home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
GLASS.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
4KB
|
132 lines
/* Copyright (c) 1991 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)glass.c 2.3 10/2/92 LBL";
#endif
/*
* glass.c - simpler shading function for thin glass surfaces.
*
* 11/14/86
*/
#include "ray.h"
/*
* This definition of glass provides for a quick calculation
* using a single surface where two closely spaced parallel
* dielectric surfaces would otherwise be used. The chief
* advantage to using this material is speed, since internal
* reflections are avoided.
*
* The specification for glass is as follows:
*
* modifier glass id
* 0
* 0
* 3 red grn blu
*
* The color is used for the transmission at normal incidence.
* To compute transmission (tn) from transmissivity (Tn) use:
*
* tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
*
* The transmission of standard 88% transmissivity glass is 0.96.
* A refractive index other than the default can be used by giving
* it as the fourth real argument. The above formula no longer applies.
*
* If we appear to hit the back side of the surface, then we
* turn the normal around.
*/
#define RINDEX 1.52 /* refractive index of glass */
m_glass(m, r) /* color a ray which hit a thin glass surface */
OBJREC *m;
register RAY *r;
{
COLOR mcolor;
double pdot;
FVECT pnorm;
double rindex, cos2;
COLOR trans, refl;
double d, r1e, r1m;
double transtest, transdist;
RAY p;
register int i;
/* check arguments */
if (m->oargs.nfargs == 3)
rindex = RINDEX; /* default value of n */
else if (m->oargs.nfargs == 4)
rindex = m->oargs.farg[3]; /* use their value */
else
objerror(m, USER, "bad arguments");
setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
if (r->rod < 0.0) /* reorient if necessary */
flipsurface(r);
transtest = 0;
/* get modifiers */
raytexture(r, m->omod);
pdot = raynormal(pnorm, r);
/* angular transmission */
cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
pdot*pdot/(rindex*rindex) );
setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
pow(colval(mcolor,GRN), 1.0/cos2),
pow(colval(mcolor,BLU), 1.0/cos2));
/* compute reflection */
r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
r1e *= r1e;
r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
r1m *= r1m;
/* compute transmittance */
for (i = 0; i < 3; i++) {
d = colval(mcolor, i);
colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d/(1.0-r1e*r1e*d*d);
colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d/(1.0-r1m*r1m*d*d);
}
/* transmitted ray */
if (rayorigin(&p, r, TRANS, bright(trans)) == 0) {
if (!(r->crtype & SHADOW) &&
DOT(r->pert,r->pert) > FTINY*FTINY) {
for (i = 0; i < 3; i++) /* perturb direction */
p.rdir[i] = r->rdir[i] +
2.*(1.-rindex)*r->pert[i];
normalize(p.rdir);
} else {
VCOPY(p.rdir, r->rdir);
transtest = 2;
}
rayvalue(&p);
multcolor(p.rcol, r->pcol); /* modify */
multcolor(p.rcol, trans);
addcolor(r->rcol, p.rcol);
transtest *= bright(p.rcol);
transdist = r->rot + p.rt;
}
if (r->crtype & SHADOW) /* skip reflected ray */
return;
/* compute reflectance */
for (i = 0; i < 3; i++) {
d = colval(mcolor, i);
d *= d;
colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d);
colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
}
/* reflected ray */
if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) {
for (i = 0; i < 3; i++)
p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
rayvalue(&p);
multcolor(p.rcol, refl);
addcolor(r->rcol, p.rcol);
}
if (transtest > bright(r->rcol))
r->rt = transdist;
}