home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
DP Tool Club 8
/
CDASC08.ISO
/
NEWS
/
RADIANCE
/
SRC
/
RT
/
ANISO.C
< prev
next >
Wrap
C/C++ Source or Header
|
1993-10-07
|
12KB
|
408 lines
/* Copyright (c) 1992 Regents of the University of California */
#ifndef lint
static char SCCSid[] = "@(#)aniso.c 2.22 10/16/92 LBL";
#endif
/*
* Shading functions for anisotropic materials.
*/
#include "ray.h"
#include "otypes.h"
#include "func.h"
#include "random.h"
extern double specthresh; /* specular sampling threshold */
extern double specjitter; /* specular sampling jitter */
/*
* This routine implements the anisotropic Gaussian
* model described by Ward in Siggraph `92 article.
* We orient the surface towards the incoming ray, so a single
* surface can be used to represent an infinitely thin object.
*
* Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
* 4+ ux uy uz funcfile [transform...]
* 0
* 6 red grn blu specular-frac. u-facet-slope v-facet-slope
*
* Real arguments for MAT_TRANS2 are:
* 8 red grn blu rspec u-rough v-rough trans tspec
*/
#define BSPEC(m) (6.0) /* specularity parameter b */
/* specularity flags */
#define SP_REFL 01 /* has reflected specular component */
#define SP_TRAN 02 /* has transmitted specular */
#define SP_FLAT 04 /* reflecting surface is flat */
#define SP_RBLT 010 /* reflection below sample threshold */
#define SP_TBLT 020 /* transmission below threshold */
#define SP_BADU 040 /* bad u direction calculation */
typedef struct {
OBJREC *mp; /* material pointer */
RAY *rp; /* ray pointer */
short specfl; /* specularity flags, defined above */
COLOR mcolor; /* color of this material */
COLOR scolor; /* color of specular component */
FVECT vrefl; /* vector in reflected direction */
FVECT prdir; /* vector in transmitted direction */
FVECT u, v; /* u and v vectors orienting anisotropy */
double u_alpha; /* u roughness */
double v_alpha; /* v roughness */
double rdiff, rspec; /* reflected specular, diffuse */
double trans; /* transmissivity */
double tdiff, tspec; /* transmitted specular, diffuse */
FVECT pnorm; /* perturbed surface normal */
double pdot; /* perturbed dot product */
} ANISODAT; /* anisotropic material data */
diraniso(cval, np, ldir, omega) /* compute source contribution */
COLOR cval; /* returned coefficient */
register ANISODAT *np; /* material data */
FVECT ldir; /* light source direction */
double omega; /* light source size */
{
double ldot;
double dtmp, dtmp1, dtmp2;
FVECT h;
double au2, av2;
COLOR ctmp;
setcolor(cval, 0.0, 0.0, 0.0);
ldot = DOT(np->pnorm, ldir);
if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
return; /* wrong side */
if (ldot > FTINY && np->rdiff > FTINY) {
/*
* Compute and add diffuse reflected component to returned
* color. The diffuse reflected component will always be
* modified by the color of the material.
*/
copycolor(ctmp, np->mcolor);
dtmp = ldot * omega * np->rdiff / PI;
scalecolor(ctmp, dtmp);
addcolor(cval, ctmp);
}
if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
/*
* Compute specular reflection coefficient using
* anisotropic gaussian distribution model.
*/
/* add source width if flat */
if (np->specfl & SP_FLAT)
au2 = av2 = omega/(4.0*PI);
else
au2 = av2 = 0.0;
au2 += np->u_alpha*np->u_alpha;
av2 += np->v_alpha*np->v_alpha;
/* half vector */
h[0] = ldir[0] - np->rp->rdir[0];
h[1] = ldir[1] - np->rp->rdir[1];
h[2] = ldir[2] - np->rp->rdir[2];
normalize(h);
/* ellipse */
dtmp1 = DOT(np->u, h);
dtmp1 *= dtmp1 / au2;
dtmp2 = DOT(np->v, h);
dtmp2 *= dtmp2 / av2;
/* gaussian */
dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h));
dtmp = exp(-2.0*dtmp) * (1.0/4.0/PI)
* sqrt(ldot/(np->pdot*au2*av2));
/* worth using? */
if (dtmp > FTINY) {
copycolor(ctmp, np->scolor);
dtmp *= omega;
scalecolor(ctmp, dtmp);
addcolor(cval, ctmp);
}
}
if (ldot < -FTINY && np->tdiff > FTINY) {
/*
* Compute diffuse transmission.
*/
copycolor(ctmp, np->mcolor);
dtmp = -ldot * omega * np->tdiff / PI;
scalecolor(ctmp, dtmp);
addcolor(cval, ctmp);
}
if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
/*
* Compute specular transmission. Specular transmission
* is always modified by material color.
*/
/* roughness + source */
au2 = av2 = omega / PI;
au2 += np->u_alpha*np->u_alpha;
av2 += np->v_alpha*np->v_alpha;
/* "half vector" */
h[0] = ldir[0] - np->prdir[0];
h[1] = ldir[1] - np->prdir[1];
h[2] = ldir[2] - np->prdir[2];
dtmp = DOT(h,h);
if (dtmp > FTINY*FTINY) {
dtmp1 = DOT(h,np->pnorm);
dtmp = 1.0 - dtmp1*dtmp1/dtmp;
if (dtmp > FTINY*FTINY) {
dtmp1 = DOT(h,np->u);
dtmp1 = dtmp1*dtmp1 / au2;
dtmp2 = DOT(h,np->v);
dtmp2 = dtmp2*dtmp2 / av2;
dtmp = (dtmp1 + dtmp2) / dtmp;
}
} else
dtmp = 0.0;
/* gaussian */
dtmp = exp(-dtmp) * (1.0/PI)
* sqrt(-ldot/(np->pdot*au2*av2));
/* worth using? */
if (dtmp > FTINY) {
copycolor(ctmp, np->mcolor);
dtmp *= np->tspec * omega;
scalecolor(ctmp, dtmp);
addcolor(cval, ctmp);
}
}
}
m_aniso(m, r) /* shade ray that hit something anisotropic */
register OBJREC *m;
register RAY *r;
{
ANISODAT nd;
double dtmp;
COLOR ctmp;
register int i;
/* easy shadow test */
if (r->crtype & SHADOW)
return;
if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
objerror(m, USER, "bad number of real arguments");
nd.mp = m;
nd.rp = r;
/* get material color */
setcolor(nd.mcolor, m->oargs.farg[0],
m->oargs.farg[1],
m->oargs.farg[2]);
/* get roughness */
nd.specfl = 0;
nd.u_alpha = m->oargs.farg[4];
nd.v_alpha = m->oargs.farg[5];
if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
objerror(m, USER, "roughness too small");
/* reorient if necessary */
if (r->rod < 0.0)
flipsurface(r);
/* get modifiers */
raytexture(r, m->omod);
nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
if (nd.pdot < .001)
nd.pdot = .001; /* non-zero for diraniso() */
multcolor(nd.mcolor, r->pcol); /* modify material color */
/* get specular component */
if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
nd.specfl |= SP_REFL;
/* compute specular color */
if (m->otype == MAT_METAL2)
copycolor(nd.scolor, nd.mcolor);
else
setcolor(nd.scolor, 1.0, 1.0, 1.0);
scalecolor(nd.scolor, nd.rspec);
/* improved model */
dtmp = exp(-BSPEC(m)*nd.pdot);
for (i = 0; i < 3; i++)
colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
nd.rspec += (1.0-nd.rspec)*dtmp;
/* check threshold */
if (specthresh > FTINY &&
(specthresh >= 1.-FTINY ||
specthresh + .05 - .1*frandom() > nd.rspec))
nd.specfl |= SP_RBLT;
/* compute refl. direction */
for (i = 0; i < 3; i++)
nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
for (i = 0; i < 3; i++) /* safety measure */
nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
}
/* compute transmission */
if (m->otype == MAT_TRANS2) {
nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
nd.tspec = nd.trans * m->oargs.farg[7];
nd.tdiff = nd.trans - nd.tspec;
if (nd.tspec > FTINY) {
nd.specfl |= SP_TRAN;
/* check threshold */
if (specthresh > FTINY &&
(specthresh >= 1.-FTINY ||
specthresh + .05 - .1*frandom() > nd.tspec))
nd.specfl |= SP_TBLT;
if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
VCOPY(nd.prdir, r->rdir);
} else {
for (i = 0; i < 3; i++) /* perturb */
nd.prdir[i] = r->rdir[i] - r->pert[i];
if (DOT(nd.prdir, r->ron) < -FTINY)
normalize(nd.prdir); /* OK */
else
VCOPY(nd.prdir, r->rdir);
}
}
} else
nd.tdiff = nd.tspec = nd.trans = 0.0;
/* diffuse reflection */
nd.rdiff = 1.0 - nd.trans - nd.rspec;
if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
r->ro->otype == OBJ_RING))
nd.specfl |= SP_FLAT;
getacoords(r, &nd); /* set up coordinates */
if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
agaussamp(r, &nd);
if (nd.rdiff > FTINY) { /* ambient from this side */
ambient(ctmp, r);
if (nd.specfl & SP_RBLT)
scalecolor(ctmp, 1.0-nd.trans);
else
scalecolor(ctmp, nd.rdiff);
multcolor(ctmp, nd.mcolor); /* modified by material color */
addcolor(r->rcol, ctmp); /* add to returned color */
}
if (nd.tdiff > FTINY) { /* ambient from other side */
flipsurface(r);
ambient(ctmp, r);
if (nd.specfl & SP_TBLT)
scalecolor(ctmp, nd.trans);
else
scalecolor(ctmp, nd.tdiff);
multcolor(ctmp, nd.mcolor); /* modified by color */
addcolor(r->rcol, ctmp);
flipsurface(r);
}
/* add direct component */
direct(r, diraniso, &nd);
}
static
getacoords(r, np) /* set up coordinate system */
RAY *r;
register ANISODAT *np;
{
register MFUNC *mf;
register int i;
mf = getfunc(np->mp, 3, 0x7, 1);
setfunc(np->mp, r);
errno = 0;
for (i = 0; i < 3; i++)
np->u[i] = evalue(mf->ep[i]);
if (errno) {
objerror(np->mp, WARNING, "compute error");
np->specfl |= SP_BADU;
return;
}
if (mf->f != &unitxf)
multv3(np->u, np->u, mf->f->xfm);
fcross(np->v, np->pnorm, np->u);
if (normalize(np->v) == 0.0) {
objerror(np->mp, WARNING, "illegal orientation vector");
np->specfl |= SP_BADU;
return;
}
fcross(np->u, np->v, np->pnorm);
}
static
agaussamp(r, np) /* sample anisotropic gaussian specular */
RAY *r;
register ANISODAT *np;
{
RAY sr;
FVECT h;
double rv[2];
double d, sinp, cosp;
register int i;
/* compute reflection */
if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
dimlist[ndims++] = (int)np->mp;
d = urand(ilhash(dimlist,ndims)+samplendx);
multisamp(rv, 2, d);
d = 2.0*PI * rv[0];
cosp = cos(d) * np->u_alpha;
sinp = sin(d) * np->v_alpha;
d = sqrt(cosp*cosp + sinp*sinp);
cosp /= d;
sinp /= d;
rv[1] = 1.0 - specjitter*rv[1];
if (rv[1] <= FTINY)
d = 1.0;
else
d = sqrt(-log(rv[1]) /
(cosp*cosp/(np->u_alpha*np->u_alpha) +
sinp*sinp/(np->v_alpha*np->v_alpha)));
for (i = 0; i < 3; i++)
h[i] = np->pnorm[i] +
d*(cosp*np->u[i] + sinp*np->v[i]);
d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
for (i = 0; i < 3; i++)
sr.rdir[i] = r->rdir[i] + d*h[i];
if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
VCOPY(sr.rdir, np->vrefl); /* jitter no good */
rayvalue(&sr);
multcolor(sr.rcol, np->scolor);
addcolor(r->rcol, sr.rcol);
ndims--;
}
/* compute transmission */
if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
dimlist[ndims++] = (int)np->mp;
d = urand(ilhash(dimlist,ndims)+1823+samplendx);
multisamp(rv, 2, d);
d = 2.0*PI * rv[0];
cosp = cos(d) * np->u_alpha;
sinp = sin(d) * np->v_alpha;
d = sqrt(cosp*cosp + sinp*sinp);
cosp /= d;
sinp /= d;
rv[1] = 1.0 - specjitter*rv[1];
if (rv[1] <= FTINY)
d = 1.0;
else
d = sqrt(-log(rv[1]) /
(cosp*cosp/(np->u_alpha*np->u_alpha) +
sinp*sinp/(np->v_alpha*np->u_alpha)));
for (i = 0; i < 3; i++)
sr.rdir[i] = np->prdir[i] +
d*(cosp*np->u[i] + sinp*np->v[i]);
if (DOT(sr.rdir, r->ron) < -FTINY)
normalize(sr.rdir); /* OK, normalize */
else
VCOPY(sr.rdir, np->prdir); /* else no jitter */
rayvalue(&sr);
scalecolor(sr.rcol, np->tspec);
multcolor(sr.rcol, np->mcolor); /* modify by color */
addcolor(r->rcol, sr.rcol);
ndims--;
}
}