home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
NOISE3.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
5KB
|
233 lines
/* Copyright (c) 1988 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)noise3.c 2.2 10/2/92 LBL";
#endif
/*
* noise3.c - noise functions for random textures.
*
* Credit for the smooth algorithm goes to Ken Perlin.
* (ref. SIGGRAPH Vol 19, No 3, pp 287-96)
*
* 4/15/86
* 5/19/88 Added fractal noise function
*/
#include <math.h>
#define A 0
#define B 1
#define C 2
#define D 3
#define rand3a(x,y,z) frand(67*(x)+59*(y)+71*(z))
#define rand3b(x,y,z) frand(73*(x)+79*(y)+83*(z))
#define rand3c(x,y,z) frand(89*(x)+97*(y)+101*(z))
#define rand3d(x,y,z) frand(103*(x)+107*(y)+109*(z))
#define hpoly1(t) ((2.0*t-3.0)*t*t+1.0)
#define hpoly2(t) (-2.0*t+3.0)*t*t
#define hpoly3(t) ((t-2.0)*t+1.0)*t
#define hpoly4(t) (t-1.0)*t*t
#define hermite(p0,p1,r0,r1,t) ( p0*hpoly1(t) + \
p1*hpoly2(t) + \
r0*hpoly3(t) + \
r1*hpoly4(t) )
static char noise_name[4][8] = {"noise3a", "noise3b", "noise3c", "noise3"};
static char fnoise_name[] = "fnoise3";
static char hermite_name[] = "hermite";
double *noise3(), fnoise3(), argument(), frand();
static long xlim[3][2];
static double xarg[3];
#define EPSILON .0001 /* error allowed in fractal */
#define frand3(x,y,z) frand(17*(x)+23*(y)+29*(z))
static double
l_noise3(nam) /* compute a noise function */
register char *nam;
{
register int i;
double x[3];
/* get point */
x[0] = argument(1);
x[1] = argument(2);
x[2] = argument(3);
/* make appropriate call */
if (nam == fnoise_name)
return(fnoise3(x));
i = 4;
while (i--)
if (nam == noise_name[i])
return(noise3(x)[i]);
eputs(nam);
eputs(": called l_noise3!\n");
quit(1);
}
double
l_hermite() /* library call for hermite interpolation */
{
double t;
t = argument(5);
return( hermite(argument(1), argument(2),
argument(3), argument(4), t) );
}
setnoisefuncs() /* add noise functions to library */
{
register int i;
funset(hermite_name, 5, ':', l_hermite);
funset(fnoise_name, 3, ':', l_noise3);
i = 4;
while (i--)
funset(noise_name[i], 3, ':', l_noise3);
}
double *
noise3(xnew) /* compute the noise function */
register double xnew[3];
{
static double x[3] = {-100000.0, -100000.0, -100000.0};
static double f[4];
if (x[0]==xnew[0] && x[1]==xnew[1] && x[2]==xnew[2])
return(f);
x[0] = xnew[0]; x[1] = xnew[1]; x[2] = xnew[2];
xlim[0][0] = floor(x[0]); xlim[0][1] = xlim[0][0] + 1;
xlim[1][0] = floor(x[1]); xlim[1][1] = xlim[1][0] + 1;
xlim[2][0] = floor(x[2]); xlim[2][1] = xlim[2][0] + 1;
xarg[0] = x[0] - xlim[0][0];
xarg[1] = x[1] - xlim[1][0];
xarg[2] = x[2] - xlim[2][0];
interpolate(f, 0, 3);
return(f);
}
static
interpolate(f, i, n)
double f[4];
register int i, n;
{
double f0[4], f1[4], hp1, hp2;
if (n == 0) {
f[A] = rand3a(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
f[B] = rand3b(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
f[C] = rand3c(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
f[D] = rand3d(xlim[0][i&1],xlim[1][i>>1&1],xlim[2][i>>2]);
} else {
n--;
interpolate(f0, i, n);
interpolate(f1, i | 1<<n, n);
hp1 = hpoly1(xarg[n]); hp2 = hpoly2(xarg[n]);
f[A] = f0[A]*hp1 + f1[A]*hp2;
f[B] = f0[B]*hp1 + f1[B]*hp2;
f[C] = f0[C]*hp1 + f1[C]*hp2;
f[D] = f0[D]*hp1 + f1[D]*hp2 +
f0[n]*hpoly3(xarg[n]) + f1[n]*hpoly4(xarg[n]);
}
}
double
frand(s) /* get random number from seed */
register long s;
{
s = s<<13 ^ s;
return(1.0-((s*(s*s*15731+789221)+1376312589)&0x7fffffff)/1073741824.0);
}
double
fnoise3(p) /* compute fractal noise function */
double p[3];
{
long t[3], v[3], beg[3];
double fval[8], fc;
int branch;
register long s;
register int i, j;
/* get starting cube */
s = (long)(1.0/EPSILON);
for (i = 0; i < 3; i++) {
t[i] = s*p[i];
beg[i] = s*floor(p[i]);
}
for (j = 0; j < 8; j++) {
for (i = 0; i < 3; i++) {
v[i] = beg[i];
if (j & 1<<i)
v[i] += s;
}
fval[j] = frand3(v[0],v[1],v[2]);
}
/* compute fractal */
for ( ; ; ) {
fc = 0.0;
for (j = 0; j < 8; j++)
fc += fval[j];
fc *= 0.125;
if ((s >>= 1) == 0)
return(fc); /* close enough */
branch = 0;
for (i = 0; i < 3; i++) { /* do center */
v[i] = beg[i] + s;
if (t[i] > v[i]) {
branch |= 1<<i;
}
}
fc += s*EPSILON*frand3(v[0],v[1],v[2]);
fval[~branch & 7] = fc;
for (i = 0; i < 3; i++) { /* do faces */
if (branch & 1<<i)
v[i] += s;
else
v[i] -= s;
fc = 0.0;
for (j = 0; j < 8; j++)
if (~(j^branch) & 1<<i)
fc += fval[j];
fc = 0.25*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
fval[~(branch^1<<i) & 7] = fc;
v[i] = beg[i] + s;
}
for (i = 0; i < 3; i++) { /* do edges */
j = (i+1)%3;
if (branch & 1<<j)
v[j] += s;
else
v[j] -= s;
j = (i+2)%3;
if (branch & 1<<j)
v[j] += s;
else
v[j] -= s;
fc = fval[branch & ~(1<<i)];
fc += fval[branch | 1<<i];
fc = 0.5*fc + s*EPSILON*frand3(v[0],v[1],v[2]);
fval[branch^1<<i] = fc;
j = (i+1)%3;
v[j] = beg[j] + s;
j = (i+2)%3;
v[j] = beg[j] + s;
}
for (i = 0; i < 3; i++) /* new cube */
if (branch & 1<<i)
beg[i] += s;
}
}