
Release 3.3 Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

8 Managing System Backups

System backup is an important but sometimes overlooked operation. The unexpected happens
occasionallyÐa file is inadvertently deleted, or a power failure interrupts your work in a document.
It's a common, but unfortunate, practice to delay creating backups because the procedure can be
troublesome and time-consuming. Experienced people (sadder and wiser) will tell you that a
regular backup routine is an essential element of system administration. This chapter contains
some suggestions to simplify the task.

Backup Strategies
A backup schedule and scheme are essential. How often you do a backupÐthat is, make a copy
and store it in a safe placeÐdepends on such factors as how frequently your files change, how
much time a backup requires, and how much data you're willing to lose. For example, a full backup
of your entire system is thorough, but it requires so much time and storage media that it might not
be practical on a daily basis. Since many files change infrequently, it's sensible to do a full backup
less often (once a month is common), and do a more frequent backup of those files that change
regularly.
Your backup strategy might include several levels of backups, each of which copies different files:
· A full backup completely copies all data on your system, although you can omit certain

directories or file systems, such as /tmp, if you don't want to save the data they contain.
· An incremental backup copies only those files that have changed since the last backup. Some

programs (such as dump) have a built-in incremental backup feature.
· A partial backup copies only the files or directories that you specify.
If you're a user on a standalone system, your backup strategy can be as simple as making a copy
of your work on a floppy disk each day. In addition, you'll probably want to make a full backup
periodically (weekly or monthly).
If you're responsible for administering a network, your backup strategy becomes far more complex.
The safest backup strategy is to schedule several levels of backups into an overlapping routine.
Here's a good strategy to use:
· Once a month, perform a full backup. It's a good idea to permanently store the media containing

these backups in a secure, off-site location.
· Once a week, perform an incremental backup that copies all files that have changed since the

most recent monthly backup. You can recycle the media you use for these backups on a monthly
basis.

· Once a day, perform an incremental backup that copies all files that have changed since the
most recent weekly backup, and perform a separate full backup of administrative information
located in /private/etc and /private/adm (this includes the NetInfo databases and
administrative logs and scripts). The media you use for these backups can be recycled weekly.

Warning: Always write a backup to a different tape or disk than the one on which you've stored your most
recent backup. This ensures that a failure during a backup today will not destroy yesterday's
backup in the process. For the same reason, always check that your most recent backup is
readable before disposing of the previous backup.
To save effort, you can use cron to perform backups automatically at regular intervals. Incorporate
your backup commands into the cron scripts daily, weekly, and monthly located in /usr/adm.
The cron utility will execute /usr/adm/daily at 2:00 am each day, /usr/adm/weekly each
Saturday at 3:30 am, and /usr/adm/monthly at 5:30 am on the first day of each month.

Using cron, your backups can run unattended. Make sure you insert the backup medium into the
appropriate drive each evening. The following morning, remove the backup, label it, and file it in a
secure location. With careful planning, you can structure your backups to avoid the need for
multiple volumes.

What to Back Up
Any data that you can't afford to lose should be backed up. However, some files are more
important to back up frequently, either because they change a lot, or because they contain vital
information. Give special attention to the following files:
· Documents you've been working onÐIt's a good idea to back up these files nightly, so you don't

risk losing more than a day's work. Remember, too, that a printed copy is a form of backup.
Although it's not as easy to restore as an electronic file, a printed copy of your work is insurance
against total loss.

· Home directoriesÐIf you're only backing up your own work, once a week is probably enough, as
long as you're backing up critical files daily. If you're responsible for users on a network, you
should back up their home directories more often (probably daily).

· /private/etc and /private/admÐBacking up these directories protects the most important parts
of the system databases. For example, these directories contain the administrative information
about user accounts, including their encrypted passwords. These directories should be backed
up separately and completely to protect the internal consistency of the NetInfo database.
A NetInfo database is made up of separate files, and you need to make sure they're backed up
together at the same time. The tar program is a good choice for this task because it lets you
copy all files at once. Incremental backups, such as those created with dump, might copy the
files at different times, introducing inconsistencies. If you're administering a network, the
/private/etc and /private/adm directories should be backed up daily.

· Directories that change oftenÐAny files that change frequently should be backed up frequently.
Some directories that might fall into this category are: /LocalLibrary, /LocalApps, and
/LocalAdmin (if you have them), /usr/local, and /usr/spool/mail. Remember to back up any
other files or directories you change, such as shared project directories.

· Critical, site-specific filesÐIf there are any other files that you would need to recover in case of a
major catastrophe (such as fire or flood), back them up and store them off-site.

Since the system software doesn't change frequently, and takes up a lot of space, you can omit it
from your regular backup schedule. If you choose to do this, be sure you have a copy of the system
software available, as well as the means to restore the system software from the archived copy.

Ways to Back Up
Backup techniques range from the simple to the complex. For example, you can do a small backup
simply by copying a file or directory to another computer on the network or to a second storage
device (such as an optical disk, second hard drive, or floppy disk).
To do more sophisticated backups, you can use a number of programs. Each has its advantages
and disadvantages. This section discusses six: dump and restore (used together), rdump and
rrestore (used together), tar, and cpio.
Here are some things to consider in your backup procedures:
· Log in as root, a member of the operator group (best choice), or the owner of the files you're

backing up or restoring. When you're restoring, make sure you have write permission in the
directory that will receive the backed-up material. It's a good idea to add the accounts of those
who do backups to the operator group so they can create backups without becoming root.
Remember that root might not have access to remote NFS directories.

· Back up the most important data first. If something goes wrong during the backup, or if your

backup media runs out of space, you can then be sure that the most important data is safe.
Typically, you should back up user data before system data, since user files change more
frequently. However, the system files in /etc change frequently and are critically important, so
consider backing up these files first.

· Perform backups in single-user mode, if possible, or at a time when no one is using the system.
(It's not a good idea for a file to be modified while it's being backed up.) Usually, backups are
done at night.

· Label your backup media carefully. A label should contain the date and time of the backup, a list
of the contents, and the type of backup done. This descriptive labeling can save you time when
data needs to be retrieved. It's also a good idea to keep a written log documenting what you've
done. Keep in mind that you may need this information when the system is down, so don't store
it on-line.

· Create a file containing a table of contents of the backup. This should be the first file you write
to the tape.

· Set the write protection on your media to protect against accidental overwrites. Be sure to turn
off the write protection before you reuse the media.

· Store your media in a secure location. Make sure that only authorized people have access to it.

The dump and restore Programs
The dump program gives you a way to back up your files using an incremental backup approach.
An incremental backup only copies files that have been modified since the last backup. Since some
data on the system rarely changes, you can greatly reduce the amount of data you have to back
up by copying only what has changed. The restore program lets you retrieve files you've backed
up with dump.
Important: It's recommended that you run dump and restore from an account other than root
that's a member of the operator group. This precaution protects you from accidentally overwriting

your disk by making a typing error when executing dump or restore.
Advantages of dump and restore:
· Easy way to store and retrieve a large amount of data
· Can perform and track interactive backups and restores
· Can perform incremental backups
· Fast
Disadvantages of dump and restore:
· Can only back up entire file systems; can't be used to back up a single directory or file

Using dump
The dump program keeps track of how extensive a backup should be by assigning each backup a
level number from 0 to 9. A level 0 dump copies the entire file system, and each subsequent
dump level copies those files that have been modified since the most recent dump with a lower
level number. For example, a level 5 dump copies all changed files since the most recent dump
with a level of 4 or lower. If executed with the u option, dump keeps a record of the date, time,
and numeric level at which a file system was backed up, in the file /etc/dumpdates.
A simple backup strategy is to start with a complete level 0 dump and then make incremental
backups each day.

Warning: Before doing a level 0 dump, it's important to run fsck to be certain you're copying a clean file
system. Skipping this step risks dangerous file system corruption. Always run fsck on an
unmounted file system. In addition, it's recommended that the file system be unmounted when
doing a level 0 dump, to make sure you have a consistent and complete backup. If you're backing
up the root file system, you should do this in single-user mode. For more information on fsck, see
the UNIX manual page for fsck and Chapter 9, ªSystem Startup and Shutdown.º

Examples Using dump

1. To make a complete level 0 backup, enter a command similar to the following:
dump 0u /dev/rsd0a

This creates a full backup of /dev/rsd0a, writing the output to the default backup device
(/dev/rxt0, an external SCSI tape drive).

Warning: When making a level 0 dump, never overwrite your most recent backup. Instead, set it aside
and create a new one on a second tape. This protects against your only level 0 backup being
damaged (for example, if the power should fail while you're doing a backup).

2. To create a daily, weekly, or monthly backup, enter a command similar to the following (replace
9 with the appropriate backup level and filesystem with the appropriate device name):

dump 9u filesystem
Remember, you can put your backup commands in a cron script to have them run
automatically. Be sure to label your dump tapes carefully.
Note: The specific level numbers used for your backups aren't significant, as long as you use
three different numbers and are consistent. You can use level 1 for monthly backups, 2 for
weekly backups, and 9 for daily backups, or you could use 1 for monthly, 4 for weekly, and 7 for
daily.

3. If you want to specify a different output file or device, use the f option:
dump 9uf /Dumps/SD1a-9.dump /dev/rsd1a

This example creates a level 9 backup of /dev/rsd1a, writing it to the file /Dumps/SD1a-
9.dump. This file might be located on a removable disk (assuming the removable disk is
mounted on /Dumps). Here, the .dump suffix is used to help identify the file as a dump
backup.

4. To conserve space on your backup media, you can compress the output:
dump 9uf - /dev/rsd0b | compress > /Dumps/SD0b-9.dump.Z

Using ª-º as the output file sends the output to standard out (stdout). The output from dump is

then used as input for the compress command. Finally, the output from compress is redirected
to the file /Dumps/SD0b-9.dump.Z. (The .Z suffix is a convention indicating the file is
compressed.) Use the uncompress or zcat command to recover the original, full-size dump
file.

5. To decrease the amount of space required to do a full backup of the root file system, you can
omit the system software from the normal full backup (since it should never change). Make sure
you have some means of installing the system software, then enter the following command:

dump 0uf /dev/null /dev/rsd0a
Warning: If you choose to do this, you must create this ªphonyº level 0 dump before you do anything else

with a new system (or immediately after installing the system software, if you're using another
disk as your boot disk).
This command updates /etc/dumpdates to indicate that a level 0 dump has been performed
without actually creating a backup. (The output is sent to /dev/null, the null device, also called
the ªbit bucket.º Any output sent here is discarded.) From now on, use a level 1 dump to make
all your full backups of the root file system. To be consistent, you can also use a level 1 dump to
do the full backups of your other file systems, provided that you never do a level 0 dump of
them.

For a complete list and description of the arguments available with dump, see the UNIX manual
page for dump.

Using restore
When you want to retrieve the data you've backed up with dump, use restore. The restore
program copies data from the dump file to your current directory. Like dump, restore will use an
external tape drive (/dev/rxt0) by default, but you can override this with the f option.

Warning: When using restore, be extremely careful that you don't inadvertently overwrite existing data.
Files retrieved with restore are written into the current working directory. Have an empty directory
ready to receive the restored data. Never restore data into a directory that already contains files

unless you're certain of the outcome. The i option to restore, described later in this section, can
be particularly helpful.
You must always use restore with a key argument. This key determines exactly what restore will
do. Here are some of the most important key arguments:
· rÐReads the entire dump file into the current directory. This key should only be used to restore

a complete dump file onto a clear file system or to restore an incremental dump file after
restoring a full level 0 backup.

· x filenameÐExtracts the specified file or directory from a dump file. Note that restore must
create all the directories leading to the file before restoring the actual file. Keep this in mind
when planning where you restore the filesÐbe ready to restore a directory hierarchy, not just an
individual file. It's a good idea to restore into a temporary directory, then copy or move the
restored files into their permanent location.

· t [filename]ÐDisplays a table of contents for the dump file. With the filename argument,
displays the table of contents for the specified file. Without the filename argument, displays the
contents for the entire backup.

· iÐPerforms the restore interactively. This is particularly useful for restoring just part of a backup,
and it's a good way to see what's in the dump file. An interactive restore uses a set of
commands that you enter into an interface similar to a shell.

Examples Using restore

1. Here's an annotated example of an interactive restore session:
mkdir /new
cd /new
/etc/restore if /dev/rxt0
restore > ls Execute a command (ls) at the restore prompt.
.:
./ LocalAdmin/ files/ me/
../ LocalApps/ fun.eps mnta/
.NeXT/ LocalDeveloper/ bin/ odmach

.cshrc LocalLibrary/ cores/ private/

.hidden Net/ dev/ savem

.login NextAdmin/ etc/ sdmach

.profile NextApps/ lib/ tmp/

.rhosts NextDeveloper/ lost+found/ usr/

.alias NextLibrary/ mach@

restore > cd /files Change to a particular directory on the tape and
restore > ls list its contents.
./files:
 bin/

restore > cd /bin
restore > ls
./files/bin:
 sh

restore > add sh Add the file sh to the list of files to be restored.

restore > extract Restore all the files on the list from
the dump tape.

You have not read any tapes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards towards the first.
Specify next volume #: 1 Specify the tape volume from which to start the

restore.

set owner/mode for '.'? [yn] y Set the ownership to the user performing the
restore and permission to their defaults.

restore > quit Exit the program.

2. This example does a full restore from the backup to a newly initialized disk (useful if you're
upgrading to a new disk):

disk -i /dev/rsd1a Initialize the new disk.
mount /dev/sd1a /mnt Mount a file system on the disk.
cd /mnt Change to the mounted directory.

restore rf /dev/rst0 Restore the entire contents of the dump file.
rm restoresymtab Delete a temporary file left behind by restore.

3. The following command does an interactive restore of a compressed backup:
zcat /Dumps/SD0a-9.dump.Z | restore if -

For more information on restore and its many arguments, see the UNIX manual page for restore.

The rdump and rrestore Programs
The rdump and rrestore programs work much like dump and restore, except that they're used
to back up a file system over the network to a remote device (such as a shared tape drive).
Advantages of rdump and rrestore:
· Can be more convenient than dump, since you can use a single tape drive to back up and

restore all the computers on a network
· Same as dump and restore
Disadvantages of rdump and rrestore:
· Same as dump and restore
Note: To use rdump to do a backup of a disk attached to a remote system, you must have
permission to execute the rsh command as root on the computer that has the target output
device attached to it. This permission is given by making an entry for your remote computer in the
/.rhosts file. For example, if you're making a backup of a disk attached to the computer bilbo and
will be sending the output file to a disk attached to the computer gandalf, you need an entry for
bilbo in the /.rhosts file on gandalf. For more information, see the UNIX manual page for
.rhosts.
You use rdump just as you would dump, except that you must always use the f option to specify
the remote device. The f option is followed by an argument in the form host:device.
To restore data across a network that has been copied using rdump, use rrestore. The rrestore

program operates almost identically to restore, except that you must always specify the remote
device from which you are restoring the data. To do this, use the f key followed by an argument in
the form host:device. You are then restoring data from the drive device on the computer host.
(Again, make sure you have an appropriate entry in the /.rhosts file on the remote computer.)
Like restore, rrestore always restores data to the current directory. Consequently, before running
rrestore, you need to log into the computer to which you're restoring data and change to the
appropriate directory. If you're not sitting at the computer that will receive the data, you can log in
using rlogin or telnet. For more information, see the UNIX manual pages for rlogin and telnet.

Examples Using rdump and rrestore

1. Here's an example of a command that writes an incremental backup of /dev/rsd2a to the tape
drive /dev/nrst0 on the host tserver:

rdump 9uf tserver:/dev/nrst0 /dev/rsd2a
2. This example interactively restores from the tape in drive /dev/rst0 on tserver:

rrestore if tserver:/dev/rst0
For more information on rdump and rrestore, see the UNIX manual pages for rdump, dump,
rrestore, and restore.

The tar Program
The tar program takes multiple files and directories and stores them as a single large archive file.
Its actions are controlled by a key argument. You can also specify file or directory names indicating
which files to copy or restore.
Advantages of tar:
· Can make copies of individual files and directories
· Fast

· Compatible with non-UNIX file systems (for example, you can use tar to copy from a DOS
diskette, and then restore the data onto another DOS diskette)

Disadvantages of tar:
· Cannot perform more complex operations such as incremental backups
· Restricts file pathnames to 100 characters

Warning: Since tar can't handle multiple volumes, it should not be used if the material you're backing up
doesn't fit on a single storage volume. Also, tar doesn't copy files with names longer than 100
characters. This is of particular note on NeXT computers because the names of some files can be
very long.
The tar command can be used with a variety of keys to control its operation. Here are some of the
most frequently used:
· c filenameÐCreates a new tar file and starts writing from its beginning. (By default, tar will read

and write an external tape drive, /dev/rxt0.) If you specify a directory to copy, tar copies the
entire directory structure, not just the top level.

· x filenameÐExtracts the named file from the tar file. If you omit the filename argument, tar will
restore the entire contents of the tar file. Be careful not to overwrite existing data with this key.

· pÐPreserves the permissions of extracted files.
· tÐLists the contents of the tar file without actually extracting the files.
· hÐCauses tar to follow symbolic links (it will copy the file being pointed to, not just the link file).
· vÐPrints the name of each file as tar copies it. You can combine this with the t option to see

even more information about the files.
When making an archive using tar c, you can use either a relative or absolute pathname to specify
the file or directory to be copied. If you use a relative pathname (that is, any path that doesn't
begin with a ª/º), you can later restore the files into any directory. If you use an absolute pathname
(that is, a fully qualified pathname beginning with ª/º), tar will only restore the copied files into the
directory from which you originally copied them. In fact, tar restores all the directories in the path

leading to the file (even if it has to create them) before restoring the actual file.
Note: To provide maximum flexibility when you restore files, it's highly recommended that you use
relative pathnames when creating tar files.

Examples Using tar

1. The following example illustrates how tar is used. Note that you can specify more than one file
or directory on the command line. Start by changing to the directory from which you're going to
copy the file or directory:

cd /
tar c ./etc ./adm

This command copies the directories ./etc and ./adm onto the default device /dev/rxt0. Note
that relative pathnames (beginning with ª./º) are used to identify the directories to be copied.

2. To restore the entire contents of the archive, change to the directory where you want to restore
them and enter the following:

tar xp
Since you used a relative pathname when you made the backup copy, tar restores the backup
into your current working directory. The p option preserves file permissions. Note that though
tar attempts to restore the correct file permissions, it can't guarantee this.

For more information, see the UNIX manual page for tar.

The cpio Program
The name cpio stands for copy input to output. This command copies files into and out of a cpio
archive. It uses the standard input as its source of file names and the standard output as the
archive output. This means that you can combine cpio with standard UNIX commands (such as
find or ls) to create a wide variety of specialized backups. For example, you can combine find and
cpio to create a backup containing all the files owned by a particular user that were last modified

over six weeks ago.
Advantages of cpio:
· Can be used to copy and restore single files
· Can perform incremental backups
· Can be used to copy files meeting any condition (age, ownership, size, and so forth)
Disadvantages of cpio:
· Has a cryptic command syntax
· Doesn't make effective use of storage space
· Restricts pathnames to 128 characters
· Can't be used for backing up directories or files with symbolic links
The cpio program uses two options for backups:
· -o copies out an archive (to create a backup).
· -i copies in an archive (to restore from a backup).
Each of these primary options can be combined with additional options to further modify what cpio
does. For a complete description of these options, see the UNIX manual page for cpio.
Unlike dump or tar, the cpio command isn't used by itself to create a backup copy. Instead, it gets
a list of which files are to be copied from another UNIX command (typically find or ls). The
arguments used with these UNIX commands determine which files and directories cpio will copy.

Examples Using cpio

1. In the following example, cpio -o copies all files in the current directory into an archive. Notice
how the output of the ls command becomes the input to cpio:

ls | cpio -oB > /dev/rxt0
Important: When sending output to tape devices (such as /dev/rxt0), be sure to use the B
option, which causes cpio to use 5120 byte records. You must also use this option to restore the

archive.
2. Here's a command that finds every file in /NeXTLibrary/Documentation that is not NFS-

mounted, and then archives it:
cd /NeXTLibrary/Documentation
find . -depth -fstype 4.3 -prune -print | cpio -oB > /dev/rxt0

For information about the find command, see the UNIX manual page.
3. To restore an entire archive, enter a command such as:

cpio -idB < /dev/rxt0
The -d option instructs cpio to create directories as needed during the restore.

4. The following command lists the contents of an archive in the long format listing.
cpio -ivt < /myfile

This command combines cpio -i with the -t option, which lists the table of contents of the input
archive, and the -v option (for a verbose listing of file names, similar to the output of ls -l).

For more information about cpio and its use, see the UNIX manual pages for cpio, find, and ls.

General Tips
The biggest cause of concern when doing backups is the potential for human error. It's easy to
overwrite valuable data if you're not paying attention. It's also easy to overlook making a backup,
and live to regret it later. Here are some ways to avoid trouble:
· Be sure to have a systematic backup routine and stick to it.
· Check before performing a restore to make sure you're not going to overwrite important files as

you read data back onto the disk. The riskiest commands to use in this regard are restore r

(remember that restore always copies into the current directory), rrestore r, tar x, and cpio -
i.

· Be especially aware of the hazards of typing errors when using backup programs such as dump
and restore, since you can overwrite your disk. Try to avoid doing backups while logged in as
root, if possible.

· If you're making a complete backup and know that you'll definitely be restoring from the backup
later (for example, if you're making a backup as a preliminary to replacing a disk), it's best to do
the backup twice. This protects against data corruption on one of the copies. It's also a good
idea to verify that the backup was successful by reading the contents of the backup tape or disk.

· Always label your backup copies carefully to avoid confusing them, and store them in a safe
place.

· If users store valuable data on local disks not available to the usual server backup procedures,
be sure to set up a backup routine for this data, or encourage the users to do so.

· Be sure media write protection is turned off before attempting a backup.

Troubleshooting
What follows is a list of the error messages you're most likely to encounter with each of the backup
programs.

Messages from dump and rdump
The following message appears if there's no tape drive on the computer you've specified to receive
the data, or if there's an error in the way you specified the tape drive:

DUMP:NEEDS ATTENTION: Cannot open tape. Do you want to retry the open?

If the computer you're using lacks an /etc/fstab file, you see the following message:
DUMP: Can't open /etc/fstab for dump table information.

Messages from rdump and rrestore
If you don't have remote access permission on either the system you're backing up or the tape
drive server, you'll get a message such as the following:

Permission denied.

If you receive such a message, make appropriate entries for your system in the /.rhosts files on
the systems denying access.

Messages from tar
A message such as the following appears if there is no tape drive on the computer you've specified
to receive the data (using tar c), or if there's an error in the way you specified the tape drive:

/dev/rxt0: No such tape or address.

If you don't have root permission or don't belong to the operator group, you'll see a message
such as the following:

Cannot open /dev/rsd0a

Messages from cpio
The cpio program has trouble with pathnames longer than 128 characters. If you exceed this
length in a directory or file you are copying, cpio responds with a message such as:

<toolongpathname>?
2936 blocks

The find command is frequently paired with cpio. The -ncpio option can't be used with find. If
you do, you'll get a message such as the following:

find: bad option <-ncpio>

