *sp2;
FVECT dir;
{
FVECT cent, c1, c2;
double rad2, d;
register int i;
/* move centers to common plane */
d = DOT(sp1->aim, dir);
for (i = 0; i < 3; i++)
c1[i] = sp1->aim[i] - d*dir[i];
d = DOT(sp2->aim, dir);
for (i = 0; i < 3; i++)
c2[i] = sp2->aim[i] - d*dir[i];
/* compute overlap */
rad2 = intercircle(cent, c1, c2, sp1->siz/PI, sp2->siz/PI);
if (rad2 <= FTINY)
return(0);
VCOPY(sp1->aim, cent);
sp1->siz = PI*rad2;
return(1);
}
checkspot(sp, nrm) /* check spotlight for behind source */
register SPOT *sp; /* spotlight */
FVECT nrm; /* source surface normal */
{
double d, d1;
d = DOT(sp->aim, nrm);
if (d > FTINY) /* center in front? */
return(1);
/* else check horizon */
d1 = 1. - sp->siz/(2.*PI);
return(1.-FTINY-d*d < d1*d1);
}
double
spotdisk(oc, op, sp, pos) /* intersect spot with object op */
FVECT oc;
OBJREC *op;
register SPOT *sp;
FVECT pos;
{
FVECT onorm;
double offs, d, dist;
register int i;
offs = getplaneq(onorm, op);
d = -DOT(onorm, sp->aim);
if (d >= -FTINY && d <= FTINY)
return(0.);
dist = (DOT(pos, onorm) - offs)/d;
if (dist < 0.)
return(0.);
for (i = 0; i < 3; i++)
oc[i] = pos[i] + dist*sp->aim[i];
return(sp->siz*dist*dist/PI/(d*d));
}
double
beamdisk(oc, op, sp, dir) /* intersect beam with object op */
FVECT oc;
OBJREC *op;
register SPOT *sp;
FVECT dir;
{
FVECT onorm;
double offs, d, dist;
register int i;
offs = getplaneq(onorm, op);
d = -DOT(onorm, dir);
if (d >= -FTINY && d <= FTINY)
return(0.);
dist = (DOT(sp->aim, onorm) - offs)/d;
for (i = 0; i < 3; i++)
oc[i] = sp->aim[i] + dist*dir[i];
return(sp->siz/PI/(d*d));
}
double
intercircle(cc, c1, c2, r1s, r2s) /* intersect two circles */
FVECT cc; /* midpoint (return value) */
FVECT c1, c2; /* circle centers */
double r1s, r2s; /* radii squared */
{
double a2, d2, l;
FVECT disp;
register int i;
for (i = 0; i < 3; i++)
disp[i] = c2[i] - c1[i];
d2 = DOT(disp,disp);
/* circle within overlap? */
if (r1s < r2s) {
if (r2s >= r1s + d2) {
VCOPY(cc, c1);
return(r1s);
}
} else {
if (r1s >= r2s + d2) {
VCOPY(cc, c2);
return(r2s);
}
}
a2 = .25*(2.*(r1s+r2s) - d2 - (r2s-r1s)*(r2s-r1s)/d2);
/* no overlap? */
if (a2 <= 0.)
return(0.);
/* overlap, compute center */
l = sqrt((r1s - a2)/d2);
for (i = 0; i < 3; i++)
cc[i] = c1[i] + l*disp[i];
return(a2);
}