
Phil's Pretty Good Software Presents
PGP™ Pretty Good™ Privacy

Public Key Encryption for the Masses
By Philip Zimmermann Revised 22 May 94

PGP Version 2.6 - 22 May 94    Software by Philip Zimmermann, and Many others, This hypertext
version of the manual compiled by Jeff Sheets by permission from Philip Zimmermann.

Volume I -- Essential Topics
Volume II --Special Topics
New Features Per Version
PGP Quick Reference
Synopsis:    PGP(tm) uses public-key encryption to protect E-mail and data files.   
Communicate securely with people you've never met, with no secure channels needed for
prior exchange of keys.    PGP is well featured and fast, with sophisticated key
management, digital signatures, data compression, and good ergonomic design.

Software and documentation (c) Copyright 1990-1994 Philip Zimmermann.    All rights
reserved.    For information on PGP licensing, distribution, copyrights, patents, trademarks,
liability limitations, and export controls, see the "Legal Issues" section in the "PGP User's
Guide, Volume II: Special Topics".    Distributed by the Massachusetts Institute of
Technology.

"Whatever you do will be insignificant, but it is very important that you do it."    --Mahatma
Gandhi

Volume I -- Essential Topics
Quick Overview
Why Do You Need PGP?
How it Works
Installing PGP
How to Use PGP
Managing Keys
Advanced Topics
Legal Issues
Acknowledgments
About the Author

Volume II - Special Topics
Separating Signatures from Messages
Decrypting the Message and Leaving the Signature on it
Handling of Text
Keyrings and Key Management
Using PGP as a Unix Style Filter
BATCHMODE
Setting Configuration Parameters : CONFIG.TXT
A Peek Under the Hood
Vulnerabilities
Legal Issues
Where to get PGP
Reporting PGP Bugs
Computer Related Political Groups
Recommended Reading
To Contact The Author

Quick summary of PGP v2.3 commands.
Basic Commands
Key Management Commands
Esoteric Commands
Combination Command Options

Basic Commands
To encrypt a plaintext file with the recipient's public key:
          pgp -e textfile her_userid

To sign a plaintext file with your secret key:
        pgp -s textfile [-u your_userid]

To sign a plaintext file with your secret key, and then encrypt it with the recipient's public
key:
        pgp -es textfile her_userid [-u your_userid]

To encrypt a plaintext file with just conventional cryptography, type:
        pgp -c textfile

To decrypt an encrypted file, or to check the signature integrity of a signed file:
        pgp ciphertextfile [-o plaintextfile]

To encrypt a message for any number of multiple recipients:
        pgp -e textfile userid1 userid2 userid3

--- Command options that can be used in combination with other
command options (sometimes even spelling interesting words!):
To produce a ciphertext file in ASCII radix-64 format, just add the
-a option when encrypting or signing a message or extracting a key:
          pgp -sea textfile her_userid
or:    pgp -kxa userid keyfile [keyring]

To wipe out the plaintext file after producing the ciphertext file,
just add the -w (wipe) option when encrypting or signing a message:
          pgp -sew message.txt her_userid

To specify that a plaintext file contains ASCII text, not binary, and
should be converted to recipient's local text line conventions, add
the -t (text) option to other options:
          pgp -seat message.txt her_userid

To view the decrypted plaintext output on your screen (like the
Unix-style "more" command), without writing it to a file, use
the -m (more) option while decrypting:
          pgp -m ciphertextfile

To specify that the recipient's decrypted plaintext will be shown
ONLY on her screen and cannot be saved to disk, add the -m option:
          pgp -steam message.txt her_userid

To recover the original plaintext filename while decrypting, add
the -p option:
          pgp -p ciphertextfile

To use a Unix-style filter mode, reading from standard input and
writing to standard output, add the -f option:
          pgp -feast her_userid <inputfile >outputfile

Esoteric Commands
To decrypt a message and leave the signature on it intact:
          pgp -d ciphertextfile

To create a signature certificate that is detached from the document:
          pgp -sb textfile [-u your_userid]

To detach a signature certificate from a signed message:
          pgp -b ciphertextfile

Key Management Commands

To generate your own unique public/secret key pair:
          pgp -kg

To add a public or secret key file's contents to your public or
secret key ring:
          pgp -ka keyfile [keyring]

To extract (copy) a key from your public or secret key ring:
          pgp -kx userid keyfile [keyring]
or:    pgp -kxa userid keyfile [keyring]

To view the contents of your public key ring:
          pgp -kv[v] [userid] [keyring]

To view the "fingerprint" of a public key, to help verify it over
the telephone with its owner:
          pgp -kvc [userid] [keyring]

To view the contents and check the certifying signatures of your
public key ring:
          pgp -kc [userid] [keyring]

To edit the userid or pass phrase for your secret key:
          pgp -ke userid [keyring]

To edit the trust parameters for a public key:
          pgp -ke userid [keyring]

To remove a key or just a userid from your public key ring:
          pgp -kr userid [keyring]

To sign and certify someone else's public key on your public key ring:
          pgp -ks her_userid [-u your_userid] [keyring]

To remove selected signatures from a userid on a keyring:
          pgp -krs userid [keyring]

To permanently revoke your own key, issuing a key compromise
certificate:
          pgp -kd your_userid

To disable or reenable a public key on your own public key ring:
          pgp -kd userid

Quick Overview
Pretty Good(tm) Privacy (PGP), from Phil's Pretty Good Software, is a high security
cryptographic software application for MSDOS, Unix, VAX/VMS, and other computers.    PGP
allows people to exchange files or messages with privacy, authentication, and
convenience.    Privacy means that only those intended to receive a message can read it.   
Authentication means that messages that appear to be from a particular person can only
have originated from that person. Convenience means that privacy and authentication are
provided without the hassles of managing keys associated with conventional cryptographic
software.    No secure channels are needed to exchange keys between users, which makes
PGP much easier to use.    This is because PGP is based on a powerful new technology
called "public key" cryptography.

PGP combines the convenience of the Rivest-Shamir-Adleman (RSA) public key
cryptosystem with the speed of conventional cryptography, message digests for digital
signatures, data compression before encryption, good ergonomic design, and
sophisticated key management.    And PGP performs the public-key functions faster than
most other software implementations.    PGP is public key cryptography for the masses.   
PGP does not provide any built-in modem communications capability. You must use a
separate software product for that.

This document, "Volume I: Essential Topics", only explains the essential concepts for using
PGP, and should be read by all PGP users.    "Volume II: Special Topics" covers the advanced
features of PGP and other special topics, and may be read by more serious PGP users.   
Neither volume explains the underlying technology details of cryptographic algorithms and
data structures.

Why do you need PGP?
It's personal.    It's private.    And it's no one's business but yours. You may be planning a
political campaign, discussing your taxes, or having an illicit affair.    Or you may be doing
something that you feel shouldn't be illegal, but is.    Whatever it is, you don't want your
private electronic mail (E-mail) or confidential documents read by anyone else.    There's
nothing wrong with asserting your privacy. Privacy is as apple-pie as the Constitution.   
Perhaps you think your E-mail is legitimate enough that encryption is unwarranted.    If you
really are a law-abiding citizen with nothing to hide, then why don't you always send your
paper mail on postcards? Why not submit to drug testing on demand?    Why require a
warrant for police searches of your house?    Are you trying to hide something? You must be
a subversive or a drug dealer if you hide your mail inside envelopes.    Or maybe a
paranoid nut.    Do law-abiding citizens have any need to encrypt their E-mail?    What if
everyone believed that law-abiding citizens should use postcards for their mail?    If some
brave soul tried to assert his privacy by using an envelope for his mail, it would draw
suspicion. Perhaps the authorities would open his mail to see what he's hiding. Fortunately,
we don't live in that kind of world, because everyone protects most of their mail with
envelopes.    So no one draws suspicion by asserting their privacy with an envelope.   
There's safety in numbers. Analogously, it would be nice if everyone routinely used
encryption for all their E-mail, innocent or not, so that no one drew suspicion by asserting
their E-mail privacy with encryption.    Think of it as a form of solidarity.

Today, if the Government wants to violate the privacy of ordinary citizens, it has to expend
a certain amount of expense and labor to intercept and steam open and read paper mail,
and listen to and possibly transcribe spoken telephone conversation.    This kind of labor-
intensive monitoring is not practical on a large scale.    This is only done in important cases
when it seems worthwhile.    More and more of our private communications are being
routed through electronic channels. Electronic mail is gradually replacing conventional
paper mail.    E-mail messages are just too easy to intercept and scan for interesting
keywords.    This can be done easily, routinely, automatically, and undetectably on a grand
scale. International cablegrams are already scanned this way on a large scale by the NSA.

We are moving toward a future when the nation will be crisscrossed with high capacity
fiber optic data networks linking together all our increasingly ubiquitous personal
computers.    E-mail will be the norm for everyone, not the novelty it is today.    The
Government will protect our E-mail with Government-designed encryption protocols.
Probably most people will acquiesce to that.    But perhaps some people will prefer their
own protective measures.

Senate Bill 266, a 1991 omnibus anti-crime bill, had an unsettling measure buried in it.    If
this non-binding resolution had become real law, it would have forced manufacturers of
secure communications equipment to insert special "trap doors" in their products, so that
the Government can read anyone's encrypted messages.    It reads:    "It is the sense of
Congress that providers of electronic communications services and manufacturers of
electronic communications service equipment shall insure that communications systems
permit the Government to obtain the plain text contents of voice, data, and other
communications when appropriately authorized by law."    This measure was defeated after
rigorous protest from civil libertarians and industry groups.    In 1992, the FBI Digital
Telephony wiretap proposal was introduced to Congress.    It would require all
manufacturers of communications equipment to build in special remote wiretap ports that
would enable the FBI to remotely wiretap all forms of electronic communication from FBI
offices.    Although it never attracted any sponsors in Congress in 1992 because of citizen
opposition, it was reintroduced in 1994.

Most alarming of all is the White House's bold new encryption policy initiative, under
development at NSA since the start of the Bush administration, and unveiled April 16th,

1993.    The centerpiece of this initiative is a Government-built encryption device, called
the "Clipper" chip, containing a new classified NSA encryption algorithm.    The
Government is encouraging private industry to design it into all their secure
communication products, like secure phones, secure FAX, etc.    AT&T is now putting the
Clipper into their secure voice products.    The catch: At the time of manufacture, each
Clipper chip will be loaded with its own unique key, and the Government gets to keep a
copy, placed in escrow.    Not to worry, though-- the Government promises that they will
use these keys to read your traffic only when duly authorized by law.    Of course, to make
Clipper completely effective, the next logical step would be to outlaw other forms of
cryptography.

If privacy is outlawed, only outlaws will have privacy.    Intelligence agencies have access to
good cryptographic technology.    So do the big arms and drug traffickers.    So do defense
contractors, oil companies, and other corporate giants.    But ordinary people and
grassroots political organizations mostly have not had access to affordable "military grade"
public-key cryptographic technology.    Until now.

PGP empowers people to take their privacy into their own hands. There's a growing social
need for it.    That's why I wrote it.

How it works
It would help if you were already familiar with the concept of cryptography in general and
public key cryptography in particular. Nonetheless, here are a few introductory remarks
about public key cryptography.

First, some elementary terminology.    Suppose I want to send you a message, but I don't
want anyone but you to be able to read it.    I can "encrypt", or "encipher" the message,
which means I scramble it up in a hopelessly complicated way, rendering it unreadable to
anyone except you, the intended recipient of the message.    I supply a cryptographic "key"
to encrypt the message, and you have to use the same key to decipher or "decrypt" it.    At
least that's how it works in conventional "single-key" cryptosystems.

In conventional cryptosystems, such as the US Federal Data Encryption Standard (DES), a
single key is used for both encryption and decryption.    This means that a key must be
initially transmitted via secure channels so that both parties can know it before encrypted
messages can be sent over insecure channels.    This may be inconvenient.    If you have a
secure channel for exchanging keys, then why do you need cryptography in the first place?

In public key cryptosystems, everyone has two related complementary keys, a publicly
revealed key and a secret key.    Each key unlocks the code that the other key makes.   
Knowing the public key does not help you deduce the corresponding secret key.    The
public key can be published and widely disseminated across a communications network.
This protocol provides privacy without the need for the same kind of secure channels that
a conventional cryptosystem requires.    Anyone can use a recipient's public key to encrypt
a message to that person, and that recipient uses her own corresponding secret key to
decrypt that message.    No one but the recipient can decrypt it, because no one else has
access to that secret key.    Not even the person who encrypted the message can decrypt
it.

Message authentication is also provided.    The sender's own secret key can be used to
encrypt a message, thereby "signing" it.    This creates a digital signature of a message,
which the recipient (or anyone else) can check by using the sender's public key to decrypt
it.    This proves that the sender was the true originator of the message, and that the
message has not been subsequently altered by anyone else, because the sender alone
possesses the secret key that made that signature.    Forgery of a signed message is
infeasible, and the sender cannot later disavow his signature.

These two processes can be combined to provide both privacy and authentication by first
signing a message with your own secret key, then encrypting the signed message with the
recipient's public key. The recipient reverses these steps by first decrypting the message
with her own secret key, then checking the enclosed signature with your public key.   
These steps are done automatically by the recipient's software.    Because the public key
encryption algorithm is much slower than conventional single-key encryption, encryption is
better accomplished by using a high-quality fast conventional single-key encryption
algorithm to encipher the message.    This original unenciphered message is called
"plaintext".    In a process invisible to the user, a temporary random key, created just for
this one "session", is used to conventionally encipher the plaintext file.    Then the
recipient's public key is
used to encipher this temporary random conventional key.    This public-key-enciphered
conventional "session" key is sent along with the enciphered text (called "ciphertext") to
the recipient.    The recipient uses her own secret key to recover this temporary session
key, and then uses that key to run the fast conventional single-key algorithm to decipher
the large ciphertext message.    Public keys are kept in individual "key certificates" that
include the key owner's user ID (which is that person's name), a timestamp of when the
key pair was generated, and the actual key material.    Public key certificates contain the

public key material, while secret key certificates contain the secret key material.    Each
secret key is also encrypted with its own password, in case it gets stolen.    A key file, or
"key ring" contains one or more of these key certificates. Public key rings contain public
key certificates, and secret key rings contain secret key certificates.    The keys are also
internally referenced by a "key ID", which is an "abbreviation" of the public key (the least
significant 64 bits of the large public key).    When this key ID is displayed, only the lower
32 bits are shown for further brevity.    While many keys may share the same user ID, for all
practical purposes no two keys share the same key ID.

PGP uses "message digests" to form signatures.    A message digest is a 128-bit
cryptographically strong one-way hash function of the message.    It is somewhat
analogous to a "checksum" or CRC error checking code, in that it compactly "represents"
the message and is used to detect changes in the message.    Unlike a CRC, however, it is
computationally infeasible for an attacker to devise a substitute message that would
produce an identical message digest.    The message digest gets encrypted by the secret
key to form a signature.    Documents are signed by prefixing them with signature
certificates, which contain the key ID of the key that was used to sign it, a secret-key-
signed message digest of the document, and a timestamp of when the signature was
made.    The key ID is used by the receiver to look up the sender's public key to check the
signature.    The receiver's software automatically looks up the sender's public key and
user ID in the receiver's public key ring.    Encrypted files are prefixed by the key ID of the
public key used to encrypt them.    The receiver uses this key ID message prefix to look up
the secret key needed to decrypt the message.    The receiver's software automatically
looks up the necessary secret decryption key in the receiver's secret key ring.

These two types of key rings are the principal method of storing and managing public and
secret keys.    Rather than keep individual keys in separate key files, they are collected in
key rings to facilitate the automatic lookup of keys either by key ID or by user ID.    Each
user keeps his own pair of key rings.    An individual public key is temporarily kept in a
separate file long enough to send to your friend who will then add it to her key ring.

Installing PGP
The MSDOS PGP 2.6 release comes in a compressed archive file called PGP26.ZIP (each
new release will have a name in the form "PGPxy.ZIP" for PGP version number x.y).    The
archive can be decompressed with the MSDOS shareware decompression utility PKUNZIP,
or the Unix utility "unzip".    The PGP release package contains a README.DOC file that you
should always read before installing PGP.    This README.DOC file contains late-breaking
news on what's new in this release of PGP, as well as information on what's in all the other
files included in the release.    If you already have an earlier version of PGP, you should
rename it or delete it, to avoid name conflicts with the new PGP.    To install PGP on your
MSDOS system, you just have to copy the compressed archive PGPxx.ZIP file into a
suitable directory on your hard disk (like C:\PGP), and decompress it with PKUNZIP.    For
best results, you will also modify your AUTOEXEC.BAT file, as described elsewhere in this
manual, but you can do that later, after you've played with PGP a bit and read more of this
manual.    If you haven't run PGP before, the first step after installation (and reading this
manual) is to run the PGP key generation command "pgp -kg".    Installing on Unix and
VAX/VMS is generally similar to installing on MSDOS, but you may have to compile the
source code first.    A Unix makefile is provided with the source release for this purpose.

For further details on installation, see the separate PGP Installation Guide, in the file
SETUP.DOC included with this release.    It fully describes how to set up the PGP directory
and your AUTOEXEC.BAT file and how to use PKUNZIP to install it.

How to use PGP
To see a Usage Summary
Encrypting a Message
Encrypting a Message to Multiple Recipients
Signing a Message
Signing and then Encrypting
UsingJust Conventional Encryption
Decrypting and Checking Signatures

To see a quick command usage summary for PGP, just type:

 pgp -h

Encrypting a Message
To encrypt a plaintext file with the recipient's public key, type:

        pgp -e textfile her_userid

This command produces a ciphertext file called textfile.pgp.    A specific example is:         
pgp -e letter.txt Alice or:    pgp -e letter.txt "Alice S"

The first example searches your public key ring file "pubring.pgp" for any public key
certificates that contain the string "Alice" anywhere in the user ID field.    The second
example would find any user IDs that contain "Alice S".    You can't use spaces in the string
on the command line unless you enclose the whole string in quotes. The search is not
case-sensitive.    If it finds a matching public key, it uses it to encrypt the plaintext file
"letter.txt", producing a ciphertext file called "letter.pgp".

PGP attempts to compress the plaintext before encrypting it, thereby greatly enhancing
resistance to cryptanalysis.    Thus the ciphertext file will likely be smaller than the
plaintext file.

If you want to send this encrypted message through E-mail channels, convert it into
printable ASCII "radix-64" format by adding the -a option, as described later.

Encrypting a Message to Multiple Recipients
If you want to send the same message to more than one person, you may specify
encryption for several recipients, any of whom may decrypt the same ciphertext file.    To
specify multiple recipients, just add more user IDs to the command line, like so:

        pgp -e letter.txt Alice Bob Carol

This would create a ciphertext file called letter.pgp that could be decrypted by Alice or Bob
or Carol.    Any number of recipients may be specified.

Signing a Message
To sign a plaintext file with your secret key, type:

        pgp -s textfile [-u your_userid]

Note that [brackets] denote an optional field, so don't actually type real brackets.    This
command produces a signed file called textfile.pgp.    A specific example is:

        pgp -s letter.txt -u Bob

This searches your secret key ring file "secring.pgp" for any secret key certificates that
contain the string "Bob" anywhere in the user ID field.    Your name is Bob, isn't it?    The
search is not case-sensitive.    If it finds a matching secret key, it uses it to sign the
plaintext file "letter.txt", producing a signature file called "letter.pgp".    If you leave off the
user ID field, the first key on your secret key ring is used as the default secret key for your
signature.

PGP attempts to compress the message after signing it.    Thus the signed file will likely be
smaller than the original file, which is useful for archival applications.    However, this
renders the file unreadable to the casual human observer, even if the original message
was ordinary ASCII text.    It would be nice if you could make a signed file that was still
directly readable to a human. This would be particularly useful if you want to send a
signed message as E-mail.    For signing E-mail messages, where you most likely do want
the result to be human-readable, it is probably most convenient to use the CLEARSIG
feature, explained later.    This allows the signature to be applied in printable form at the
end of the text, and also disables compression of the text.    This means the text is still
human-readable by the recipient even if the recipient doesn't use PGP to check the
signature.    This is explained in detail in the section entitled "CLEARSIG - Enable Signed
Messages to be Encapsulated as Clear Text", in the Special Topics volume.    If you can't
wait to read that section of the manual, you can see how an E-mail message signed this
way would look, with this example:

          pgp -sta message.txt

This would create a signed message in file "message.asc", comprised of the original text,
still human-readable, appended with a printable ASCII signature certificate, ready to send
through an E-mail system. This example assumes that you are using the normal settings
for enabling the CLEARSIG flag in the config file.

Signing and then Encrypting
To sign a plaintext file with your secret key, and then encrypt it with the recipient's public
key:

        pgp -es textfile her_userid [-u your_userid]

Note that [brackets] denote an optional field, so don't actually type real brackets.

This example produces a nested ciphertext file called textfile.pgp. Your secret key to
create the signature is automatically looked up in your secret key ring via your_userid.   
Her public encryption key is automatically looked up in your public key ring via her_userid. 
If you leave off her user ID field from the command line, you will be prompted for it.    If you
leave off your own user ID field, the first key on your secret key ring is be used as the
default secret key for your signature.    Note that PGP attempts to compress the plaintext
before encrypting it.    If you want to send this encrypted message through E-mail
channels, convert it into printable ASCII "radix-64" format by adding the -a option, as
described later.    Multiple recipients may be specified by adding more user IDs to the
command line.

Using Just Conventional Encryption
Sometimes you just need to encrypt a file the old-fashioned way, with conventional single-
key cryptography.    This approach is useful for protecting archive files that will be stored
but will not be sent to anyone else.    Since the same person that encrypted the file will
also decrypt the file, public key cryptography is not really necessary.

To encrypt a plaintext file with just conventional cryptography, type:

        pgp -c textfile

This example encrypts the plaintext file called textfile, producing a ciphertext file called
textfile.pgp, without using public key cryptography, key rings, user IDs, or any of that stuff.
It prompts you for a pass phrase to use as a conventional key to encipher the file.    This
pass phrase need not be (and, indeed, SHOULD not be) the same pass phrase that you use
to protect your own secret key.    Note that PGP attempts to compress the plaintext before
encrypting it.    PGP will not encrypt the same plaintext the same way twice, even if you
used the same pass phrase every time.

Decrypting and Checking Signatures
To decrypt an encrypted file, or to check the signature integrity of a signed file:

        pgp ciphertextfile [-o plaintextfile]

Note that [brackets] denote an optional field, so don't actually type real brackets.

The ciphertext file name is assumed to have a default extension of ".pgp".    The optional
plaintext output file name specifies where to put processed plaintext output.    If no name
is specified, the ciphertext filename is used, with no extension.    If a signature is nested
inside of an encrypted file, it is automatically decrypted and the signature integrity is
checked.    The full user ID of the signer is displayed.   

Note that the "unwrapping" of the ciphertext file is completely automatic, regardless of
whether the ciphertext file is just signed, just encrypted, or both.    PGP uses the key ID
prefix in the ciphertext file to automatically find the appropriate secret decryption key on
your secret key ring. If there is a nested signature, PGP then uses the key ID prefix in the
nested signature to automatically find the appropriate public key on your public key ring to
check the signature.    If all the right keys are already present on your key rings, no user
intervention is required, except that you will be prompted for your password for your
secret key if necessary. If the ciphertext file was conventionally encrypted without public
key cryptography, PGP recognizes this and prompts you for the pass phrase to
conventionally decrypt it.

Managing Keys
Since the time of Julius Caesar, key management has always been the hardest part of
cryptography.    One of the principal distinguishing features of PGP is its sophisticated key
management.
RSA Key Generation
Adding a Key to Your Key Ring
Removing a Key or User ID from Your Key Ring
Extracting (copying) a Key from Your Key Ring
Viewing the Contents of Your Key Ring
How to Protect Public Keys from Tampering
How Does PGP Keep Track of Which Keys are Valid?
How to Protect Secret Keys from Disclosure
Revoking a Public Key
What If You Lose Your Secret Key?

RSA Key Generation
To generate your own unique public/secret key pair of a specified size, type:

        pgp -kg

PGP shows you a menu of recommended key sizes (low commercial grade, high
commercial grade, or "military" grade) and prompts you for what size key you want, up to
more than a thousand bits.    The bigger the key, the more security you get, but you pay a
price in speed.

It also asks for a user ID, which means your name.    It's a good idea to use your full name
as your user ID, because then there is less risk of other people using the wrong public key
to encrypt messages to you.    Spaces and punctuation are allowed in the user ID.    It would
help if you put your E-mail address in <angle brackets> after your name, like so:

        Robert M. Smith <rms@xyzcorp.com>

If you don't have an E-mail address, use your phone number or some other unique
information that would help ensure that your user ID is unique.

PGP also asks for a "pass phrase" to protect your secret key in case it falls into the wrong
hands. Nobody can use your secret key file without this pass phrase.    The pass phrase is
like a password, except that it can be a whole phrase or sentence with many words,
spaces, punctuation, or anything else you want in it.    Don't lose this pass phrase-- there's
no way to recover it if you do lose it.    This pass phrase will be needed later every time you
use your secret key.    The pass phrase is case-sensitive, and should not be too short or
easy to guess.    It is never displayed on the screen.    Don't leave it written down anywhere
where someone else can see it, and don't store it on your computer.    If you don't want a
pass phrase (You fool!), just press return
(or enter) at the pass phrase prompt.

The public/secret key pair is derived from large truly random numbers derived mainly from
measuring the intervals between your keystrokes with a fast timer.    The software will ask
you to enter some random text to help it accumulate some random bits for the keys.   
When asked, you should provide some keystrokes that are reasonably random in their
timing, and it wouldn't hurt to make the actual characters that you type irregular in
content as well.    Some of the randomness is derived from the unpredictability of the
content of what you type.    So don't just type repeated sequences of characters.

Note that RSA key generation is a lengthy process.    It may take a few seconds for a small
key on a fast processor, or quite a few minutes for a large key on an old IBM PC/XT.    PGP
will visually indicate its progress during key generation.    The generated key pair will be
placed on your public and secret key rings.    You can later use the -kx command option to
extract (copy) your new public key from your public key ring and place it in a separate
public key file suitable for distribution to your friends. The public key file can be sent to
your friends for inclusion in their public key rings.    Naturally, you keep your secret key file
to yourself, and you should include it on your secret key ring.    Each secret key on a key
ring is individually protected with its own pass phrase.

Never give your secret key to anyone else.    For the same reason, don't make key pairs for
your friends.    Everyone should make their own key pair.    Always keep physical control of
your secret key, and don't risk exposing it by storing it on a remote timesharing computer. 
Keep it on your own personal computer.

If PGP complains about not being able to find the PGP User's Guide on your computer, and

refuses to generate a key pair without it, read the explanation of the NOMANUAL
parameter in the section "Setting Configuration Parameters" in the Special Topics volume.

Adding a Key to Your Key Ring
Sometimes you will want to add to your keyring a key provided to you by someone else, in
the form of a keyfile.    To add a public or secret key file's contents to your public or secret
key ring (note that [brackets] denote an optional field):

        pgp -ka keyfile [keyring]

The keyfile extension defaults to ".pgp".    The optional keyring file name defaults to
"pubring.pgp" or "secring.pgp", depending on whether the keyfile contains a public or a
secret key.    You may specify a different key ring file name, with the extension defaulting to
".pgp".    If the key is already on your key ring, PGP will not add it again. All of the keys in
the keyfile are added to the keyring, except for duplicates.

Later in the manual, we will explain the concept of certifying keys with signatures.    If the
key being added has attached signatures certifying it, the signatures are added with the
key.    If the key is already on your key ring, PGP just merges in any new certifying
signatures for that key that you don't already have on your key ring.

PGP was originally designed for handling small personal keyrings.    If you want to handle
really big keyrings, see the section on "Handling Large Public Keyrings" in the Special
Topics volume.

Removing a Key or User ID from Your Key Ring
To remove a key or a user ID from your public key ring:

        pgp -kr userid [keyring]

This searches for the specified user ID in your key ring, and removes it if it finds a match.
Remember that any fragment of the user ID will suffice for a match.    The optional keyring
file name is assumed to be literally "pubring.pgp".    It can be omitted, or you can specify
"secring.pgp" if you want to remove a secret key.    You may specify a different key ring file
name.    The default key ring extension is ".pgp".

If more than one user ID exists for this key, you will be asked if you want to remove only
the user ID you specified, while leaving the key and its other user IDs intact.

Extracting (copying) a Key from Your Key Ring
To extract (copy) a key from your public or secret key ring:

        pgp -kx userid keyfile [keyring]

This non-destructively copies the key specified by the user ID from your public or secret
key ring to the specified key file.    This is particularly useful if you want to give a copy of
your public key to someone else.    If the key has any certifying signatures attached to it on
your key ring, they are copied off along with the key.

If you want the extracted key represented in printable ASCII characters suitable for email
purposes, use the -kxa options.

Viewing the Contents of Your Key Ring
To view the contents of your public key ring:

        pgp -kv[v] [userid] [keyring]�

This lists any keys in the key ring that match the specified user ID substring.    If you omit
the user ID, all of the keys in the key ring are listed.    The optional keyring file name is
assumed to be "pubring.pgp".    It can be omitted, or you can specify "secring.pgp" if you
want to list secret keys. If you want to specify a different key ring file name, you can.    The
default key ring extension is
".pgp".

Later in the manual, we will explain the concept of certifying keys with signatures.    To see
all the certifying signatures attached to each key, use the -kvv option:

        pgp -kvv [userid] [keyring]

If you want to specify a particular key ring file name, but want to see all the keys in it, try
this alternative approach:

        pgp keyfile

With no command options specified, PGP lists all the keys in keyfile.pgp, and also attempts
to add them to your key ring if they are not already on your key ring.

How to Protect Public Keys from Tampering
In a public key cryptosystem, you don't have to protect public keys from exposure.    In
fact, it's better if they are widely disseminated. But it is important to protect public keys
from tampering, to make sure that a public key really belongs to whom it appears to
belong to. This may be the most important vulnerability of a public-key cryptosystem.   
Let's first look at a potential disaster, then at how to safely avoid it with PGP.

Suppose you wanted to send a private message to Alice.    You download Alice's public key
certificate from an electronic bulletin board system (BBS).    You encrypt your letter to Alice
with this public key and send it to her through the BBS's E-mail facility.    Unfortunately,
unbeknownst to you or Alice, another user named Charlie has infiltrated the BBS and
generated a public key of his own with Alice's user ID attached to it.    He covertly
substitutes his bogus key in place of Alice's real public key.    You unwittingly use this bogus
key belonging to Charlie instead of Alice's public key. All looks normal because this bogus
key has Alice's user ID.    Now Charlie can decipher the message intended for Alice because
he has the matching secret key.    He may even re-encrypt the deciphered message with
Alice's real public key and send it on to her so that no one suspects any wrongdoing.   
Furthermore, he can even make apparently good signatures from Alice with this secret key
because everyone will use the bogus public key to check Alice's signatures.

The only way to prevent this disaster is to prevent anyone from tampering with public
keys.    If you got Alice's public key directly from Alice, this is no problem.    But that may be
difficult if Alice is a thousand miles away, or is currently unreachable.

Perhaps you could get Alice's public key from a mutual trusted friend David who knows he
has a good copy of Alice's public key.    David could sign Alice's public key, vouching for the
integrity of Alice's public key.    David would create this signature with his own secret key.   
This would create a signed public key certificate, and would show that Alice's key had not
been tampered with.    This requires you have a known good copy of David's public key to
check his signature.    Perhaps David could provide Alice with a signed copy of your public
key also. David is thus serving as an "introducer" between you and Alice.

This signed public key certificate for Alice could be uploaded by David or Alice to the BBS,
and you could download it later.    You could then check the signature via David's public key
and thus be assured that this is really Alice's public key.    No impostor can fool you into
accepting his own bogus key as Alice's because no one else can forge signatures made by
David.

A widely trusted person could even specialize in providing this service of "introducing"
users to each other by providing signatures for their public key certificates.    This trusted
person could be regarded as a "key server", or as a "Certifying Authority".    Any public key
certificates bearing the key server's signature could be trusted as truly belonging to whom
they appear to belong to.    All users who wanted to participate would need a known good
copy of just the key server's public key, so that the key server's signatures could be
verified.    A trusted centralized key server or Certifying Authority is especially appropriate
for large impersonal centrally-controlled corporate or government institutions.    Some
institutional environments use hierarchies of Certifying Authorities.

For more decentralized grassroots "guerrilla style" environments, allowing all users to act
as a trusted introducers for their friends would probably work better than a centralized key
server. PGP tends to emphasize this organic decentralized non-institutional approach. It
better reflects the natural way humans interact on a personal social level, and allows
people to better choose who they can trust for key management.

This whole business of protecting public keys from tampering is the single most difficult

problem in practical public key applications. It is the Achilles' heel of public key
cryptography, and a lot of software complexity is tied up in solving this one problem.

You should use a public key only after you are sure that it is a good public key that has not
been tampered with, and actually belongs to the person it claims to.    You can be sure of
this if you got this public key certificate directly from its owner, or if it bears the signature
of someone else that you trust, from whom you already have a good public key.    Also, the
user ID should have the full name of the key's owner, not just her first name.

No matter how tempted you are-- and you will be tempted-- never, NEVER give in to
expediency and trust a public key you downloaded from a bulletin board, unless it is
signed by someone you trust. That uncertified public key could have been tampered with
by anyone, maybe even by the system administrator of the bulletin board.

If you are asked to sign someone else's public key certificate, make certain that it really
belongs to that person named in the user ID of that public key certificate.    This is because
your signature on her public key certificate is a promise by you that this public key really
belongs to her.    Other people who trust you will accept her public key because it bears
your signature.    It may be ill- advised to rely on hearsay-- don't sign her public key unless
you have independent firsthand knowledge that it really belongs to her. Preferably, you
should sign it only if you got it directly from her.

In order to sign a public key, you must be far more certain of that key's ownership than if
you merely want to use that key to encrypt a message.    To be convinced of a key's validity
enough to use it, certifying signatures from trusted introducers should suffice.    But to sign
a key yourself, you should require your own independent firsthand knowledge of who owns
that key.    Perhaps you could call the key's owner on the phone and read the key file to her
to get her to confirm that the key you have really is her key-- and make sure you really are
talking to the right person.    See the section called "Verifying a Public Key Over the Phone"
in the Special Topics volume for further details.

Bear in mind that your signature on a public key certificate does not vouch for the integrity
of that person, but only vouches for the integrity (the ownership) of that person's public
key.    You aren't risking your credibility by signing the public key of a sociopath, if you were
completely confident that the key really belonged to him. Other people would accept that
key as belonging to him because you signed it (assuming they trust you), but they
wouldn't trust that key's owner. Trusting a key is not the same as trusting the key's owner.

Trust is not necessarily transferable; I have a friend who I trust not to lie.    He's a gullible
person who trusts the President not to lie.    That doesn't mean I trust the President not to
lie.    This is just common sense.    If I trust Alice's signature on a key, and Alice trusts
Charlie's signature on a key, that does not imply that I have to trust Charlie's signature on
a key.

It would be a good idea to keep your own public key on hand with a collection of certifying
signatures attached from a variety of "introducers", in the hopes that most people will
trust at least one of the introducers who vouch for your own public key's validity. You could
post your key with its attached collection of certifying signatures on various electronic
bulletin boards.    If you sign someone else's public key, return it to them with your
signature so that they can add it to their own collection of credentials for their own public
key.

PGP keeps track of which keys on your public key ring are properly certified with signatures
from introducers that you trust.    All you have to do is tell PGP which people you trust as
introducers, and certify their keys yourself with your own ultimately trusted key. PGP can

take it from there, automatically validating any other keys that have been signed by your
designated introducers.    And of course you may directly sign more keys yourself.    More
on this later.

Make sure no one else can tamper with your own public key ring. Checking a new signed
public key certificate must ultimately depend on the integrity of the trusted public keys
that are already on your own public key ring.    Maintain physical control of your public key
ring, preferably on your own personal computer rather than on a remote timesharing
system, just as you would do for your secret key. This is to protect it from tampering, not
from disclosure.    Keep a trusted backup copy of your public key ring and your secret key
ring on write-protected media.

Since your own trusted public key is used as a final authority to directly or indirectly certify
all the other keys on your key ring, it is the most important key to protect from tampering. 
To detect any tampering of your own ultimately-trusted public key, PGP can be set up to
automatically compare your public key against a backup copy on write-protected media.   
For details, see the description of the "-kc" key ring check command in the Special Topics
volume.

PGP generally assumes you will maintain physical security over your system and your key
rings, as well as your copy of PGP itself.    If an intruder can tamper with your disk, then in
theory he can tamper with PGP itself, rendering moot the safeguards PGP may have to
detect tampering with keys.

One somewhat complicated way to protect your own whole public key ring from tampering
is to sign the whole ring with your own secret key. You could do this by making a detached
signature certificate of the public key ring, by signing the ring with the "-sb" options (see
the section called "Separating Signatures from Messages" in the PGP User's Guide, Special
Topics volume). Unfortunately, you would still have to keep a separate trusted copy of your
own public key around to check the signature you made.    You couldn't rely on your own
public key stored on your public key ring to check the signature you made for the whole
ring, because that is part of what you're trying to check.

How Does PGP Keep Track of Which Keys are Valid?
Before you read this section, be sure to read the above section on "How to Protect Public
Keys from Tampering".

PGP keeps track of which keys on your public key ring are properly certified with signatures
from introducers that you trust.    All you have to do is tell PGP which people you trust as
introducers, and certify their keys yourself with your own ultimately trusted key. PGP can
take it from there, automatically validating any other keys that have been signed by your
designated introducers.    And of course you may directly sign more keys yourself.

There are two entirely separate criteria PGP uses to judge a public key's usefulness-- don't
get them confused:

    1)    Does the key actually belong to whom it appears to belong?
            In other words, has it been certified with a trusted signature?
    2)    Does it belong to someone you can trust to certify other keys?

PGP can calculate the answer to the first question.    To answer the second question, PGP
must be explicitly told by you, the user.    When you supply the answer to question 2, PGP
can then calculate the answer to question 1 for other keys signed by the introducer you
designated as trusted.

Keys that have been certified by a trusted introducer are deemed valid by PGP.    The keys
belonging to trusted introducers must themselves be certified either by you or by other
trusted introducers.

PGP also allows for the possibility of you having several shades of trust for people to act as
introducers.    Your trust for a key's owner to act as an introducer does not just reflect your
estimation of their personal integrity-- it should also reflect how competent you think they
are at understanding key management and using good judgment in signing keys.    You can
designate a person to PGP as unknown, untrusted, marginally trusted, or completely
trusted to certify other public keys.    This trust information is stored on your key ring with
their key, but when you tell PGP to copy a key off your key ring, PGP will not copy the trust
information along with the key, because your private opinions on trust are regarded as
confidential.

When PGP is calculating the validity of a public key, it examines the trust level of all the
attached certifying signatures.    It computes a weighted score of validity-- two marginally
trusted signatures are deemed as credible as one fully trusted signature.    PGP's
skepticism is adjustable-- for example, you may tune PGP to require two fully trusted
signatures or three marginally trusted signatures to judge a key as valid.

Your own key is "axiomatically" valid to PGP, needing no introducer's signature to prove its
validity.    PGP knows which public keys are yours, by looking for the corresponding secret
keys on the secret key ring.    PGP also assumes you ultimately trust yourself to certify
other keys.

As time goes on, you will accumulate keys from other people that you may want to
designate as trusted introducers.    Everyone else will each choose their own trusted
introducers.    And everyone will gradually accumulate and distribute with their key a
collection of certifying signatures from other people, with the expectation that anyone
receiving it will trust at least one or two of the signatures. This will cause the emergence of
a decentralized fault-tolerant web of confidence for all public keys.

This unique grass-roots approach contrasts sharply with Government standard public key

management schemes, such as Internet Privacy Enhanced Mail (PEM), which are based on
centralized control and mandatory centralized trust.    The standard schemes rely on a
hierarchy of Certifying Authorities who dictate who you must trust. PGP's decentralized
probabilistic method for determining public key legitimacy is the centerpiece of its key
management architecture. PGP lets you alone choose who you trust, putting you at the top
of your own private certification pyramid.    PGP is for people who prefer to pack their own
parachutes.

How to Protect Secret Keys from Disclosure
Protect your own secret key and your pass phrase carefully.    Really, really carefully.    If
your secret key is ever compromised, you'd better get the word out quickly to all
interested parties (good luck) before someone else uses it to make signatures in your
name.    For example, they could use it to sign bogus public key certificates, which could
create problems for many people, especially if your signature is widely trusted.    And of
course, a compromise of your own secret key could expose all messages sent to you.

To protect your secret key, you can start by always keeping physical control of your secret
key. Keeping it on your personal computer at home is OK, or keep it in your notebook
computer that you can carry with you.    If you must use an office computer that you don't
always have physical control of, then keep your public and secret key rings on a write-
protected removable floppy disk, and don't leave it behind when you leave the office.    It
wouldn't be a good idea to allow your secret key to reside on a remote timesharing
computer, such as a remote dial-in Unix system.    Someone could eavesdrop on your
modem line and capture your pass phrase, and then obtain your actual secret key from the
remote system.    You should only use your secret key on a machine that you have physical
control over.

Don't store your pass phrase anywhere on the computer that has your secret key file.   
Storing both the secret key and the pass phrase on the same computer is as dangerous as
keeping your PIN in the same wallet as your Automatic Teller Machine bank card.    You
don't want somebody to get their hands on your disk containing both the pass phrase and
the secret key file.    It would be most secure if you just memorize your pass phrase and
don't store it anywhere but your brain. If you feel you must write down your pass phrase,
keep it well protected, perhaps even more well protected than the secret key file.

And keep backup copies of your secret key ring-- remember, you have the only copy of
your secret key, and losing it will render useless all the copies of your public key that you
have spread throughout the world.

The decentralized non-institutional approach PGP uses to manage public keys has its
benefits, but unfortunately this also means we can't rely on a single centralized list of
which keys have been compromised.    This makes it a bit harder to contain the damage of
a secret key compromise.    You just have to spread the word and hope everyone hears
about it.

If the worst case happens-- your secret key and pass phrase are both compromised
(hopefully you will find this out somehow)-- you will have to issue a "key compromise"
certificate.    This kind of certificate is used to warn other people to stop using your public
key.    You can use PGP to create such a certificate by using the "-kd" command.    Then you
must somehow send this compromise certificate to everyone else on the planet, or at least
to all your friends and their friends, et cetera.    Their own PGP software will install this key
compromise certificate on their public key rings and will automatically prevent them from
accidentally using your public key ever again.    You can then generate a new secret/public
key pair and publish the new public key.    You could send out one package containing both
your new public key and the key compromise certificate for your old key.

Revoking a Public Key
Suppose your secret key and your pass phrase are somehow both compromised.    You
have to get the word out to the rest of the world, so that they will all stop using your public
key.    To do this, you will have to issue a "key compromise", or "key revocation" certificate
to revoke your public key.

To generate a certificate to revoke your own key, use the -kd command:

          pgp -kd your_userid

This certificate bears your signature, made with the same key you are revoking.    You
should widely disseminate this key revocation certificate as soon as possible.    Other
people who receive it can add it to their public key rings, and their PGP software then
automatically prevents them from accidentally using your old public key ever again.    You
can then generate a new secret/public key pair and publish the new public key.

You may choose to revoke your key for some other reason than the compromise of a secret
key. If so, you may still use the same mechanism to revoke it.

What If You Lose Your Secret Key?
Normally, if you want to revoke your own secret key, you can use the "-kd" command to
issue a revocation certificate, signed with your own secret key (see "Revoking a Public
Key").

But what can you do if you lose your secret key, or if your secret key is destroyed?    You
can't revoke it yourself, because you must use your own secret key to revoke it, and you
don't have it anymore.    A future version of PGP will offer a more secure means of revoking
keys in these circumstances, allowing trusted introducers to certify that a public key has
been revoked.    But for now, you will have to get the word out through whatever informal
means you can, asking users to "disable" your public key on their own individual public key
rings.

Other users may disable your public key on their own public key rings by using the "-kd"
command.    If a user ID is specified that does not correspond to a secret key on the secret
key ring, the -kd command will look for that user ID on the public key ring, and mark that
public key as disabled.    A disabled key may not be used to encrypt any messages, and
may not be extracted from the key ring with the -kx command.    It can still be used to
check signatures, but a warning is displayed.    And if the user tries to add the same key
again to his key ring, it will not work because the disabled key is already on the key ring.   
These combined features will help curtail the further spread of a disabled key.

If the specified public key is already disabled, the -kd command will ask if you want the
key reenabled.

Sending Ciphertext Through E-mail Channels: Radix-64 Format
Many electronic mail systems only allow messages made of ASCII text, not the 8-bit raw binary data
that ciphertext is made of.    To get around this problem, PGP supports ASCII radix-64 format for
ciphertext messages, similar to the Internet Privacy-Enhanced Mail (PEM) format, as well as the
Internet MIME format.    This special format represents binary data by using only printable ASCII
characters, so it is useful for transmitting binary encrypted data through 7-bit channels or for sending
binary encrypted data as normal E-mail text.    This format acts as a form of "transport armor",
protecting it against corruption as it travels through intersystem gateways on Internet.    PGP also
appends a CRC to detect transmission errors.

Radix-64 format converts the plaintext by expanding groups of 3 binary 8-bit bytes into 4 printable
ASCII characters, so the file grows by about 33%.    But this expansion isn't so bad when you consider
that the file probably was compressed more than that by PGP before it was encrypted.

To produce a ciphertext file in ASCII radix-64 format, just add the "a" option when encrypting or signing
a message, like so:

        pgp -esa message.txt her_userid

This example produces a ciphertext file called "message.asc" that contains data in a PEM-like ASCII
radix-64 format.    This file can be easily uploaded into a text editor through 7-bit channels for
transmission as normal E-mail on Internet or any other E-mail network.

Decrypting the radix-64 transport-armored message is no different than a normal decrypt.    For
example:

        pgp message

PGP automatically looks for the ASCII file "message.asc" before it looks for the binary file
"message.pgp".    It recognizes that the file is in radix-64 format and converts it back to binary before
processing as it normally does, producing as a by-product a ".pgp" ciphertext file in binary form.    The
final output file is in normal plaintext form, just as it was in the original file "message.txt".

Most Internet E-mail facilities prohibit sending messages that are more than 50000 bytes long. Longer
messages must be broken into smaller chunks that can be mailed separately.    If your encrypted
message is very large, and you requested radix-64 format, PGP automatically breaks it up into chunks
that are each small enough to send via E-mail.    The chunks are put into files named with extensions
".as1", ".as2", ".as3", etc.    The recipient must concatenate these separate files back together in their
proper order into one big file before decrypting it.    While decrypting, PGP ignores any extraneous text
in mail headers that are not enclosed in the radix-64 message blocks.

If you want to send a public key to someone else in radix-64 format, just add the -a option while
extracting the key from your keyring.

If you forgot to use the -a option when you made a ciphertext file or extracted a key, you may still
directly convert the binary file into radix-64 format by simply using the -a option alone, without any
encryption specified.    PGP converts it to a ".asc" file.

If you sign a plaintext file without encrypting it, PGP will normally compress it after signing it, rendering
it unreadable to the casual human observer.    This is a suitable way of storing signed files in archival
applications.    But if you want to send the signed message as E-mail, and the the original plaintext
message is in text (not binary) form, there is a way to send it through an E-mail channel in such a way
that the plaintext does not get compressed, and the ASCII armor is applied only to the binary signature
certificate, but not to the plaintext message.    This makes it possible for the recipient to read the signed
message with human eyes, without the aid of PGP.    Of course, PGP is still needed to actually check

the signature.    For further information on this feature, see the explanation of the CLEARSIG parameter
in the section "Setting Configuration Parameters: CONFIG.TXT" in the Special Topics volume.

Sending Ciphertext Through E-mail Channels: Radix-64 Format
Environmental Variable for Path Name
Setting Configuration Parameters: CONFIG.TXT
Beware of Snake Oil
Vulnerabilities

Environmental Variable for Path Name
PGP uses several special files for its purposes, such as your standard key ring files
"pubring.pgp" and "secring.pgp", the random number seed file "randseed.bin", the PGP
configuration file "config.txt", and the foreign language string translation file
"language.txt".    These special files can be kept in any directory, by setting the
environmental variable "PGPPATH" to the desired pathname. For example, on MSDOS, the
shell command:

        SET PGPPATH=C:\PGP

makes PGP assume that your public key ring filename is "C:\PGP\pubring.pgp".    Assuming,
of course, that this directory exists.    Use your favorite text editor to modify your MSDOS
AUTOEXEC.BAT file to automatically set up this variable whenever you start up your
system.    If PGPPATH remains undefined, these special files are assumed to be in the
current directory.

Setting Configuration Parameters: CONFIG.TXT
PGP has a number of user-settable parameters that can be defined in a special
configuration text file called "config.txt", in the directory pointed to by the shell
environmental variable PGPPATH.    Having a configuration file enables the user to define
various flags and parameters for PGP without the burden of having to always define these
parameters in the PGP command line.

With these configuration parameters, for example, you can control where PGP stores its
temporary scratch files, or you can select what foreign language PGP will use to display its
diagnostics messages and user prompts, or you can adjust PGP's level of skepticism in
determining a key's validity based on the number of certifying signatures it has.

For more details on setting these configuration parameters, see the appropriate section of
the PGP User's Guide, Special Topics volume.
COMMANDS

Vulnerabilities
No data security system is impenetrable.    PGP can be circumvented in a variety of ways.
Potential vulnerabilities you should be aware of include compromising your pass phrase or
secret key, public key tampering, files that you deleted but are still somewhere on the
disk, viruses and Trojan horses, breaches in your physical security, electromagnetic
emissions, exposure on multi-user systems, traffic analysis, and perhaps even direct
cryptanalysis.
For a detailed discussion of these issues, see the "Vulnerabilities" section in the PGP User's
Guide, Special Topics volume.

Beware of Snake Oil
When examining a cryptographic software package, the question always remains, why
should you trust this product?    Even if you examined the source code yourself, not
everyone has the cryptographic experience to judge the security.    Even if you are an
experienced cryptographer,    subtle weaknesses in the algorithms could still elude you.

When I was in college in the early seventies, I devised what I believed was a brilliant
encryption scheme.    A simple pseudorandom number stream was added to the plaintext
stream to create ciphertext.    This would seemingly thwart any frequency analysis of the
ciphertext, and would be uncrackable even to the most resourceful Government
intelligence agencies.    I felt so smug about my achievement.    So cock-sure.

Years later, I discovered this same scheme in several introductory cryptography texts and
tutorial papers.    How nice.    Other cryptographers had thought of the same scheme.   
Unfortunately, the scheme was presented as a simple homework assignment on how to
use elementary cryptanalytic techniques to trivially crack it.    So much for my brilliant
scheme.

From this humbling experience I learned how easy it is to fall into a false sense of security
when devising an encryption algorithm.    Most people don't realize how fiendishly difficult
it is to devise an encryption algorithm that can withstand a prolonged and determined
attack by a resourceful opponent.    Many mainstream software engineers have developed
equally naive encryption schemes (often even the very same encryption scheme), and
some of them have been incorporated into commercial encryption software packages and
sold for good money to thousands of unsuspecting users.

This is like selling automotive seat belts that look good and feel good, but snap open in
even the slowest crash test.    Depending on them may be worse than not wearing seat
belts at all.    No one suspects they are bad until a real crash.    Depending on weak
cryptographic software may cause you to unknowingly place sensitive information at risk.   
You might not otherwise have done so if you had no cryptographic software at all.   
Perhaps you may never even discover your data has been compromised.

Sometimes commercial packages use the Federal Data Encryption Standard (DES), a good
conventional algorithm recommended by the Government for commercial use (but not for
classified information, oddly enough-- hmmm).    There are several "modes of operation"
the DES can use, some of them better than others.    The Government specifically
recommends not using the weakest simplest mode for messages, the Electronic Codebook
(ECB) mode.    But they do recommend the stronger and more complex Cipher Feedback
(CFB) or Cipher Block Chaining (CBC) modes.

Unfortunately, most of the commercial encryption packages I've looked at use ECB mode.
When I've talked to the authors of a number of these implementations, they say they've
never heard of CBC or CFB modes, and didn't know anything about the weaknesses of ECB
mode. The very fact that they haven't even learned enough cryptography to know these
elementary concepts is not reassuring.    These same software packages often include a
second faster encryption algorithm that can be used instead of the slower DES.    The
author of the package often thinks his proprietary faster algorithm is as secure as the DES,
but after questioning him I usually discover that it's just a variation of my own brilliant
scheme from college days.    Or maybe he won't even reveal how his proprietary
encryption scheme works, but assures me it's a brilliant scheme and I should trust it.    I'm
sure he believes that his algorithm is brilliant, but how can I know that without seeing it?

In all fairness I must point out that in most cases these products do not come from
companies that specialize in cryptographic technology.

There is a company called AccessData (87 East 600 South, Orem, Utah 84058, phone 1-
800-658-5199) that sells a package for $185 that cracks the built-in encryption schemes
used by WordPerfect, Lotus 1-2-3, MS Excel, Symphony, Quattro Pro, Paradox, and MS
Word 2.0.    It doesn't simply guess passwords-- it does real cryptanalysis.    Some people
buy it when they forget their password for their own files. Law enforcement agencies buy it
too, so they can read files they seize.    I talked to Eric Thompson, the author, and he said
his program only takes a split second to crack them, but he put in some delay loops to
slow it down so it doesn't look so easy to the customer.    He also told me that the
password encryption feature of PKZIP files can often be easily broken, and that his law
enforcement customers already have that service regularly provided to them from another
vendor.

In some ways, cryptography is like pharmaceuticals.    Its integrity may be absolutely
crucial.    Bad penicillin looks the same as good penicillin.    You can tell if your spreadsheet
software is wrong, but how do you tell if your cryptography package is weak?    The
ciphertext produced by a weak encryption algorithm looks as good as ciphertext produced
by a strong encryption algorithm. There's a lot of snake oil out there.    A lot of quack cures.
Unlike the patent medicine hucksters of old, these software implementors usually don't
even know their stuff is snake oil.    They may be good software engineers, but they usually
haven't even read any of the academic literature in cryptography.    But they think they can
write good cryptographic software.    And why not?    After all, it seems intuitively easy to do
so.    And their software seems to work okay.    Anyone who thinks they have devised an
unbreakable encryption scheme either is an incredibly rare genius or is naive and
inexperienced.

I remember a conversation with Brian Snow, a highly placed senior cryptographer with the
NSA.    He said he would never trust an encryption algorithm designed by someone who
had not "earned their bones" by first spending a lot of time cracking codes.    That did
make a lot of sense.    I observed that practically no one in the commercial world of
cryptography qualified under this criterion.    "Yes", he said with a self assured smile, "And
that makes our job at NSA so much easier."    A chilling thought.    I didn't qualify either.

The Government has peddled snake oil too.    After World War II, the US sold German
Enigma ciphering machines to third world governments. But they didn't tell them that the
Allies cracked the Enigma code during the war, a fact that remained classified for many
years.    Even today many Unix systems worldwide use the Enigma cipher for file
encryption, in part because the    Government has created legal obstacles against using
better algorithms.    They even tried to prevent the initial publication of the RSA algorithm
in 1977.    And they have squashed essentially all commercial efforts to develop effective
secure telephones for the general public.

The principal job of the US Government's National Security Agency is to gather
intelligence, principally by covertly tapping into people's private communications (see
James Bamford's book, "The Puzzle Palace").    The NSA has amassed considerable skill and
resources for cracking codes.    When people can't get good cryptography to protect
themselves, it makes NSA's job much easier.    NSA also has the responsibility of approving
and recommending encryption algorithms. Some critics charge that this is a conflict of
interest, like putting the fox in charge of guarding the hen house.    NSA has been pushing
a conventional encryption algorithm that they designed, and they won't tell anybody how
it works because that's classified.    They want others to trust it and use it.    But any
cryptographer can tell you that a well-designed encryption algorithm does not have to be
classified to remain secure.    Only the keys should need protection. How does anyone else
really know if NSA's classified algorithm is secure?    It's not that hard for NSA to design an
encryption algorithm that only they can crack, if no one else can review the algorithm. Are

they deliberately selling snake oil?

I'm not as certain about the security of PGP as I once was about my brilliant encryption
software from college.    If I were, that would be a bad sign.    But I'm pretty sure that PGP
does not contain any glaring weaknesses.    The crypto algorithms were developed by
people at high levels of civilian cryptographic academia, and have been individually
subject to extensive peer review.    Source code is available to facilitate peer review of PGP
and to help dispel the fears of some users.    It's reasonably well researched, and has been
years in the making.    And I don't work for the NSA.    I hope it doesn't require too large a
"leap of faith" to trust the security of PGP.

Legal Issues
For detailed information on PGP(tm) licensing, distribution, copyrights, patents,
trademarks, liability limitations, and export controls, see the "Legal Issues" section in the
"PGP User's Guide, Volume II: Special Topics".

PGP uses a public key algorithm claimed by U.S. patent #4,405,829. The exclusive
licensing rights to this patent are held by a California company called Public Key Partners,
and you may be infringing the patent if you use PGP in the USA without a license. These
issues are detailed in the Volume II manual, and in the RSAREF license that comes with the
freeware version of PGP. PKP has licensed others to practice the patent, including a
company known as ViaCrypt, in Phoenix, Arizona.    ViaCrypt sells a fully licensed version of
PGP. ViaCrypt may be reached at 602-944-0773.

PGP is "guerrilla" freeware, and I don't mind if you distribute it widely.    Just don't ask me
to send you a copy.    Instead, you can look for it yourself on many BBS systems and a
number of Internet FTP sites.    But before you distribute PGP, it is essential that you
understand the U.S. export
controls on encryption software.

Acknowledgements
Formidable obstacles and powerful forces have been arrayed to stop PGP.    Dedicated
peopleare helping to overcome these obstacles.    PGP has achieved notoriety as
"underground software", and bringing PGP "above ground" as fully licensed freeware has
required patience and persistence.    I'd especially like to thank Hal Abelson, Jeff Schiller,
Brian LaMacchia, and Derek Atkins at MIT for their determined efforts.    I'd also like to
thank Jim Bruce and David Litster in the MIT administration and Bob Prior and Terry Ehling
at the MIT Press.    And I'd like to thank my entire legal defense team, whose job is not over
yet.    I used to tell a lot of lawyer jokes, before I encountered so many positive examples of
lawyers in my legal defense team, most of whom work pro bono.

The development of PGP has turned into a remarkable social phenomenon, whose unique
political appeal has inspired the collective efforts of an ever-growing number of volunteer
programmers.    Remember that children's story called "Stone Soup"?

I'd like to thank the following people for their contributions to the creation of Pretty Good
Privacy. Although I was the author of PGP version 1.0, major parts of later versions of PGP
were implemented by an international collaborative effort involving a large number of
contributors, under my design guidance.

Branko Lankester, Hal Finney and Peter Gutmann all contributed a huge amount of time in
adding features for PGP 2.0, and ported it to Unix variants.

Hugh Kennedy ported it to VAX/VMS, Lutz Frank ported it to the Atari ST, and Cor Bosman
and Colin Plumb ported it to the Commodore Amiga.

Translation of PGP into foreign languages was done by Jean-loup Gailly in France, Armando
Ramos in Spain, Felipe Rodriquez Svensson and Branko Lankester in The Netherlands,
Miguel Angel Gallardo in Spain, Hugh Kennedy and Lutz Frank in Germany, David
Vincenzetti in Italy,    Harry Bush and Maris Gabalins in Latvia, Zygimantas Cepaitis in
Lithuania, Peter Suchkow and Andrew Chernov in Russia, and Alexander Smishlajev in
Esperantujo.    Peter Gutmann offered to translate it into New Zealand English, but we
finally decided PGP could get by with US English.

Jean-loup Gailly, Mark Adler, and Richard B. Wales published the ZIP compression code,
and granted permission for inclusion into PGP.    The MD5 routines were developed and
placed in the public domain by Ron Rivest.    The IDEA(tm) cipher was developed by Xuejia
Lai and James L. Massey at ETH in Zurich, and is used in PGP with permission from Ascom-
Tech AG.

Charlie Merritt originally taught me how to do decent multiprecision arithmetic for public
key cryptography, and Jimmy Upton contributed a faster multiply/modulo algorithm.    Thad
Smith implemented an even faster modmult algorithm.    Zhahai Stewart contributed a lot
of useful ideas on PGP file formats and other stuff, including having more than one user ID
for a key.    I heard the idea of introducers from Whit Diffie.    Kelly Goen did most of the
work for the initial electronic publication of PGP 1.0.

Various contributions of coding effort also came from Colin Plumb, Derek Atkins, and
Castor Fu. Other contributions of effort, coding or otherwise, have come from Hugh Miller,
Eric Hughes, Tim May, Stephan Neuhaus, and too many others for me to remember right
now. Zbigniew Fiedorwicz did a Macintosh port.

Since the release of PGP 2.0, many other programmers have sent in patches and bug fixes
and porting adjustments for other computers. There are too many to individually thank
here.

Just as in the "Stone Soup" story, it is getting harder to peer through the thick soup to see
the stone at the bottom of the pot that I dropped in to start it all off.

About The Author
Philip Zimmermann is a software engineer consultant with 19 years experience,
specializing in embedded real-time systems, cryptography, authentication, and data
communications. Experience includes design and implementation of authentication
systems for financial information networks, network data security, key management
protocols, embedded real-time multitasking executives, operating systems, and local area
networks.

Custom versions of cryptography and authentication products and public key
implementations such as the NIST DSS are available from Zimmermann, as well as custom
product development services.    His consulting firm's address is:

Boulder Software Engineering 3021 Eleventh Street Boulder, Colorado 80304    USA Phone:
303-541-0140 (10:00am - 7:00pm Mountain Time) Fax: arrange by phone Internet:   
prz@acm.org

Keyrings and Key Management
Editing Your User ID or Pass Phrase
Editing the Trust Parameters for a Public Key
Checking if everything is OK on Your Public Key Ring
Verifying a Public Key Over the Phone
Handling Large Public Keyrings
Selecting Keys Via Key ID

BATCHMODE
Environmental Variable for Pass Phrase
Force "Yes" Answer to Confirmation Questions : FORCE
PGP Returns Exit Status to the Shell
Suppressing Unnecessary Questions

Setting Configuration Parameters:Config.txt
COMMANDS
PGP has a number of user-settable parameters that can be defined in a special
configuration text file called "config.txt", in the directory pointed to by the shell
environmental variable PGPPATH.    Having a configuration file enables the user to define
various flags and parameters for PGP without the burden of having to always define these
parameters in the PGP command line.

Configuration parameters may be assigned integer values, character string values, or
on/off values, depending on what kind of configuration parameter it is.    A sample
configuration file is provided with PGP, so you can see some examples.    In the
configuration file, blank lines are ignored, as is anything following the '#' comment
character.    Keywords are not case-sensitive.

Here is a short sample fragment of a typical configuration file:

      # TMP is the directory for PGP scratch files, such as a RAM disk.
      TMP = "e:\"        # Can be overridden by environment variable TMP.
      Armor = on          # Use -a flag for ASCII armor whenever applicable.
      # CERT_DEPTH is how deeply introducers may introduce introducers.
      cert_depth = 3

If some configuration parameters are not defined in the configuration file, or if there is no
configuration file, or if PGP can't find the configuration file, the values for the configuration
parameters default to some reasonable value.    Note that it is also possible to set these
same configuration parameters directly from the PGP command line, by preceding the
parameter setting with a "+" character.    For example, the following two PGP commands
produce the same effect:

          pgp -e +armor=on message.txt smith or:    pgp -ea message.txt smith

See "COMMANDS" at the top of this window for a summary of the various parameters than
may be defined in the configuration file.

Handling of Text
Leaving No Traces of Plaintext on the Disk
Displaying Decrypted Plaintext on your Screen
Making a Message For her eyes only
Preserving the Original Plaintext Filename
Sending ASCII Text files Across Different Environments

Separating Signatures from Messages
Normally, signature certificates are physically attached to the text they sign.    This makes
it convenient in simple cases to check signatures.    It is desirable in some circumstances to
have signature certificates stored separately from the messages they sign.    It is possible
to generate signature certificates that are detached from the text they sign.    To do this,
combine the 'b' (break) option with the 's' (sign) option.    For example:

        pgp -sb letter.txt

This example produces an isolated signature certificate in a file called "letter.sig".    The
contents of letter.txt are not appended to the signature certificate.

After creating the signature certificate file (letter.sig in the above example), send it along
with the original text file to the recipient.    The recipient must have both files to check the
signature integrity.    When the recipient attempts to process the signature file, PGP notices
that there is no text in the same file with the signature and prompts the user for the
filename of the text. Only then can PGP properly check the signature integrity.    If the
recipient knows in advance that the signature is detached from the text file, she can
specify both filenames on the command line:

        pgp letter.sig letter.txt or: pgp letter letter.txt

PGP will not have to prompt for the text file name in this case.

A detached signature certificate is useful if you want to keep the signature certificate in a
separate certificate log.    A detached signature of an executable program is also useful for
detecting a subsequent virus infection.    It is also useful if more than one party must sign a
document such as a legal contract, without nesting signatures.    Each person's signature is
independent.

If you receive a ciphertext file that has the signature certificate glued to the message, you
can still pry the signature certificate away from the message during the decryption.    You
can do this with the -b option during decrypt, like so:

        pgp -b letter

This decrypts the letter.pgp file and if there is a signature in it, PGP checks the signature
and detaches it from the rest of the message, storing it in the file letter.sig.

Decrypting the Message and Leaving the Signature on it
Usually, you want PGP to completely unravel a ciphertext file, decrypting it and checking
the nested signature if there is one, peeling away the layers until you are left with only the
original plaintext file.

But sometimes you want to decrypt an encrypted file, and leave the inner signature still
attached, so that you are left with a decrypted signed message.    This may be useful if you
want to send a copy of a signed document to a third party, perhaps re-enciphering it.    For
example, suppose you get a message signed by Charlie, encrypted to you.    You want to
decrypt it, and, leaving Charlie's signature on it, you want to send it to Alice, perhaps re-
enciphering it with Alice's public key.    No problem.    PGP can handle that.

To simply decrypt a message and leave the signature on it intact, type:

        pgp -d letter

This decrypts letter.pgp, and if there is an inner signature, it is left intact with the
decrypted plaintext in the output file.    Now you can archive it, or maybe re-encrypt it and
send it to someone else.

Sending ASCII Text files Across Different Machine Environments
You may use PGP to encrypt any kind of plaintext file, binary 8-bit data or ASCII text.   
Probably the most common usage of PGP will be for E-mail, when the plaintext is ASCII
text.    ASCII text is sometimes represented differently on different machines.    For
example, on an MSDOS system, all lines of ASCII text are terminated with a carriage return
followed by a linefeed.    On a Unix system, all lines end with just a linefeed.    On a
Macintosh, all lines end with
just a carriage return.    This is a sad fact of life.

Normal unencrypted ASCII text messages are often automatically translated to some
common "canonical" form when they are transmitted from one machine to another.   
Canonical text has a carriage return and a linefeed at the end of each line of text.    For
example, the popular KERMIT communication protocol can convert text to canonical form
when transmitting it to another
system.    This gets converted back to local text line terminators by the receiving KERMIT.   
This makes it easy to share text files across different systems.    But encrypted text cannot
be automatically converted by a communication protocol, because the plaintext is hidden
by encipherment.    To remedy this inconvenience, PGP lets you specify that the plaintext
should be treated as ASCII text (not binary data) and should be converted to canonical text
form before it gets encrypted.    At the receiving end, the decrypted plaintext is
automatically converted back to whatever text form is appropriate for the local
environment.

To make PGP assume the plaintext is text that should be converted to canonical text
before encryption, just add the "t" option when encrypting or signing a message, like so:

      pgp -et message.txt her_userid

This mode is automatically turned off if PGP detects that the plaintext file contains what it
thinks is non-text binary data.    For PGP users that use non-English 8-bit character sets,
when PGP converts text to canonical
form, it may convert data from the local character set into the LATIN1 (ISO 8859-1 Latin
Alphabet 1) character set, depending on the setting of the CHARSET parameter in the PGP
configuration file.    LATIN1 is a superset of ASCII, with extra characters added for many
European languages.

Preserving the Original Plaintext Filename
Normally, PGP names the decrypted plaintext output file with a name similar to the input
ciphertext filename, but dropping the extension.    Or, you can override that convention by
specifying an output plaintext filename on the command line with the -o option. For most
E-mail, this is a reasonable way to name the plaintext file, because you get to decide its
name when you decipher it, and your typical E-mail messages often come from useless
original plaintext filenames like "to_phil.txt".

But when PGP encrypts a plaintext file, it always saves the original filename and attaches
it to the plaintext before it compresses and encrypts the plaintext.    Normally, this hidden
original filename is discarded by PGP when it decrypts, but you can tell PGP you want to
preserve the original plaintext filename and use it as the name of the decrypted plaintext
output file.    This is useful if PGP is used on files whose names are important to preserve.

To recover the original plaintext filename while decrypting, add the -p option, like so:

          pgp -p ciphertextfile

I usually don't use this option, because if I did, about half of my incoming E-mail would
decrypt to the same plaintext filenames of "to_phil.txt" or "prz.txt".

Using PGP as a Unix Style Filter
Unix fans are accustomed to using Unix "pipes" to make two applications work together.   
The output of one application can be directly fed through a pipe to be read as input to
another application.    For this to work, the applications must be capable of reading the raw
material from "standard input" and writing the finished output to "standard output".    PGP
can operate in this mode. If you don't understand what this means, then you probably
don't need this feature.

To use a Unix-style filter mode, reading from standard input and writing to standard
output, add the -f option, like so:

          pgp -feast her_userid <inputfile >outputfile

This feature makes it easier to make PGP work with electronic mail applications.

When using PGP in filter mode to decrypt a ciphertext file, you may find it useful to use the
PGPPASS environmental variable to hold the pass phrase, so that you won't be prompted
for it. The PGPPASS feature is explained below.

A Peek Under the Hood
Random Numbers
PGP's Conventional Encryption Algorithm
Data Compression
Message Digests and Digital Signatures

Message Digests and Digital Signatures
To create a digital signature, PGP encrypts with your secret key. But PGP doesn't actually
encrypt your entire message with your secret key-- that would take too long.    Instead, PGP
encrypts a "message digest".

The message digest is a compact (128 bit) "distillate" of your message, similar in concept
to a checksum.    You can also think of it as a "fingerprint" of the message.    The message
digest "represents" your message, such that if the message were altered in any way, a
different message digest would be computed from it.    This makes it possible to detect any
changes made to the message by a forger.    A message digest is computed using a
cryptographically strong one- way hash function of the message.    It would be
computationally infeasible for an attacker to devise a substitute message that would
produce an identical message digest.    In that respect, a message digest is much better
than a checksum, because it is easy to devise a different message that would produce the
same checksum.    But like a checksum, you can't derive the original message from its
message digest.    A message digest alone is not enough to authenticate a message.    The
message digest algorithm is publicly known, and does not require knowledge of any secret
keys to calculate.    If all we did was attach a message digest to a message, then a forger
could alter a message and simply attach a new message digest calculated from the new
altered message.    To provide real authentication, the sender has to encrypt (sign) the
message digest with his secret key.

A message digest is calculated from the message by the sender.    The sender's secret key
is used to encrypt the message digest and an electronic timestamp, forming a digital
signature, or signature certificate.    The sender sends the digital signature along with the
message.    The receiver receives the message and the digital signature, and recovers the
original message digest from the digital signature by decrypting it with the sender's public
key.    The receiver computes a new message digest from the message, and checks to see
if it matches the one recovered from the digital signature.    If it matches, then that proves
the message was not altered, and it came from the sender who owns the public key used
to check the signature.

A potential forger would have to either produce an altered message that produces an
identical message digest (which is infeasible), or he would have to create a new digital
signature from a different message digest (also infeasible, without knowing the true
sender's secret key).    Digital signatures prove who sent the message, and that the
message was not altered either by error or design.    It also provides non-repudiation, which
means the sender cannot easily disavow his signature on the message.

Using message digests to form digital signatures has other advantages besides being
faster than directly signing the entire actual message with the secret key.    Using message
digests allows signatures to be of a standard small fixed size, regardless of the size of the
actual message.    It also allows the software to check the message integrity automatically,
in a manner similar to using checksums.    And it allows signatures to be stored separately
from messages, perhaps even in a public archive, without revealing sensitive information
about the actual messages, because no one can derive any message content from a
message digest.

The message digest algorithm used here is the MD5 Message Digest Algorithm, placed in
the public domain by RSA Data Security, Inc. MD5's designer, Ronald Rivest, writes this
about MD5:    "It is conjectured that the difficulty of coming up with two messages having
the same message digest is on the order of 2^64 operations, and that the difficulty of
coming up with any message having a given message digest is on the order of 2^128
operations.    The MD5 algorithm has been carefully scrutinized for weaknesses.    It is,
however, a relatively new algorithm and further security analysis is of course justified, as

is the case with any new proposal of this sort.    The level of security provided by MD5
should be sufficient for implementing very high security hybrid digital signature schemes
based on MD5 and the RSA public-key cryptosystem."

Data Compression
PGP normally compresses the plaintext before encrypting it.    It's too late to compress it
after it has been encrypted; encrypted data is incompressible.    Data compression saves
modem transmission time and disk space and more importantly strengthens cryptographic
security. Most cryptanalysis techniques exploit redundancies found in the plaintext to
crack the cipher.    Data compression reduces this redundancy in the plaintext, thereby
greatly enhancing resistance to cryptanalysis.    It takes extra time to compress the
plaintext, but from a security point of view it seems worth it, at least in my cautious
opinion.    Files that are too short to compress or just don't compress well are not
compressed by PGP.

If you prefer, you can use PKZIP to compress the plaintext before encrypting it.    PKZIP is a
widely-available and effective MSDOS shareware compression utility from PKWare, Inc.    Or
you can use ZIP, a PKZIP-compatible freeware compression utility on Unix and other
systems, available from Jean-Loup Gailly.    There is some advantage in using PKZIP or ZIP
in certain cases, because unlike PGP's built-in compression algorithm, PKZIP and ZIP have
the nice feature of compressing multiple files into a single compressed file, which is
reconstituted again into separate files when decompressed.    PGP will not try to compress
a plaintext file that has already been compressed.    After decrypting, the recipient can
decompress the plaintext with PKUNZIP.    If the decrypted plaintext is a PKZIP compressed
file, PGP automatically recognizes this and advises the recipient that the decrypted
plaintext appears to be a PKZIP file.

For the technically curious readers, the current version of PGP uses the freeware ZIP
compression routines written by Jean-loup Gailly, Mark Adler, and Richard B. Wales.    This
ZIP software uses functionally-equivalent compression algorithms as those used by
PKWare's new PKZIP 2.0.    This ZIP compression software was selected for PGP mainly
because of its free portable C source code availability, and because it has a really good
compression ratio, and because it's fast.    Peter Gutmann has also written a nice
compression utility called HPACK, available for free from many Internet FTP sites.    It
encrypts the compressed archives, using PGP data formats and key rings.    He wanted me
to mention that here.

PGP's Conventional Encryption Algorithm
As described earlier, PGP "bootstraps" into a conventional single-key encryption algorithm
by using a public key algorithm to encipher the conventional session key and then
switching to fast conventional cryptography.    So let's talk about this conventional
encryption algorithm.    It isn't the DES.

The Federal Data Encryption Standard (DES) used to be a good algorithm for most
commercial applications.    But the Government never did trust the DES to protect its own
classified data, because the DES key length is only 56 bits, short enough for a brute force
attack. Also, the full 16-round DES has been attacked with some success by Biham and
Shamir using differential
cryptanalysis, and by Matsui using linear cryptanalysis.

The most devastating practical attack on the DES was described at the Crypto '93
conference, where Michael Wiener of Bell Northern Research presented a paper on how to
crack the DES with a special machine.    He has fully designed and tested a chip that
guesses 50 million DES keys per second until it finds the right one.    Although he has
refrained from building the real chips so far, he can get these chips manufactured for
$10.50 each, and can build 57000 of them into a special machine for $1 million that can
try every DES key in 7 hours, averaging a solution in 3.5 hours.    $1 million can be hidden
in the budget of many companies.    For $10 million, it takes 21 minutes to crack, and for
$100 million, just two minutes.    With any major government's budget for examining DES
traffic, it can be cracked in seconds.    This means that straight 56-bit DES is now
effectively dead for purposes of serious data security applications.

A possible successor to DES may be a variation known as "triple DES", which uses two DES
keys to encrypt three times, achieving an effective key space of 112 bits.    But this
approach is three times slower than normal DES.    A future version of PGP may support
triple DES as an option.    PGP does not use the DES as its conventional single-key
algorithm to encrypt messages. Instead, PGP uses a different conventional single-key block
encryption algorithm, called IDEA(tm).

For the cryptographically curious, the IDEA cipher has a 64-bit block size for the plaintext
and the ciphertext.    It uses a key size of 128 bits.    It is based on the design concept of
"mixing operations from different algebraic groups".    It runs much faster in software than
the DES.    Like the DES, it can be used in cipher feedback (CFB) and cipher block chaining
(CBC) modes.    PGP uses it in 64-bit CFB mode.

The IPES/IDEA block cipher was developed at ETH in Zurich by James L. Massey and Xuejia
Lai, and published in 1990.    This is not a "home-grown" algorithm.    Its designers have a
distinguished reputation in the cryptologic community.    Early published papers on the
algorithm called it IPES (Improved Proposed Encryption Standard), but they later changed
the name to IDEA (International Data Encryption Algorithm).    So far, IDEA has resisted
attack much better than other ciphers such as FEAL, REDOC-II, LOKI, Snefru and Khafre.
And recent evidence suggests that IDEA is more resistant than the DES to Biham &
Shamir's highly successful differential cryptanalysis attack.    Biham and Shamir have been
examining the IDEA cipher for weaknesses, without success.    Academic cryptanalyst
groups in Belgium, England, and Germany are also attempting to attack it, as well as the
military services from several European countries. As this new cipher continues to attract
attack efforts from the most formidable quarters of the cryptanalytic world, confidence in
IDEA is growing with the passage of time.

Every once in a while, I get a letter from someone who has just learned the awful truth
that PGP does not use pure RSA to encrypt bulk data.    They are concerned that the whole
package is weakened if we use a hybrid public-key and conventional scheme just to speed

things up.    After all, a chain is only as strong as its weakest link.    They demand an
explanation for this apparent "compromise" in the strength of PGP.    This may be because
they have been caught up in the public's reverence and awe for the strength and mystique
of RSA, mistakenly believing that RSA is intrinsically stronger than any conventional cipher.
Well, it's not.

People who work in factoring research say that the workload to exhaust all the possible
128-bit keys in the IDEA cipher would equal the factoring workload to crack a 3100-bit RSA
key, which is quite a bit bigger than the 1024-bit RSA key size that most people use for
high security applications.    Given this range of key sizes, and assuming there are no
hidden weaknesses in the conventional cipher, the weak link in this hybrid approach is in
the public key algorithm, not the conventional cipher.    It is not ergonomically practical to
use pure RSA with large keys to encrypt and decrypt long messages.    A 1024-bit RSA key
would decrypt messages about 4000 times slower than the IDEA cipher.    Absolutely no
one does it that way in the real world.    Many people less experienced in cryptography do
not realize that the attraction of public key cryptography is not because it is intrinsically
stronger than a conventional cipher-- its appeal is because it helps you manage keys more
conveniently.

Not only is RSA too slow to use on bulk data, but it even has certain weaknesses that can
be exploited in some special cases of particular kinds of messages that are fed to the RSA
cipher. These special cases can be avoided by using the hybrid approach of using RSA to
encrypt random session keys for a conventional cipher.    So the bottom line is this:    Using
pure RSA on bulk data is the wrong approach, period.    It's too slow, it's not stronger, and
may even be weaker. If you find a software application that uses pure RSA on bulk data, it
probably means the implementor does not understand these issues.

Random Numbers
PGP uses a cryptographically strong pseudorandom number generator for creating
temporary conventional session keys.    The seed file for this is called    "randseed.bin".    It
too can be kept in whatever directory is indicated by the PGPPATH environmental variable. 
If this random seed file does not exist, it is automatically created and seeded with truly
random numbers derived from timing your keystroke latencies.

This generator reseeds the disk file each time it is used by mixing in new key material
partially derived with the time of day and other truly random sources.    It uses the
conventional encryption algorithm as an engine for the random number generator.    The
seed file contains both random seed material and random key material to key the
conventional encryption engine for the random generator.    This random seed file should
be at least slightly protected from disclosure, to reduce the risk of an attacker deriving
your next or previous session keys.    The attacker would have a very hard time getting
anything useful from capturing this random seed file, because the file is cryptographically
laundered before and after each use. Nonetheless, it seems prudent to at least try to keep
it from falling into the wrong hands.

If you feel uneasy about trusting any algorithmically derived random number source
however strong, keep in mind that you already trust the strength of the same conventional
cipher to protect your messages. If it's strong enough for that, then it should be strong
enough to use as a source of random numbers for temporary session keys.    Note that PGP
still uses truly random numbers from physical sources (mainly keyboard timings) to
generate long-term public/secret key pairs.

Vulnerabilities
No data security system is impenetrable.    PGP can be circumvented in a variety of ways.   
In any data security system, you have to ask yourself if the information you are trying to
protect is more valuable to your attacker than the cost of the attack.    This should lead you
to protecting yourself from the cheapest attacks, while not worrying about the more
expensive attacks.    Some of the discussion that follows may seem unduly paranoid, but
such an attitude is appropriate for a reasonable discussion of vulnerability issues:
"Not Quite Deleted" Files
Viruses and Trojan Horses
Physical Security Breach
Tempest Attacks
Protecting against Bogus Timestamps
Exposure on Multi-user Systems
Cryptanalysis
Compromised Pass Phrase and Secret Key
Public Key Tampering
Traffic Analysis

Legal Issues
Trademarks, Copyrights, and Warranties
Patent Rights on the Algorithms
Licensing and Distribution
Export Controls
Philip Zimmermann's Legal Situation

Philip Zimmermann's Legal Situation
At the time of this writing, I am the target of a US Customs criminal investigation in the
Northern District of California.    My defense attorney has been told by the Assistant US
Attorney that the area of law of interest to the investigation has to do with the export
controls on encryption software.    The federal mandatory sentencing guidelines for this
offense are 41 to 51 months in a federal prison. US Customs appears to be taking the
position that electronic domestic publication of encryption software is the same as
exporting it.    The prosecutor has issued a number of federal grand jury subpoenas.    It
may be months before a decision is reached on whether to seek indictment.    This
situation may change at any time, so this description may be out of date by the time you
read it.    Watch the news for further developments.    If I am indicted and this goes to trial,
it will be a major test case.

I have a legal defense fund set up for this case.    So far, no other organization is doing the
fundraising for me, so I am depending on people like you to contribute directly to this
cause.    The fund is run by my lead defense attorney, Phil Dubois, here in Boulder.    Please
send your contributions to:

      Philip Dubois
      2305 Broadway
      Boulder, Colorado 80304 USA
      Phone 303-444-3885
      E-mail:    dubois@csn.org

You can also phone in your donation and put it on Mastercard or Visa. If you want to be
really cool, you can use Internet E-mail to send in your contribution, encrypting your
message with PGP so that no one can intercept your credit card number.    Include in your
E-mail message your Mastercard or Visa number, expiration date, name on the card, and
amount of donation.    Then sign it with your own key and encrypt it with Phil Dubois's
public key (his key is included in the standard PGP distribution package, in the "keys.asc"
file).    Put a note on the subject line that this is a donation to my legal defense fund, so
that Mr. Dubois will decrypt it promptly.    Please don't send a lot of casual encrypted email
to him -- I'd rather he use his valuable time to work on my case.    If you want to read some
press stories about this case, see the following references:

    1)    William Bulkeley, "Cipher Probe", Wall Street Journal, Thursday
            April 28th, 1994, front page.
    2)    John Cary, "Spy vs. Computer Nerd:    The Fight Over Data
            Security", Business Week, 4 Oct 1993, page 43.
    3)    Jon Erickson, "Cryptography Fires Up the Feds", Dr. Dobb's
            Journal, December 1993, page 6.
    4)    John Markoff, "Federal Inquiry on Software Examines Privacy
            Programs", New York Times, Tuesday 21 Sep 1993, page C1.
    5)    Kurt Kleiner, "Punks and Privacy", Mother Jones Magazine,
            Jan/Feb 1994, page 17.
    6)    John Markoff, "Cyberspace Under Lock and Key", New York Times,
            Sunday 13 Feb 1994.
    7)    Philip Elmer-DeWitt, "Who Should Keep the Keys", Time, 14 Mar
            1994, page 90.

Leaving No Traces of Plaintext on the Disk
After PGP makes a ciphertext file for you, you can have PGP automatically overwrite the
plaintext file and delete it, leaving no trace of plaintext on the disk so that no one can
recover it later using a disk block scanning utility.    This is useful if the plaintext file
contains sensitive information that you don't want to keep around.    To wipe out the
plaintext file after producing the ciphertext file, just add the "w" (wipe) option when
encrypting or signing a message, like so:

        pgp -esw message.txt her_userid

This example creates the ciphertext file "message.pgp", and the plaintext file
"message.txt" is destroyed beyond recovery.    Obviously, you should be careful with this
option.    Also note that this will not wipe out any fragments of plaintext that your word
processor might have created on the disk while you were editing the message before
running PGP.    Most word processors create backup files, scratch files, or both.    Also, it
overwrites the file only once, which is enough to thwart conventional disk recovery efforts,
but not enough to withstand a determined and sophisticated effort to recover the faint
magnetic traces of the data using special disk recovery hardware.

Displaying Decrypted Plaintext on your Screen
To view the decrypted plaintext output on your screen (like the Unix-style "more"
command), without writing it to a file, use the -m (more) option while decrypting:

          pgp -m ciphertextfile

This displays the decrypted plaintext display on your screen one screenful at a time.

Making a Message For her eyes only
To specify that the recipient's decrypted plaintext will be shown ONLY on her screen and
will not be saved to disk, add the -m option:

          pgp -sem message.txt her_userid

Later, when the recipient decrypts the ciphertext with her secret key and pass phrase, the
plaintext will be displayed on her screen but will not be saved to disk.    The text will be
displayed as it would if she used the Unix "more" command, one screenful at a time.    If
she wants to read the message again, she will have to decrypt the ciphertext again.    This
feature is the safest way for you to prevent your sensitive message from being
inadvertently left on the recipient's disk.    This feature was added at the request of a user
who wanted to send intimate messages to his lover, but was afraid she might accidentally
leave the decrypted messages on her husband's computer.

Note that this feature will not prevent a clever and determined person from finding a way
to save the decrypted plaintext to disk-- it's to help prevent a casual user from doing it
inadvertently.

Where to get PGP
The following describes how to get the freeware public key cryptographic software PGP
(Pretty Good Privacy) from an anonymous FTP site on Internet, or from other sources.    PGP
has sophisticated key management, an RSA/conventional hybrid encryption scheme,
message digests for digital signatures, data compression before encryption, and good
ergonomic design.    PGP is well featured and fast, and has excellent user documentation.   
Source code is free.

The Massachusetts Institute of Technology is the distributor of PGP version 2.6, for
distribution in the USA only.    It is available from "net-dist.mit.edu," a controlled FTP site
that has restrictions and limitations, similar to those used by RSA Data Security, Inc., to
comply with export control requirements.    The software resides in the directory /pub/PGP.

A reminder:    Set mode to binary or image when doing an FTP transfer. And when doing a
kermit download to your PC, specify 8-bit binary mode at both ends.

There are two compressed archive files in the standard release, with the file name derived
from the release version number.    For PGP version 2.6, you must get pgp26.zip which
contains the MSDOS binary executable and the PGP User's Guide, and you can optionally
get pgp26src.zip which contains all the source code.    These files can be decompressed
with the MSDOS shareware archive decompression utility PKUNZIP.EXE, version 1.10 or
later.    For Unix users who lack an implementation of UNZIP, the source code can also be
found in the compressed tar file pgp26src.tar.Z.

If you don't have any local BBS phone numbers handy, here is a BBS you might try.    The
Catacombs BBS, operated by Mike Johnson in Longmont, Colorado, has PGP available for
download by people in the US or Canada only.    The BBS phone number is 303-772-1062.   
Mike Johnson's voice phone number is 303 772-1773, and his email address is
mpj@csn.org.    Mike also has PGP available on an Internet FTP site for users in the US or
Canada only; the site name is csn.org, in directory /mpj/, and you must read the
README.MPJ file to get it.

To get a fully licensed version of PGP for use in the USA or Canada, contact ViaCrypt in
Phoenix, Arizona.    Their phone number is 602-944-0773.    ViaCrypt has obtained all the
necessary licenses from PKP, Ascom-Tech AG, and Philip Zimmermann to sell PGP for use in
commercial or Government environments.    ViaCrypt PGP is every bit as secure as the
freeware PGP, and is entirely compatible in both directions with the freeware version of
PGP.    ViaCrypt PGP is the perfect way to get a fully licensed version of PGP into your
corporate or Government environment.

Source and binary distributions of PGP are available from the Canadian Broadcasting
Corporation library, which is open to the public.    It has branches in Toronto, Montreal, and
Vancouver.    Contact Max Allen, at +1 416 205-6017 if you have questions.

Here are a few people and their email addresses or phone numbers you can contact in
some countries to get information on local PGP availability for versions earlier than 2.5:

Peter Gutmann                           
 pgut1@cs.aukuni.ac.nz
 New Zealand

Hugh Kennedy
 70042.710@compuserve.com
 Germany

Branko Lankester                         
 branko@hacktic.nl
 +31 2159 42242
 The Netherlands

Miguel Angel Gallardo
 gallardo@batman.fi.upm.es
 (341) 474 38 09
 Spain

Hugh Miller
 hmiller@lucpul.it.luc.edu
 (312) 508-2727
 USA

Colin Plumb   
 colin@nyx.cs.du.edu
 Toronto, Ontario, Canada

Jean-loup Gailly
    jloup@chorus.fr France

Bugs in PGP should be reported via E-mail to MIT, the official distribution site of PGP.    The
E-mail address for bug reports is pgp-bugs@mit.edu.

Computer Related Political Groups
PGP is a very political piece of software.    It seems appropriate to mention here some
computer- related activist groups.    Full details on these groups, and how to join them, is
provided in a separate document file in the PGP release package.

The Electronic Frontier Foundation (EFF) was founded in 1990 to assure freedom of
expression in digital media, with a particular emphasis on applying the principles
embodied in the US Constitution and the Bill of Rights to computer-based communication.   
They can be reached in Washington DC, at (202) 347-5400.    Internet E-mail address:
eff@eff.org.

Computer Professionals For Social Responsibility (CPSR) empowers computer professionals
and computer users to advocate for the responsible use of information technology and
empowers all who use computer technology to participate in public policy debates on the
impacts of
computers on society.    They can be reached at: 415-322-3778 in Palo Alto, E-mail address:
cpsr@csli.stanford.edu.

The League for Programming Freedom (LPF) is a grass-roots organization of professors,
students, businessmen, programmers and users dedicated to bringing back the freedom to
write programs.    They regard patents on computer algorithms as harmful to the US
software industry. They can be reached at (617) 433-7071.    E-mail address:
lpf@uunet.uu.net.

For more details on these groups, see the accompanying document in the PGP release
package.

Recommended Reading
1)    Bruce Schneier, "Applied Cryptography: Protocols, Algorithms, and
        Source Code in C", John Wiley & Sons, 1993
      (This book is a watershed work on the subject.)
2)    Dorothy Denning, "Cryptography and Data
        Security", Addison-Wesley,
        Reading, MA 1982
3)    Dorothy Denning, "Protecting Public Keys and Signature Keys",
        IEEE Computer, Feb 1983
4)    Martin E. Hellman, "The Mathematics of Public-Key
          Cryptography,"
5)Scientific American, Aug 1979 5)    Steven Levy, "Crypto Rebels", WIRED,          May/Jun
1993, page 54.      (This is a "must-read" article on PGP and other          related topics.)
6)    Ronald Rivest, "The MD5 Message Digest Algorithm", MIT Laboratory
        for Computer Science, 1991
 7)    Xuejia Lai, "On the Design and Security of Block Ciphers",
        ETH Series on Information Processing (Ed. J. L. Massey),
        Vol. 1, Hartung-Gorre Verlag, Konstanz, Switzerland, 1992
8)    Philip Zimmermann, "A Proposed Standard Format for RSA
        Cryptosystems", Advances in Computer Security, Vol III, edited by
        Rein Turn, Artech House, 1988 9)    Paul Wallich, "Electronic Envelopes", 9)Scientific
American,
        Feb 1993, page 30.    (This is an article on PGP)
10) William Buckeley, "Cipher Probe", Wall Street
      Journal, 28 April 1994, front page.    (This is an article on PGP and        Zimmermann)

Philip Zimmermann may be reached at:

Boulder Software Engineering 3021 Eleventh Street Boulder, Colorado 80304    USA
Internet: prz@acm.org Phone 303-541-0140 (voice)    (10:00am - 7:00pm Mountain Time)
Fax line available, if you arrange it via voice line.

Editing Your User ID or Pass Phrase
Sometimes you may need to change your pass phrase, perhaps because someone looked
over your shoulder while you typed it in.    Or you may need to change your user ID,
because you got married and changed your name, or maybe you changed your E-mail
address.    Or maybe you want to add a    second or third user ID to your key, because you
may be known by more than one name or E-mail address or job title. PGP lets you attach
more than one user ID to your key, any one of which may be used to look up your key on
the key ring.    To edit your own userid or pass phrase for your secret key:

          pgp -ke userid [keyring]

PGP prompts you for a new user ID or a new pass phrase.

The optional [keyring] parameter, if specified, must be a public keyring, not a secret
keyring.    The userid field must be your own userid, which PGP knows is yours because it
appears on both your public keyring and your secret keyring.    Both keyrings will be
updated, even though you only specified the public keyring.

The -ke command works differently depending on whether you use it on a public or secret
key.    It can also be used to edit the trust parameters for a public key.

Editing the Trust Parameters for a Public Key
Sometimes you need to alter the trust parameters for a public key on your public key ring. 
For a discussion on what these trust parameters mean, see the section "How Does PGP
Keep Track of Which Keys are Valid?" in the Essential Topics volume of the PGP User's
Guide.

To edit the trust parameters for a public key:

          pgp -ke userid [keyring]

The optional [keyring] parameter, if specified, must be a public keyring, not a secret
keyring.

Checking if everything is OK on Your Public Key Ring
Normally, PGP automatically checks any new keys or signatures on your public key ring
and updates all the trust parameters and validity scores.    In theory, it keeps all the key
validity status information up to date as material is added to or deleted from your public
key ring.    But perhaps you may want to explicitly force PGP to perform a comprehensive
analysis of your public key ring, checking all the certifying signatures, checking the trust
parameters, updating all the validity scores, and checking your own ultimately-trusted key
against a backup copy on a write-protected floppy disk.    It may be a good idea to do this
hygienic maintenance periodically to make sure nothing is wrong with your public key ring. 
To force PGP to perform a full analysis of your public key ring, use the -kc (key ring check)
command:

          pgp -kc

You can also make PGP check all the signatures for just a single selected public key by:

          pgp -kc userid [keyring]

For further information on how the backup copy of your own key is checked, see the
description of the BAKRING parameter in the configuration file section of this manual.

Verifying a Public Key Over the Phone
If you get a public key from someone that is not certified by anyone you trust, how can you
tell if it's really their key?    The best way to verify an uncertified key is to verify it over
some independent channel other than the one you received the key through.    One
convenient way to tell, if you know this person and would recognize them on the phone, is
to call them and verify their key over the telephone.    Rather than reading their whole
tiresome (ASCII-armored) key to them over the phone, you can just read their key's
"fingerprint" to them.    To see this fingerprint, use the -kvc command:

          pgp -kvc userid [keyring]

This will display the key with the 16-byte digest of the public key components.    Read this
16-byte fingerprint to the key's owner on the phone, while she checks it against her own,
using the same - kvc command at her end.

You can both verify each other's keys this way, and then you can sign each other's keys
with confidence.    This is a safe and convenient way to get the key trust network started
for your circle of friends.

Note that sending a key fingerprint via E-mail is not the best way to verify the key,
because E- mail can be intercepted and modified.    It's best to use a different channel than
the one that was used to send the key itself.    A good combination is to send the key via E-
mail, and the key fingerprint via a voice telephone conversation.    Some people distribute
their key fingerprint on their business cards, which looks really cool.

If you don't know me, please don't call me to verify my key over the phone-- I get too
many calls like that.    Since every PGP user has a copy of my public key, no one could
tamper with all the copies that are out there.    The discrepancy would soon be noticed by
someone who checked it from more than one source, and word would soon get out on the
Internet.

Handling Large Public Keyrings
PGP was originally designed for handling small personal keyrings for keeping all your
friends on, like a personal rolodex.    A couple hundred keys is a reasonable size for such a
keyring.    But as PGP has become more popular, people are now trying to add other large
keyrings to their own keyring.    Sometimes this involves adding thousands of keys to your
keyring.    PGP, in its present form, cannot perform this operation in a reasonable period of
time, while you wait at your keyboard.    Not for huge keyrings.

You may want to add a huge "imported" keyring to your own keyring, because you are only
interested in a few dozen keys on the bigger keyring you are bringing in.    If that's all you
want from the other keyring, it would be more efficient if you extract the few keys you
need from the big foreign keyring, and then add just these few keys to your own keyring.   
Use the -kx command to extract them from the foreign keyring, specifying the keyring
name on the command line. Then add these extracted keys to your own keyring.

The real solution is to improve PGP to use advanced database techniques to manage large
keyrings efficiently.    Until this happens, you will just have to use smaller keyrings, or be
patient.

Selecting Keys Via Key ID
In all commands that let the user type a user ID or fragment of a user ID to select a key,
the hexadecimal key ID may be used instead. Just use the key ID, with a prefix of "0x", in
place of the user ID. For example:

        pgp -kv 0x67F7

This would display all keys that had 67F7 as part of their key IDs.

This feature is particularly useful if you have two different keys from the same person, with
the same user ID.    You can unambiguously pick which key you want by specifying the key
ID.

With the BATCHMODE flag enabled on the command line, PGP will not ask any unnecessary
questions or prompt for alternate filenames.    Here is an example of how to set this flag:

 pgp +batchmode cipherfile

This is useful for running PGP non-interactively from Unix shell scripts or MSDOS batch
files. Some key management commands still need user interaction even when
BATCHMODE is on, so shell scripts may need to avoid them.    BATCHMODE may also be
enabled to check the validity of a signature on a file.    If there was no signature on the file,
the exit code is 1. If it had a signature that was good, the exit code is 0.

This command-line flag makes PGP assume "yes" for the user response to the confirmation
request to overwrite an existing file, or when removing a key from the keyring via the -kr
command.    Here is an example of how to set this flag:

        pgp +force cipherfile or:    pgp -kr +force Smith

This feature is useful for running PGP non-interactively from a Unix shell script or MSDOS
batch file.

To facilitate running PGP in "batch" mode, such as from an MSDOS ".bat" file or from a Unix
shell script, PGP returns an error exit status to the shell.    An exit status code of zero
means normal exit, while a nonzero exit status indicates some kind of error occurred.
Different error exit conditions return different exit status codes to the shell.

Environmental Variable for Pass Phrase
Normally, PGP prompts the user to type a pass phrase whenever PGP needs a pass phrase
to unlock a secret key.    But it is possible to store the pass phrase in an environmental
variable from your operating system's command shell.    The environmental variable
PGPPASS can be used to hold the pass phrase that PGP will attempt to use first.    If the
pass phrase stored in PGPPASS is incorrect, PGP recovers by prompting the user for the
correct pass phrase.    For example, on MSDOS, the shell command:

        SET PGPPASS=zaphod beeblebrox for president

would eliminate the prompt for the pass phrase if the pass phrase were indeed "zaphod
beeblebrox for president".

This dangerous feature makes your life more convenient if you have to regularly deal with
a large number of incoming messages addressed to your secret key, by eliminating the
need for you to repeatedly type in your pass phrase every time you run PGP.

I added this feature because of popular demand.    However, this is a somewhat dangerous
feature, because it keeps your precious pass phrase stored somewhere other than just in
your brain.    Even worse, if you are particularly reckless, it may even be stored on a disk
on the same computer as your secret key.    It would be particularly dangerous and stupid if
you were to install this command in a batch or script file, such as the MSDOS
AUTOEXEC.BAT file.    Someone could come along on your lunch hour and steal both your
secret key ring and the file containing your pass phrase.

I can't emphasize the importance of this risk enough.    If you are contemplating using this
feature, be sure to read the sections "Exposure on Multi-user Systems" and "How to
Protect Secret Keys from Disclosure" in this volume and in the Essential Topics volume of
the PGP User's Guide.    If you must use this feature, the safest way to do it would be to just
manually type in the shellcommand to set PGPPASS every time you boot your machine to
start using PGP, and then erase it or turn off your machine when you are done.    And you
should definitely never do it in an environment where someone else may have access to
your machine.    Someone could come along and simply ask your computer to display the
contents of PGPPASS.

Config.txt Commands
TMP
LANGUAGE
MYNAME
TEXTMODE
CHARSET
ARMOR
COMPRESS
COMPLETES_NEEDED
MARGINALS_NEEDED
CERT_DEPTH
PUBRING
SECRING
RANDSEED
SHOWPASS
TZFIX
CLEARSIG
VERBOSE
INTERACTIVE
ARMORLINES
KEEPBINARY
BAKRING
PAGER
NOMANUAL

Probably the simplest attack is if you leave your pass phrase for your secret key written
down somewhere.    If someone gets it and also gets your secret key file, they can read
your messages and make signatures in your name.

Don't use obvious passwords that can be easily guessed, such as the names of your
kids or spouse.    If you make your pass phrase a single word, it can be easily guessed by
having a computer try all the words in the dictionary until it finds your password.    That's
why a pass phrase is so much better than a password.    A more sophisticated attacker may
have his computer scan a book of famous quotations to find your pass phrase.    An easy to
remember but hard to guess pass phrase can be easily constructed by some creatively
nonsensical sayings or very obscure literary quotes.    For further details, see the section
"How to Protect Secret Keys from Disclosure" in the Essential Topics volume of the PGP
User's Guide.

A major vulnerability exists if public keys are tampered with.    This may be the most
crucially important vulnerability of a public key cryptosystem, in part because most
novices don't immediately recognize it.    The importance of this vulnerability, and
appropriate hygienic countermeasures, are detailed in the section "How to Protect Public
Keys from Tampering" in the Essential Topics volume.

To summarize:    When you use someone's public key, make certain it has not been
tampered with.    A new public key from someone else should be trusted only if you got it
directly from its owner, or if it has been signed by someone you trust.    Make sure no one
else can tamper with your own public key ring.    Maintain physical control of both your
public key ring and your secret key ring, preferably on your own personal computer rather
than on a remote timesharing system. Keep a backup copy of both key rings.

"Not Quite Deleted" Files
Another potential security problem is caused by how most operating systems delete files.   
When you encrypt a file and then delete the original plaintext file, the operating system
doesn't actually physically erase the data.    It merely marks those disk blocks as deleted,
allowing the space to be reused later.    It's sort of like discarding sensitive paper
documents in the paper recycling bin instead of the paper shredder.    The disk blocks still
contain the original sensitive data you wanted to erase, and will probably eventually be
overwritten by new data at some point in the future. If an attacker reads these deleted
disk blocks soon after they have been deallocated, he could recover your plaintext.

In fact this could even happen accidentally, if for some reason something went wrong with
the disk and some files were accidentally deleted or corrupted.    A disk recovery program
may be run to recover the damaged files, but this often means some previously deleted
files are resurrected along with everything else.    Your confidential files that you thought
were gone forever could then reappear and be inspected by whomever is attempting to
recover your damaged disk. Even while you are creating the original message with a word
processor or text editor, the editor may be creating multiple temporary copies of your text
on the disk, just because of its internal workings.    These temporary copies of your text are
deleted by the word processor when it's done, but these sensitive fragments are still on
your disk somewhere.

Let me tell you a true horror story.    I had a friend, married with young children, who once
had a brief and not very serious affair. She wrote a letter to her lover on her word
processor, and deleted the letter after she sent it.    Later, after the affair was over, the
floppy disk got damaged somehow and she had to recover it because it contained other
important documents.    She asked her husband to salvage the disk, which seemed
perfectly safe because she knew she had deleted the incriminating letter.    Her husband
ran a commercial disk recovery software package to salvage the files.    It recovered the
files alright, including the deleted letter.    He read it, which set off a tragic chain of events.

The only way to prevent the plaintext from reappearing is to somehow cause the deleted
plaintext files to be overwritten.    Unless you know for sure that all the deleted disk blocks
will soon be reused, you must take positive steps to overwrite the plaintext file, and also
any fragments of it on the disk left by your word processor.    You can overwrite the original
plaintext file after encryption by using the PGP -w (wipe) option.    You can take care of any
fragments of the plaintext left on the disk by using any of the disk utilities available that
can overwrite all of the unused blocks on a disk.    For example, the Norton Utilities for
MSDOS can do this.

Even if you overwrite the plaintext data on the disk, it may still be possible for a
resourceful and determined attacker to recover the data.    Faint magnetic traces of the
original data remain on the disk after it has been overwritten.    Special sophisticated disk
recovery hardware can sometimes be used to recover the data.

Viruses and Trojan Horses
Another attack could involve a specially-tailored hostile computer virus or worm that might
infect PGP or your operating system.    This hypothetical virus could be designed to capture
your pass phrase or secret key or deciphered messages, and covertly write the captured
information to a file or send it through a network to the virus's owner.    Or it might alter
PGP's behavior so that signatures are not properly checked.    This attack is cheaper than
cryptanalytic attacks.

Defending against this falls under the category of defending against viral infection
generally.    There are some moderately capable anti-viral products commercially available,
and there are hygienic procedures to follow that can greatly reduce the chances of viral
infection.    A complete treatment of anti-viral and anti-worm countermeasures is beyond
the scope of this document. PGP has no defenses against viruses, and assumes your own
personal computer is a trustworthy execution environment.    If such a virus or worm
actually appeared, hopefully word would soon get around warning everyone.

Another similar attack involves someone creating a clever imitation of PGP that behaves
like PGP in most respects, but doesn't work the way it's supposed to.    For example, it
might be deliberately crippled to not check signatures properly, allowing bogus key
certificates to be accepted.    This "Trojan horse" version of PGP is not hard for an attacker
to create, because PGP source code is widely available, so anyone could modify the source
code and produce a lobotomized zombie imitation PGP that looks real but does the bidding
of its diabolical master. This Trojan horse version of PGP could then be widely circulated,
claiming to be from me.    How insidious.

You should make an effort to get your copy of PGP from a reliable source, whatever that
means. Or perhaps from more than one independent source, and compare them with a file
comparison utility.

There are other ways to check PGP for tampering, using digital signatures.    If someone
you trust signs the executable version of PGP, vouching for the fact that it has not been
infected or tampered with, you can be reasonably sure that you have a good copy.    You
could use an earlier trusted version of PGP to check the signature on a later suspect
version of PGP.    But this will not help at all if your operating system is infected, nor will it
detect if your original copy of PGP.EXE has been maliciously altered in such a way as to
compromise its own ability to check signatures. This test also assumes that you have a
good trusted copy of the public key that you use to check the signature on the PGP
executable.

Physical Security Breach
A physical security breach may allow someone to physically acquire your plaintext files or
printed messages.    A determined opponent might accomplish this through burglary, trash-
picking, unreasonable search and seizure, or bribery, blackmail or infiltration of your staff. 
Some of these attacks may be especially feasible against grassroots political organizations
that depend on a largely volunteer staff.    It has been widely reported in the press that the
FBI's COINTELPRO program used burglary, infiltration, and illegal bugging against antiwar
and civil rights groups.    And look what happened at the Watergate Hotel.

Don't be lulled into a false sense of security just because you have a cryptographic tool.
Cryptographic techniques protect data only while it's encrypted-- direct physical security
violations can still compromise plaintext data or written or spoken information.    This kind
of attack is cheaper than cryptanalytic attacks on PGP.

Tempest Attacks
Another kind of attack that has been used by well-equipped opponents involves the
remote detection of the electromagnetic signals from your computer.    This expensive and
somewhat labor-intensive attack is probably still cheaper than direct cryptanalytic attacks. 
An appropriately instrumented van can park near your office and remotely pick up all of
your keystrokes and
messages displayed on your computer video screen.    This would compromise all of your
passwords, messages, etc.    This attack can be thwarted by properly shielding all of your
computer equipment and network cabling so that it does not emit these signals.    This
shielding technology is known as "Tempest", and is used by some Government agencies
and defense contractors. There are hardware vendors who supply Tempest shielding
commercially, although it may be subject to some kind of Government licensing.    Now
why do you suppose the Government would restrict access to Tempest shielding?

Protecting against Bogus Timestamps
A somewhat obscure vulnerability of PGP involves dishonest users creating bogus
timestamps on their own public key certificates and signatures.    You can skip over this
section if you are a casual user and aren't deeply into obscure public key protocols.   
There's nothing to stop a dishonest user from altering the date and time setting of his own
system's clock, and generating his own public key certificates and signatures that appear
to have been created at a different time.    He can make it appear that he signed
something earlier or later than he actually did, or that his public/secret key pair was
created earlier or later.    This may have some legal or financial benefit to him, for example
by creating some kind of loophole that might allow him to repudiate a signature.

A remedy for this could involve some trustworthy Certifying Authority or notary that would
create notarized signatures with a trustworthy timestamp.    This might not necessarily
require a centralized authority.    Perhaps any trusted introducer or disinterested party
could serve this function, the same way real notary publics do now. A public key certificate
could be signed by the notary, and the trusted timestamp in the notary's signature would
have some legal significance.    The notary could enter the signed certificate into a special
certificate log controlled by the notary.    Anyone can read this log.    The notary could also
sign other people's signatures, creating a signature certificate of a signature certificate.   
This would serve as a witness to the signature the same way real notaries do now with
paper.    Again, the notary could enter the detached signature certificate (without the
actual whole document that was signed) into a log controlled by the notary.    The notary's
signature would have a trusted timestamp, which might have greater credibility than the
timestamp in the original signature.    A signature becomes "legal" if it is signed and logged
by the notary.

This problem of certifying signatures with notaries and trusted timestamps warrants
further discussion.    This can of worms will not be fully covered here now.    There is a good
treatment of this topic in Denning's 1983 article in IEEE Computer (see references).    There
is much more detail to be worked out in these various certifying schemes.    This will
develop further as PGP usage increases and other public key products develop their own
certifying schemes.

Exposure on Multi-user Systems
PGP was originally designed for a single-user MSDOS machine under your direct physical
control.    I run PGP at home on my own PC, and unless someone breaks into my house or
monitors my electromagnetic emissions, they probably can't see my plaintext files or
secret keys.

But now PGP also runs on multi-user systems such as Unix and VAX/VMS. On multi-user
systems, there are much greater risks of your plaintext or keys or passwords being
exposed. The Unix system administrator or a clever intruder can read your plaintext files,
or perhaps even use special software to covertly monitor your keystrokes or read what's on
your screen.    On a Unix system, any other user can read your environment information
remotely by simply using the Unix "ps" command.    Similar problems exist for MSDOS
machines connected on a local area network.    The actual security risk is dependent on
your particular situation.    Some multi-user systems may be safe because all the users are
trusted, or because they have system security measures that are safe enough to
withstand the attacks available to the intruders, or because there just aren't any
sufficiently interested intruders.    Some Unix systems are safe because they are only used
by one user-- there are even some notebook computers running Unix.    It would be
unreasonable to simply exclude PGP from running on all Unix systems.

PGP is not designed to protect your data while it is in plaintext form on a compromised
system. Nor can it prevent an intruder from using sophisticated measures to read your
secret key while it is being used.    You will just have to recognize these risks on multi-user
systems, and adjust your expectations and behavior accordingly.    Perhaps your situation is
such that you should consider running PGP only on an isolated single-user system under
your direct physical control.    That's what I do, and that's what I recommend.

Even if the attacker cannot read the contents of your encrypted messages, he may be able
to infer at least some useful information by observing where the messages come from and
where they are going, the size of the messages, and the time of day the messages are
sent. This is analogous to the attacker looking at your long distance phone bill to see who
you called and when and for how long, even though the actual content of your calls is
unknown to the attacker.    This is called traffic analysis.    PGP alone does not protect
against traffic analysis.    Solving this problem would require specialized communication
protocols designed to reduce exposure to traffic analysis in your communication
environment, possibly with some cryptographic assistance.

Cryptanalysis
An expensive and formidable cryptanalytic attack could possibly be mounted by someone
with vast supercomputer resources, such as a Government intelligence agency.    They
might crack your RSA key by using some new secret factoring breakthrough.    Perhaps so,
but it is noteworthy that the US Government trusts the RSA algorithm enough in some
cases to use it to protect its own nuclear weapons, according to Ron Rivest.    And civilian
academia has been intensively attacking it without success since 1978.

Perhaps the Government has some classified methods of cracking the IDEA(tm)
conventional encryption algorithm used in PGP.    This is every cryptographer's worst
nightmare.    There can be no absolute security guarantees in practical cryptographic
implementations.

Still, some optimism seems justified.    The IDEA algorithm's designers are among the best
cryptographers in Europe.    It has had extensive security analysis and peer review from
some of the best cryptanalysts in the unclassified world.    It appears to have some design
advantages over the DES in withstanding differential cryptanalysis, which has been used
to crack the DES.    Besides, even if this algorithm has some subtle unknown weaknesses,
PGP compresses the plaintext before encryption, which should greatly reduce those
weaknesses.    The computational workload to crack it is likely to be much more expensive
than the value of the message.

If your situation justifies worrying about very formidable attacks of this caliber, then
perhaps you should contact a data security consultant for some customized data security
approaches tailored to your special needs.    Boulder Software Engineering, whose address
and phone are given at the
end of this document, can provide such services.

In summary, without good cryptographic protection of your data communications, it may
have been practically effortless and perhaps even routine for an opponent to intercept
your messages, especially those sent through a modem or E-mail system.    If you use PGP
and follow reasonable precautions, the attacker will have to expend far more effort and
expense to violate your privacy.    If you protect yourself against the simplest attacks, and
you feel confident that your privacy is not going to be violated by a determined and highly
resourceful attacker, then you'll probably be safe using PGP.    PGP gives you Pretty Good
Privacy.

Trademarks, Copyrights, and Warranties
"Pretty Good Privacy", "Phil's Pretty Good Software", and the "Pretty Good" label for
computer software and hardware products are all trademarks of Philip Zimmermann and
Phil's Pretty Good Software.    PGP is (c) Copyright Philip R. Zimmermann, 1990-1994.    All
rights reserved.    Philip Zimmermann also holds the copyright for the PGP User's Manual,
as well as any foreign language translations of the manual or the software, and all
derivative works.    All rights reserved.

MIT may have a copyright on the particular software distribution package that they
distribute from the MIT FTP site.    This copyright on the "compilation" of the distribution
package in no way implies that MIT has a copyright on PGP itself, or its user
documentation.

The author assumes no liability for damages resulting from the use of this software, even if
the damage results from defects in this software, and makes no representations
concerning the merchantability of this software or its suitability for any specific purpose.   
It is provided "as is" without express or implied warranty of any kind. Because certain
actions may delete files or render them unrecoverable, the author assumes no
responsibility for the loss or modification of any data.

Patent Rights on the Algorithms
The RSA public key cryptosystem was developed at MIT, which holds a patent on it (U.S.
patent #4,405,829, issued 20 Sep 1983).    A company in California called Public Key
Partners (PKP) holds the exclusive commercial license to sell and sub-license the RSA
public key cryptosystem. MIT distributes a freeware version of PGP under the terms of the
RSAREF license from RSA Data Security, Inc. (RSADSI).

Non-US users of earlier versions of PGP should note that the RSA patent does not apply
outside the US, and at least at the time of this writing, the author is not aware of any RSA
patent in any other country.    Federal agencies may use the RSA algorithm, because the
Government paid for the development of RSA with grants from the National Science
Foundation and the Navy.    But despite the fact of Government users having free access to
the RSA algorithm, Government use of PGP has additional restrictions imposed by the
agreement I have with ViaCrypt, as explained
later.

I wrote my PGP software from scratch, with my own independently developed
implementation of the RSA algorithm.    Before publishing PGP, I got a formal written legal
opinion from a patent attorney with extensive experience in software patents.    I'm
convinced that publishing PGP the way I did does not violate patent law.

Not only did PKP acquire the exclusive patent rights for the RSA cryptosystem, but they
also acquired the exclusive rights to three other patents covering other public key
schemes invented by others at Stanford University, also developed with federal funding.   
This essentially gives one company a legal lock in the USA on nearly all practical public
key cryptosystems.    They even appear to be claiming patent rights on the very concept of
public key cryptography, regardless of what clever new original algorithms are
independently invented by others.    I find such a comprehensive monopoly troubling,
because I think public key cryptography is destined to become a crucial technology in the
protection of our civil liberties and privacy in our increasingly connected society.    At the
very least, it places these vital tools at risk by affording to the Government a single
pressure point of influence.

Beginning with PGP version 2.5 (distributed by MIT, the holders of the original RSA patent),
the freeware version of PGP uses the RSAREF subroutine library to perform its RSA
calculations, under the RSAREF license, which allows noncommercial use in the USA.   
RSAREF is a subroutine package from RSA Data Security Inc, that implements the RSA
algorithm.    The RSAREF subroutines are used instead of PGP's original subroutines to
implement the RSA functions in PGP.    See the RSAREF license for terms and conditions of
use of RSAREF applications.

PGP 2.5 was released by MIT for a brief test period in May, 1994 before releasing 2.6.   
Although 2.5 was released under the 16 March, 1994 RSAREF license, which is a perpetual
license, it would be better for users in the United States to upgrade to version 2.6 to
facilitate the demise of PGP 2.3a and earlier versions.    Also, PGP 2.5 has bugs that are
corrected in 2.6, and 2.5 will not read the new data format after September 1, 1994.    (See
the section on Compatibility with Previous Versions of PGP.)

The PGP 2.0 release was a joint effort of an international team of software engineers,
implementing enhancements to the original PGP with design guidance from me.    It was
released by Branko Lankester in The Netherlands and Peter Gutmann in New Zealand, out
of reach of US patent law.    Although released only in Europe and New Zealand, it
spontaneously spread to the USA without help from me or the PGP development team.

The IDEA(tm) conventional block cipher used by PGP is covered by a patent in Europe, held

by ETH and a Swiss company called Ascom-Tech AG.    The US Patent number is
US005214703, and the European patent number is EP 0 482 154 B1.    IDEA(tm) is a
trademark of Ascom-Tech AG. There is no license fee required for noncommercial use of
IDEA. Commercial users of IDEA may obtain licensing details from Dieter Profos, Ascom
Tech AG, Teleservices Section, Postfach 151, 4502 Solothurn, Switzerland, Tel +41 65
242885, Fax +41 65 235761.

Ascom-Tech AG has granted permission for the freeware version PGP to use the IDEA
cipher in non-commercial uses, everywhere.    In the US and Canada, all commercial or
Government users must obtain a licensed version from ViaCrypt, who has a license from
Ascom-Tech for the IDEA cipher.    Ascom-Tech has recently been changing its policies
regarding the use of IDEA in PGP for commercial use outside the US, and that policy still
seems to be in flux.

The ZIP compression routines in PGP come from freeware source code, with the author's
permission.    I'm not aware of any patents on the compression algorithms used in the ZIP
routines, but you're welcome to check into that question yourself.

Licensing and Distribution
In the USA, PGP 2.6 is available from the Massachusetts Institute of Technology, under the
terms of the RSAREF license.    I have no objection to anyone freely using or distributing
the freeware version of PGP, without payment of fees to me, as long as it is for personal
non-commercial use.    For commercial use, contact ViaCrypt in Phoenix, Arizona (phone
602-944-0773).    You must keep the copyright, patent, and trademark notices on PGP and
keep all the documentation with it.

NOTE:    Regardless of the complexities and partially overlapping restrictions from all the
other terms and conditions imposed by the various patent and copyright licenses (RSA,
RSAREF, and IDEA) from various third parties, an additional overriding restriction on PGP
usage is imposed by my own agreement with ViaCrypt:    The freeware version of PGP is
only for personal, noncommercial use -- all other users in the USA and Canada must obtain
a fully licensed version of PGP from ViaCrypt.

I had to make an agreement with ViaCrypt in the summer of 1993 to license the exclusive
commercial rights to PGP, so that there would be a legally safe way for corporations to use
PGP without risk of a patent infringement lawsuit from PKP.    For PGP to succeed in the long
term as a viable industry standard, the legal stigma associated with the RSA patent rights
had to be resolved.    ViaCrypt had already obtained a patent license from PKP to make,
use, and sell products that practice the RSA patents.    ViaCrypt offered a way out of the
patent quagmire for PGP to penetrate the corporate environment.    They could sell a fully-
licensed version of PGP, but only if I licensed it to them under these terms.    So we entered
into an agreement to do that, opening the door for PGP's future in the commercial sector,
which was necessary for PGP's long-term political future.

PGP is not shareware, it's freeware.    Published as a community service. Giving PGP away
for free will encourage far more people to use it, which hopefully will have a greater social
impact. This could lead to widespread awareness and use of the RSA public key
cryptosystem.

Feel free to disseminate the complete PGP release package as widely as possible, but be
careful not to violate U.S. export controls if you live in the USA.    Give it to all your friends. 
If you have access to any electronic Bulletin Boards Systems, please upload the complete
PGP executable object release package to as many BBS's as possible.    The freeware
version of PGP is available in source code form, and you may disseminate the source
release package too, if you've got it.    NOTE:    Under no circumstances should PGP be
distributed without the PGP documentation, including this PGP User's Guide and the
RSAREF license agreement.

The PGP version 2.6 executable object release package for MSDOS contains the PGP
executable software, documentation, RSAREF license, sample key rings including my own
public key, and signatures for the software and this manual, all in one PKZIP compressed
file called pgp26.zip.    The PGP source release package for MSDOS contains all the C
source files in one PKZIP compressed file called pgp26src.zip.    The filename for the
release package is derived from the version number of the release.

The primary release site for PGP is the Massachusetts Institute of Technology, at their FTP
site "net-dist.mit.edu", in their /pub/PGP directory.    You may obtain free copies or updates
to PGP from this site, or any other Internet FTP site or BBS that PGP has spread to. Don't
ask me for a copy directly from me, especially if you live outside the US or Canada.

After all this work I have to admit I wouldn't mind getting some fan mail for PGP, to gauge
its popularity.    Let me know what you think about it and how many of your friends use it.   
Bug reports and suggestions for enhancing PGP are welcome, too.    Perhaps a future PGP

release will reflect your suggestions.

This project has not been funded and the project has nearly eaten me alive.    This means
you can't count on a reply to your mail, unless you only need a short written reply and you
include a stamped self-addressed envelope.    But I often do reply to E-mail.    Please keep it
in English, as my foreign language skills are weak.    If you call and I'm not in, it's best to
just try again later.    I usually don't return long distance phone calls, unless you leave a
message that I can call you collect.    If you need any significant amount of my time, I am
available on a paid consulting basis, and I do return those calls.

The most inconvenient mail I get is for some well-intentioned person to send me a few
dollars asking me for a copy of PGP.    I don't send it to them because I'd rather avoid any
legal problems with PKP.    Or worse, sometimes these requests are from foreign countries,
and I would be risking a violation of US cryptographic export control laws.    Even if there
were no legal hassles involved in sending PGP to them, they usually don't send enough
money to make it worth my time. I'm just not set up as a low cost low volume mail order
business.    I can't just ignore the request and keep the money, because they probably
regard the money as a fee for me to fulfill their request. If I return the money, I might have
to get in my car and drive down to the post office and buy some postage stamps, because
these requests rarely include a stamped self-addressed envelope.    And I have to take the
time to write a polite reply that I can't do it.    If I postpone the reply and set the letter
down on my desk, it might be buried within minutes and won't see the light of day again
for months.    Multiply these minor inconveniences by the number of requests I get, and
you can see the problem.    Isn't it enough that the software is free?    It would be nicer if
people could try to get PGP from any of the myriad other sources.    If you don't have a
modem, ask a friend to get it for you.    If you can't find it yourself, I don't mind answering
a quick phone call.

If anyone wants to volunteer to improve PGP, please let me know.    It could certainly use
some more work.    Some features were deferred to get it out the door.    A number of PGP
users have since donated their time to port PGP to Unix on Sun SPARCstations, to Ultrix, to
VAX/VMS, to OS/2, to the Amiga, and to the Atari ST.    Perhaps you can help port it to some
new environments.    But please let me know if you plan to port or add enhancements to
PGP, to avoid duplication of effort, and to avoid starting with an obsolete version of the
source code.

Because so many foreign language translations of PGP have been produced, most of them
are not distributed with the regular PGP release package because it would require too
much disk space. Separate language translation "kits" are available from a number of
independent sources, and are sometimes available separately from the same distribution
centers that carry the regular PGP release software.    These kits include translated
versions of the file LANGUAGE.TXT, PGP.HLP, and the PGP User's Guide.    If you want to
produce a translation for your own native language, contact me first to get the latest
information and standard guidelines, and to find out if it's been translated to your
language already.    To find out where to get a foreign language kit for your language, you
might check on the Internet newsgroups, or get it from Mike Johnson (mpj@csn.org).

If you have access to the Internet, watch for announcements of new releases of PGP on the
Internet newsgroups "sci.crypt" and PGP's own newsgroup, "alt.security.pgp".    If you want
to know where to get PGP, MIT is the primary FTP distribution site (net-dist.mit.edu).    Or
ask Mike Johnson (mpj@csn.org) for a list of Internet FTP sites and BBS phone numbers.

Future versions of PGP may have to change the data formats for messages, signatures,
keys and key rings, in order to provide important new features.    This may cause backward
compatibility problems with this version of PGP.    Future releases may provide conversion

utilities to convert old keys, but you may have to dispose of old messages created with the
old PGP.

Export Controls
The U.S. Government has made it illegal in most cases to export good cryptographic
technology, and that may include PGP.    They regard this kind of software just like they
regard munitions. This is determined by volatile State Department, Defense Department
and Commerce Department policies, not fixed laws.    I will not export this software out of
the US or Canada in cases when it is illegal to do so under US controls, and I urge other
people not to export it on their own.

If you live outside the US or Canada, I urge you not to violate US export laws by getting
any version of PGP in a way that violates those laws.    Since thousands of domestic users
got the first version after its initial publication, it somehow leaked out of the US and spread
itself widely abroad, like dandelion seeds blowing in the wind.

Starting with PGP version 2.0 through version 2.3a, the release point of the software has
been outside the US, on publicly-accessible computers in Europe.    Each release was
electronically sent back into the US and posted on publicly-accessible computers in the US
by PGP privacy activists in foreign countries.    There are some restrictions in the US
regarding the import of munitions, but I'm not aware of any cases where this was ever
enforced for importing cryptographic software into the US.    I imagine that a legal action of
that type would be quite a spectacle of controversy.

ViaCrypt PGP version 2.4 is sold in the United States and Canada and is not for export.   
The following language was supplied by the US Government to ViaCrypt for inclusion in the
ViaCrypt PGP documentation:    "PGP is export restricted by the Office of Export
Administration, United States Department of Commerce and the Offices of Defense Trade
Controls and Munitions Control, United States Department of State.    PGP cannot be
exported or reexported, directly or indirectly, (a) without all export or reexport licenses
and governmental approvals required by any applicable laws, or (b) in violation of any
prohibition against the export or reexport of any part of PGP."    The Government may take
the position that the freeware PGP versions are also subject to those controls.

The freeware PGP versions 2.5 and 2.6 were released through a posting on a controlled FTP
site maintained by MIT.    This site has restrictions and limitations which have been used on
other FTP sites to comply with export control requirements with respect to other
encryption software such as Kerberos and software from RSA Data Security, Inc. I urge you
not to do anything which would weaken those controls or facilitate any improper export of
ViaCrypt PGP or the freeware PGP versions.

Some foreign governments impose serious penalties on anyone inside their country for
merely using encrypted communications.    In some countries they might even shoot you
for that.    But if you live in that kind of country, perhaps you need PGP even more.

TMP - Directory Pathname for Temporary Files---Default setting:    TMP = ""
The configuration parameter TMP specifies what directory to use for PGP's

temporary scratch files.    The best place to put them is on a RAM disk, if you have one.   
That speeds things up quite a bit, and increases security somewhat.    If TMP is undefined,
the temporary files go in the current directory.    If the shell environmental variable TMP is
defined, PGP instead uses that to specify where the temporary files should go.

LANGUAGE - Foreign Language Selector
Default setting:    LANGUAGE = "en"

PGP displays various prompts, warning messages, and advisories to the user on the
screen.    For example, messages such as "File not found.", or "Please enter your pass
phrase:".    These messages are normally in English.    But it is possible to get PGP to
display its messages to the user in other languages, without having to modify the PGP
executable program.    A number of people in various countries have translated all of PGP's
display messages, warnings, and prompts into their native languages. These hundreds of
translated message strings have been placed in a special text file called "language.txt",
distributed with the PGP release.    The messages are stored in this file in English, Spanish,
Dutch, German, French, Italian, Russian, Latvian, and Lithuanian. Other languages may be
added later.

The configuration parameter LANGUAGE specifies what language to display these
messages in. LANGUAGE may be set to "en" for English, "es" for Spanish, "de" for German,
"nl" for Dutch, "fr" for French, "it" for Italian, "ru" for Russian, "lt3" for Lithuanian, "lv" for
Latvian, "esp" for Esperanto.    For example, if this line appeared in the configuration file:

      LANGUAGE = "fr"

PGP would select French as the language for its display messages. The default setting is
English.

When PGP needs to display a message to the user, it looks in the "language.txt" file for the
equivalent message string in the selected foreign language and displays that translated
message to the user. If PGP can't find the language string file, or if the selected language
is not in the file, or if that one phrase is not translated into the selected language in the
file, or if that phrase is missing entirely from the file, PGP displays the message in English.

To conserve disk space, most foreign translations are not included in the standard PGP
release package, but are available separately.

MYNAME - Default User ID for Making Signatures      Default setting:    MYNAME = ""
The configuration parameter MYNAME specifies the default user ID to use to select

the secret key for making signatures.    If MYNAME is not defined, the most recent secret
key you installed on your secret key ring will be used.    The user may also override this
setting by specifying a user ID on the PGP command line with the -u option.

TEXTMODE - Assuming Plaintext is a Text File    :    Default setting:    TEXTMODE = off�
The configuration parameter TEXTMODE is equivalent to the -t command line option.

If enabled, it causes PGP to assume the plaintext is a text file, not a binary file, and
converts it to "canonical text" before encrypting it.    Canonical text has a carriage return
and a linefeed at the end of each line of text.    This mode will be automatically turned off if
PGP detects that the plaintext file contains what it thinks is non-text binary data.    If you
intend to use PGP primarily for E-mail purposes, you should turn TEXTMODE=ON.

For VAX/VMS systems, the current version of PGP defaults TEXTMODE=ON.
 "Sending ASCII Text Files Across Different Machine Environments".

CHARSET - Specifies Local Character Set for Text Files
Default setting:    CHARSET = NOCONV

Because PGP must process messages in many non-English languages with non-ASCII
character sets, you may have a need to tell PGP what local character set your machine
uses.    This determines what character conversions are performed when converting
plaintext files to and from canonical text format.    This is only a concern if you are in a non-
English non-ASCII environment.

The configuration parameter CHARSET selects the local character set. The choices are
NOCONV (no conversion), LATIN1 (ISO 8859-1 Latin Alphabet 1), KOI8 (used by most
Russian Unix systems), ALT_CODES (used by Russian MSDOS systems), ASCII, and CP850
(used by most western European languages on standard MSDOS PCs).

LATIN1 is the internal representation used by PGP for canonical text, so if you select
LATIN1, no conversion is done.    Note also that PGP treats KOI8 as LATIN1, even though it
is a completely different character set (Russian), because trying to convert KOI8 to either
LATIN1 or CP850 would be futile anyway.    This means that setting CHARSET to NOCONV,
LATIN1, or KOI8 are all equivalent to PGP.

If you use MSDOS and expect to send or receive traffic in western European languages, set
CHARSET = "CP850".    This will make PGP convert incoming canonical text messages from
LATIN1 to CP850 after decryption.    If you use the -t (textmode) option to convert to
canonical text, PGP will convert your CP850 text to LATIN1 before encrypting it.
 "Sending ASCII Text Files Across Different Machine Environments".

ARMOR - Enable ASCII Armor Output : Default setting:    ARMOR = off
The configuration parameter ARMOR is equivalent to the -a command line option.    If

enabled, it causes PGP to emit ciphertext or keys in ASCII Radix-64 format suitable for
transporting through E-mail channels.    Output files are named with the ".asc" extension.

If you intend to use PGP primarily for E-mail purposes, you should turn ARMOR=ON.
 "Sending Ciphertext Through E-mail Channels: Radix-64 Format"

ARMORLINES - Size of ASCII Armor Multipart Files : Default setting:    ARMORLINES = 720
When PGP creates a very large ".asc" radix-64 file for sending ciphertext or keys

through the E- mail, it breaks the file up into separate chunks small enough to send
through Internet mail utilities.    Normally, Internet mailers prohibit files larger than about
50000 bytes, which means that if we restrict the number of lines to about 720, we'll be
well within the limit.    The file chunks are named with suffixes ".as1", ".as2", ".as3", ...

The configuration parameter ARMORLINES specifies the maximum number of lines
to make each chunk in a multipart ".asc" file sequence.    If you set it to zero, PGP will not
break up the file into chunks.

Fidonet email files usually have an upper limit of about 32K bytes, so 450 lines
would beappropriate for Fidonet environments.
"Sending Ciphertext Through E-mail Channels: Radix-64 Format"

KEEPBINARY - Keep Binary Ciphertext Files After Decrypting : Default setting:    KEEPBINARY
= off

When PGP reads a ".asc" file, it recognizes that the file is in radix-64 format and will
convert it back to binary before processing as it normally does, producing as a by-product
a ".pgp" ciphertext file in binary form.    After further processing to decrypt the ".pgp" file,
the final output file will be in normal plaintext form.    You may want to delete the binary
".pgp" intermediate file, or you may want PGP to delete it for you automatically.    You can
still rerun PGP on the original ".asc" file.

The configuration parameter KEEPBINARY enables or disables keeping the
intermediate ".pgp" file during decryption.
Sending Ciphertext Through E-mail Channels: Radix-64

COMPRESS - Enable Compression : Default setting:    COMPRESS = on
The configuration parameter COMPRESS enables or disables data compression

before encryption.    It is used mainly for debugging PGP. Normally, PGP attempts to
compress the plaintext before it encrypts it.    Generally, you should leave this alone and
let PGP attempt to compress the plaintext

COMPLETES_NEEDED - Number of Completely Trusted Introducers Needed : Default
setting:    COMPLETES_NEEDED = 1

The configuration parameter COMPLETES_NEEDED specifies the minimum number of
completely trusted introducers required to fully certify a public key on your public key ring. 
This gives you a way of tuning PGP's skepticism.
How Does PGP Keep Track of Which Keys are Valid?

MARGINALS_NEEDED - Number of Marginally Trusted Introducers Needed : Default setting: 
MARGINALS_NEEDED = 2

The configuration parameter MARGINALS_NEEDED specifies the minimum number of
marginally trusted introducers required to fully certify a public key on your public key ring. 
This gives you a way of tuning PGP's skepticism.
How does PGP Keep Track of Which Keys are Valid?

CERT_DEPTH - How Deep May Introducers Be Nested : Default setting:    CERT_DEPTH = 4
The configuration parameter CERT_DEPTH specifies how many levels deep you may

nest introducers to certify other introducers to certify public keys on your public key ring.   
For example, If CERT_DEPTH is set to 1, there may only be one layer of introducers below
your own ultimately-trusted key.    If that were the case, you would be required to directly
certify the public
keys of all trusted introducers on your key ring.    If you set CERT_DEPTH to 0, you could
have no introducers at all, and you would have to directly certify each and every key on
your public key ring in order to use it.    The minimum CERT_DEPTH is 0, the maximum is 8.
How Does PGP Keep Track of Which Keys are Valid?

BAKRING - Filename for Backup Secret Keyring
: Default setting:    BAKRING = ""

All of the key certification that PGP does on your public key ring ultimately depends
on your own ultimately-trusted public key (or keys).    To detect any tampering of your
public key ring, PGP must check that your own key has not been tampered with.    To do
this, PGP must compare your public key against a backup copy of your secret key on some
tamper-resistant media, such as a write-protected floppy disk.    A secret key contains all
the information that your public key has, plus some secret components.    This means PGP
can check your public key against a backup copy of your secret key.    The configuration
parameter BAKRING specifies what pathname to use for PGP's trusted backup copy of your
secret key ring.    On MSDOS, you could set it to "a:\secring.pgp" to point it at a write-
protected backup copy of your secret key ring on your floppy drive.    This check is
performed only when you execute the PGP -kc option to check your whole public key ring.

If BAKRING is not defined, PGP will not check your own key against any backup copy.
How to Protect Public Keys from Tampering
HowDoes PGP Keep Track of Which Keys are Valid?

PUBRING - Filename for Your Public Keyring : Default setting:    PUBRING =
"$PGPPATH/pubring.pgp"

You may want to keep your public keyring in a directory separate from your
config.txt file in the directory specified by your $PGPPATH environmental variable.    You
may specify the full path and filename for your public keyring by setting the PUBRING
parameter.    For example, on an MSDOS system, you might want to keep your public
keyring on a floppy disk by:

      PUBRING = "a:pubring.pgp"

This feature is especially handy for specifying an alternative keyring on the command line.

SECRING - Filename for Your Secret Keyring : Default setting:    SECRING =
"$PGPPATH/secring.pgp"

You may want to keep your secret keyring in a directory separate from your
config.txt file in the directory specified by your $PGPPATH environmental variable.    This
comes in handy for putting your secret keyring in a directory or device that is more
protected than your public keyring.    You may specify the full path and filename for your
secret keyring by setting the SECRING parameter.    For example, on an MSDOS system,
you might want to keep your secret keyring on a floppy disk by:

      SECRING = "a:secring.pgp"

RANDSEED - Filename for Random Number Seed : Default setting:    RANDSEED =
"$PGPPATH/randseed.bin"

You may want to keep your random number seed file (for generation of session keys)
in a directory separate from your config.txt file in the directory specified by your $PGPPATH
environmental variable. This comes in handy for putting your random number seed file in a
directory or device that is more protected than your public keyring. You may specify the
full path and filename for your random seed file by setting the RANDSEED parameter.    For
example, on an MSDOS system, you might want to keep it on a floppy disk by:

      RANDSEED = "a:randseed.bin"

PAGER - Selects Shell Command to Display Plaintext Output : Default setting:    PAGER = ""
PGP lets you view the decrypted plaintext output on your screen (like the Unix-style

"more" command), without writing it to a file, if you use the -m (more) option while
decrypting.    This displays the decrypted plaintext display on your screen one screenful at
a time.    If you prefer to use a fancier page display utility, rather than PGP's built-in one,
you can specify the name of a shell command that PGP will invoke to display your plaintext
output file.    The configuration parameter PAGER specifies the shell command to invoke to
display the file.    For example, on MSDOS systems, you might want to use the popular
shareware program "list.com" to display your plaintext message.    Assuming you have a
copy of "list.com", you may set PAGER accordingly:

      PAGER = "list"

However, if the sender specified that this file is for your eyes only, and may not be written
to disk, PGP always uses its own built-in display function.
Displaying Decrypted Plaintext on Your Screen

SHOWPASS - Echo Pass Phrase to User: Default setting:    SHOWPASS = off
Normally, PGP does not let you see your pass phrase as you type it in.    This makes

it harder for someone to look over your shoulder while you type and learn your pass
phrase.    But some typing-impaired people have problems typing their pass phrase without
seeing what they are typing, and they may be typing in the privacy of their own homes.   
So they asked if PGP can be configured to let them see what they type when they type in
their pass phrase.

The configuration parameter SHOWPASS enables PGP to echo your typing during
pass phrase entry.

TZFIX-Timezone Adjustment
Default setting:    TZFIX = 0

PGP provides timestamps for keys and signature certificates in Greenwich Mean Time
(GMT), or Coordinated Universal Time (UTC), which means the same thing for our
purposes.    When PGP asks the system for the time of day, the system is supposed to
provide it in GMT.

But sometimes, because of improperly configured MSDOS systems, the system time is
returned in US Pacific Standard Time time plus 8 hours.    Sounds weird, doesn't it?   
Perhaps because of some sort of US west-coast jingoism, MSDOS presumes local time is US
Pacific time, and pre-corrects Pacific time to GMT.    This adversely affects the behavior of
the internal MSDOS GMT time function that PGP calls. However, if your MSDOS
environmental variable TZ is already properly defined for your timezone, this corrects the
misconception MSDOS has that the whole world lives on the US west coast.

The configuration parameter TZFIX specifies the number of hours to add to the system
time function to get GMT, for GMT timestamps on keys and signatures.    If the MSDOS
environmental variable TZ is defined properly, you can leave TZFIX=0.    Unix systems
usually shouldn't need to worry about setting TZFIX at all.    But if you are using some other
obscure operating system that doesn't know about GMT, you may have to use TZFIX to
adjust the system time to GMT.

On MSDOS systems that do not have TZ defined in the environment, you should make
TZFIX=0 for California, -1 for Colorado, -2 for Chicago, -3 for New York, -8 for London, -9 for
Amsterdam. In the summer, TZFIX should be manually decremented from these values.   
What a mess.

It would be much cleaner to set your MSDOS environmental variable TZ in your
AUTOEXEC.BAT file, and not use the TZFIX correction.    Then MSDOS gives you good GMT
timestamps, and will handle daylight savings time adjustments for you.    Here are some
sample lines to insert into AUTOEXEC.BAT, depending on your time zone:

For Los Angeles:    SET TZ=PST8PDT For Denver:              SET TZ=MST7MDT For Arizona:           
SET TZ=MST7
      (Arizona never uses daylight savings time)
For Chicago:            SET TZ=CST6CDT
For New York: SET TZ=EST5EDT
For London:              SET TZ=GMT0BST
For Amsterdam:        SET TZ=MET-1DST
For Moscow:              SET TZ=MSK-3MSD
For Aukland:            SET TZ=NZT-13

CLEARSIG-Enable Signed Messages to be Encapsulated as Clear Text
Default setting:    CLEARSIG = on

Normally, unencrypted PGP signed messages have a signature certificate prepended in
binary form.    Also, the signed message is compressed, rendering the message unreadable
to casual human eyes, even though the message is not actually encrypted.    To send this
binary data through a 7-bit E-mail channel, radix-64 ASCII armor is applied (see the
ARMOR parameter). Even if PGP didn't compress the message, the ASCII armor would still
render the message unreadable to human eyes.    The recipient must use PGP to strip the
armor off and decompress it before reading the message.

If the original plaintext message is in text (not binary) form, there is a way to send a
signed message through an E-mail channel in such a way that the signed message is not
compressed and the ASCII armor is applied only to the binary signature certificate, but not
to the plaintext message.    The CLEARSIG flag provides this useful feature, making it
possible to generate a signed message that can be read with human eyes, without the aid
of PGP.    Of course, you still need PGP to actually check the signature.

The CLEARSIG flag is preset to "on" beginning with PGP version 2.5. To enable the full
CLEARSIG behavior, the ARMOR and TEXTMODE flags must also be turned on.    Set
ARMOR=ON (or use the -a option), and set TEXTMODE=ON (or use the -t option).    If your
config file has CLEARSIG turned off, you can turn it back on again directly on the command
line,
like so:

          pgp -sta +clearsig=on message.txt

This message representation is analogous to the MIC-CLEAR message type used in Internet
Privacy Enhanced Mail (PEM).    It is important to note that since this method only applies
ASCII armor to the binary signature certificate, and not to the message text itself, there is
some risk that the unarmored message may suffer some accidental molestation while en
route.    This can happen if it passes through some E-mail gateway that performs character
set conversions, or in some cases extra spaces may be added to or stripped from the ends
of lines.    If this occurs, the signature will fail to verify, which may give a false indication of
intentional tampering.    But since PEM lives under a similar vulnerability, it seems worth
having this feature despite the risks.

Beginning with PGP version 2.2, trailing blanks are ignored on each line in calculating the
signature for text in CLEARSIG mode.

VERBOSE - Quiet, Normal, or Verbose Messages : Default setting:    VERBOSE = 1
VERBOSE may be set to 0, 1, or 2, depending on how much detail you want to see

from PGP diagnostic messages.    The settings are:
0 - Display messages only if there is a problem.    Unix fans wanted this "quiet mode"

setting.
1 - Normal default setting.    Displays a reasonable amount of detail in diagnostic or

advisory messages.
2 - Displays maximum information, usually to help diagnose problems in PGP.    Not

recommended for normal use.    Besides, PGP doesn't have any problems, right?

INTERACTIVE - Ask for Confirmation for Key Adds : Default Setting:    INTERACTIVE = off
Enabling this mode will mean that if you add a key file containing multiple keys to

your key ring, PGP will ask for confirmation for each key before adding it to your key ring.

NOMANUAL - Let PGP Generate Keys Without the Manual : Default Setting:    NOMANUAL =
off

It is important that the freeware version of PGP not be distributed without the user
documentation, which normally comes with it in the standard release package.    This
manual contains important information for using PGP, as well as important legal notices.   
But some people have distributed previous versions of PGP without the manual, causing a
lot of problems for a lot of people who get it.    To discourage the distribution of PGP
without the required documentation, PGP has been changed to require the PGP User's
Guide to be found somewhere on your computer (like in your PGP directory) before PGP
will let you generate a key pair. However, some users like to use PGP on tiny palmtop
computers with limited storage capacity, so they like to run PGP without the
documentation present on their systems.    To satisfy these users, PGP can be made to
relax its requirement that the manual be present, by enabling the NOMANUAL flag on the
command line during key generation, like so:

pgp -kg +nomanual

The NOMANUAL flag can only be set on the command line, not in the config file.    Since
you must read this manual to learn how to do enable this override feature, I hope this will
still be effective in discouraging the distribution of PGP without the manual.

Whats New in Each New Version
2.2
2.3
2.4
2.5
2.6

Changes to PGP 2.6
This version of PGP uses a version of RSAREF provided to MIT by RSA Data Security for use
in PGP. This version is legal within the U.S.    See the enclosed RSAREF license for full
details. Basically this is a non-commercial release. If you want to use it in a commercial or
governmental setting, talk to ViaCrypt (2014 West Peoria Avenue, Phoenix, Arizona 85029,
+1 602 944-0773).

PGP 2.6 will read messages, signatures and keys created with versions of PGP post 2.2.
(i.e., 2.3, 2.3a, 2.4 and 2.5). However after 9/1/94 Version 2.6 will create messages which
contain a version number of "3" in signatues, messages and keys (see pgformat.doc for
details). PGP2.6 will be able to read these signatures, messages and keys, but prior
versions will not.

Versions prior to 2.6 would not permit a new signature to be added to a key if there was an
already existing signature from the same signer. Starting with version 2.6 newer
signatures will override older ones *as long as the newer signature verifies*. This change is
important because many keys have
signatures on them that were created by PGP version 2.2 or earlier. These signatures can
not be verified by PGP 2.5 or higher. Owners of keys with these obsolete signatures should
attempt to gather new signatures and add them to their key.

Significant changes were also made for version 2.5. Because version 2.6 is coming out
very soon after 2.5 (which was only really a beta test version) readers are encouraged to
read the file "newfor25.doc" as well as this file.

Changes to PGP 2.5
                                ***** MOST IMPORTANT *****

This version of PGP uses RSAREF 2.0, so it's legal in the U.S.!    The RSAREF license forbids
you to (among other things; see the license for full details) "use the program to provide
services to others for which you are compensated in any manner", but that still covers a
lot of people.    If you want to use it in a commercial or governmental setting, talk to
ViaCrypt (2014 West Peoria Avenue, Phoenix, Arizona
85029, +1 602 944-0773).

PGP 2.5 should always be distributed with a copy of the RSAREF 2.0 license of March 16,
1994 from RSA Data Security, Inc., so that all users will be aware of their obligations under
the RSAREF license.

Since the RSAREF license conflicts with the GNU General Public License that PGP was
formerly distributed under, the GPL had to go.    PGP is still freely distributable, though.   
(From a copyright point of view; export controls or some other legal hassle may apply.)

*** IMPORTANT CHANGE:

RSAREF 2.0 can understand only the pkcs_compat=1 formats for signatures and encrypted
files.    This has been the default since 2.3, so old files should not be too much of a
problem, but old key signatures will encounter difficulties.    This change will result in a hole
being ripped in the "web of trust" as many old signatures are invalidated.    Please check
your key rings (pgp -kc) and re-issue any signatures that have been invalidated.    PGP by
default offers to remove such signatures.    Even if you leave them in, they are not trusted.

Another RSAREF limitation is that it cannot cope with keys longer than 1024 bits.    PGP
now prints a reasonably polite error message in such a case.

OTHER CHANGES:

The support files are thinner.    The various contrib directory utilities have not been
updated since 2.3a, and since the PGP developers know how annoying it is to have people
using an ancient version and complaining about a bug in a program that was fixed a year
ago, they have been omitted rather than annoy the contributors in this way.    Also, the
language translation file, language.txt, is incomplete.    The strings that were in 2.3a are
there, and some that could be updated without much knowledge of the language, but
others that are new to 2.5 are untranslated.    The format should be obvious and some
tools for manipulating the language traslations are included in the contrib directory.

Printed KeyIDs have been incresed to 32 bits, as there were enough keys out there that 24-
bit keyIDs were no longer sufficiently unique.    The previous 24-bit keyID is the LAST 6
digits of an 8-digit 32-bit keyID. For example, what was printed as A966DD now appears as
C7A966DD.

The config-file options
pubring=<filename>,
secring=<filename>, and
randseed=<filename>

have been added.    Hopefully, the uses will be obvious.    With these, you can keep
keyrings anywhere you like.    Of course, they can also be specified on the command line
with +pubring= (or abbreviated to +pub=).    If the line

comment=<string>
appears in the config file, the line "Comment: <string>" appears in ASCII armor output.   

Of course, you can also use this from the command line, e.g. to include a filename in the
ASCII armor, do "pgp -eat +comment=filename filename recipient".

PGP now enables clearsig by default.    If you sign and ascii-armor a text file, and do not
encrypt it, it is clearsigned unless you ask for this not to be done.

The now enables textmode.    Textmode detects non-text files and automatically turns itself
off, so it's quite safe to leave on all the time.    If you haven't got these defaults yourself,
you might want to enable them.

All prompts and progress messages are now printed to stderr, to make them easier to find
and ensure they don't get confused with data on standard output such as pgp -m output.

PGP now wipes temp files (and files wiped with pgp -w) with pseudo-random data in an
attempt to force disk compressors to overwrite as much data as possible.

On Unix, if the directory /usr/local/lib/pgp exists, it is searched for help files, language
translations, and the PGP documentation.    On VMS, the equivalent is PGP$LIBRARY:.    (This
is PGP_SYSTEM_DIR, defined in fileio.h, if you need to change it for your site.)

Also, it is searched for a default global config.txt.    This file may be overridden by a local
config.txt, and it may not set pubring, secring, randseed or myname (which should be
strictly personal)

The normal help files (pgp -h) are pgp.hlp or <language>.hlp, such as fr.hlp.    Now, there is
a separate help file for pgp -k, called pgpkey.hlp, or <language>key.hlp.    No file is
provided by default; PGP will use its one-page internal help by default, but you can �
create such a file at your site.

On Unix systems, $PGPPATH defaults to $HOME/.pgp.

PGP used to get confused if you had a keyring containing signatures from you, but not
your public key.    (PGP can't use the signatures in this case. Only signatures from keys in
the keyring are counted.)
PGP still can't use the signatures, but prints better warning messages. Also, adding a key
on your secret key ring to your public keyring now asks if the key should be considered
ultimately-trusted.
Prviously, you had to run pgp -ke to force this check, which was non-obvious.

Due to a few people distributing PGP without the manual (including one run of a few
thousand CD-ROMs), and the resultant flood of phone calls from confused users, PGP now
looks to make sure a manual is somewhere in the vicinity when running to discourage this
sort of thing.    (If you're getting this warning and need details on how to get rid of it, try
pgp -kg.)

On Unix, PGP now figures out the resolution of the system clock at run time for the
purpose of computing the amount of entropy in keystroke timings.    This means that on
many Unix machines, less typing should be required to generate keys.    (SunOS and Linux
especially.)

The small prime table used in generating keys has been enlarged, which should speed up
key generation somewhat.

There was a bug in PGP 2.3a (and, in fact in 2.4 and dating back to 1.0!) when generating
primes 2 bits over a multiple of the unit size (16 bits on PC's, 32 bits on most larger

computers), if the processor doesn't deal with expressions like "1<<32" by producing a
result of 1.    In practice, that corresponds to a key size of 64*x+4 bits.

Code changes:

At the request of Windows programmers, the PSTR() macro used to translate string has
been renamed to LANG().

The random-number code has been *thoroughly* cleaned up.    So has the IDEA code and
the MD5 code.    The MD5 code was developed from scratch and is available for public use.

The Turbo C makefile was dropped in favour of a Borland C .prj file. You can use
makefile.msc as a guide if you need one for a command-line Turbo C.

Changes to PGP 2.4:
- Fixed a bug with the -z <passphrase> option.    If no passphrase was given,    PGP used to
crash.

- When using -c, the IV is generated properly now, and the randseed.bin      postwash is
done.    (This bug could have resulted in the same ciphertext    being generated for the
same plaintext, if the same passphrase is used.)

- Memory allocated with halloc() is now freed with hfree() in ztrees.c and    zdeflate.c.    (MS-
DOS only.)

- The decompression code now detects end of input reliably, fixing a bug that used to have
it produce infinite amounts of output on come corrputed input.    Decompression has also
been sped up.

- PGP -m won't try to write its final output to the current directory.    This makes it less
efficent if you want to save the text to a file, but more secure if you don't.

- Number of bits allowed when generating keys limited to 1024, in line    with the limits in
RSAREF and BSAFE.    It used to be higher, but    folks, if you think you need a key larger
than that, do some research
    into the complexity of factoring.

- Version number changed to pgp2.4

News for PGP 2.3a
There was a bug in PGP's handling of clear-signed messages when lines were terminated
with CR-LF pairs.    This has been revamped.    The previous limit on the length of lines in
clear-signed messages has been eliminated.

The randseed.bin file was not closed when read, which resulted in it not being rewritten
with a new value under some operating systems. Fixed.

Not all of the bytes in randseed.bin were being used, resulting in less randomness than
desired when picking session keys.    While it did not make the compromise of session keys
likely, it was undesirable and has been fixed.

PGP should now compile with less difficulty under OS/2. The Turbo C makefile was
incorrect.    Fixed.
The VMS build files were out of date.    Fixed.

PGP was not accepting octal escapes in the language.txt file that did not begin with \0.    \
377 is now acceptable. The language.txt file got mangled in the middle somehow.    Fixed.

News for PGP 2.3

This PGP 2.3 release has several bug fixes over PGP 2.2, and a few new (although
somewhat esoteric) features.    Among them are:

- An important bug: there was a bug with compression under MS-DOS which caused the
wrong piece of memory to be freed, with results that ranged    from none to undecodable
messages to machine crashes.

- When adding keys, PGP now properly closes all the files it opens, so    you don't run out of
file handles (MS-DOS) or file descriptors (UNIX).

- Sometimes PGP would not properly ask the user to set trust parameters    when keys were
validated by adding new signatures.    This has been    fixed.

- When PGP messages are sent through a MIME mail system, a conflict    arises over the
use of the '=' character.    PGP can now decode ASCII    armored messages which have been
mangled by MIME's quoting mechanism.

- PGP previously kept track of one pass phrase (from the PGPPASS    environment variable,
the file descriptor named by the PGPPASSFD    environment variable, a -z <password>
option, or previous user
    prompts), and tried it if it needed a subsequent pass phrase.    This    caused bugs if you
attempted something that required two pass phrases,    such as pgp -sc (sign and
conventionally encrypt).    PGP now keeps    track of any number of pass phrases, including
multiple -z options,    and uses them as necessary.    Mostly, it just Does The Right Thing,   
but if you care, the exact algorithm is as follows:

    - There is a pool of private-key pass phrases that starts out with the contents of the
PGPPASS environment variable (if any), and has every pass phrase that is successfully
used to unlock a private key added to it.    When a private key needs unlocking, every pass
phrase in the
 pool is tried first.

    - There is a list of PGP pass phrases available for use by whatever needs one.    This is
initialized with the -z command-line options and the phrase read from the PGPPASSFD file

descriptor.    When a pass phrase is needed, it is taken from the front of that list.    When a
pass phrase is needed to unlock a secret key, every key on the list is tried, and if it "fits"
and unlocks the secret key, it is moved to the key    pass phrase pool.

    - If the above fails to produce a pass phrase, the user is prompted to supply one.

    Key generation (we need all the keystrokes we can get for random-number
accumulation) and key signing (to make sure the user really means to do what they're
doing) are exceptions; the user is always prompted for a pass phrase under those
circumstances.

New options:

+pkcs_compat=n
This defaults to 1, which tells PGP to generate encryption key and signature blocks

in a format derived from the PKCS standards.    This format is understood (but not
generated) by PGP 2.2.    If set to 0, the old format is generated, which may be needed for
portability to PGP versions before 2.2.    PGP is still incompatible with the PKCS standards in
many ways, but in future, values of 2 or higher may be used to produce formats which are
more compatible.

Other notes:

The MS-DOS executable was compiled with Borland C++ version 3.0, optimized for
maximum speed, except that jump optimisation was turned off.    If it is turned on, the
Transform() function in md5.c is compiled incorrectly. The pgp.prj file that was used is
included in the source distribution.

Thanks to everyone who worked on PGP and sent in bug reports.    Two who didn't make it
into the manual are to Lindsay DuBois for a bit of last- minute translation, and Reptilian
Research for support in developing PGP.

And thanks to the Cypherpunks who managed to get PGP so much attention in Wired
magazine recently.

I hope you enjoy PGP!

-Colin <colin@nyx.cs.du.edu>

News for PGP 2.2
The main change since PGP 2.1 is a speedup in key management, and the ability to
encrypt for more than one recipient.    Apart from this there are some bugfixes and some
new options to make it easier
to use PGP from shell scripts or mailers.

You can encrypt for more than one recipient by specifying additional userids on the
command line eg:

pgp -e plaintext Alice Bob Carol

Some notes about the changes:

- PGP doesn't do a keycheck on a keyfile before it is added anymore, this is to speed up
merging a big keyfile with your public keyring which may already have most of the keys in
the keyfile you are adding.    After PGP has checked a signature it sets a flag in your public
keyring to mark this signature as checked.    Because PGP 2.1 didn't have these flags, PGP
will check *all* signatures on your keyring the first time
you add a key with PGP 2.2.    After that PGP will only check new signatures.    Also by using
an older version than 2.2 on your keyring you will clear these flags again.

New options:

+interactive
If you add a keyfile, PGP will ask for each new key if it should be added to your

keyring.

Options for use in shell scripts:

+verbose=n
The default is 1.    With +verbose=0, PGP will only print an error message if

something goes wrong.    With +verbose=2, PGP will tell you what it's doing in detail
suitable for debugging.

+force
Overwrite output file without asking, or with -kr: remove key without asking (only if it

has just one userid).

+batchmode
With this option PGP won't ask any questions or prompt for alternate file names.   

Some of the key commands still need user interaction and can't be done from a shell
script. You can also use this option to check if a file has a good signature.    If the input file
did not have a signature the exit code will be 1, if the file had a signature and if it checked
OK the exit code will be 0.    Note that if the input file has more than one armored
messages, a good signature on one of these messages will make the exit code 0 (if there
are no errors).

These "long" options can be abbreviated as long as the abbreviation is unambiguous.   
"interactive" and "verbose" can also be set in config.txt; you can then turn these flags off
on the command line with +option=.

Some of the bug fixes:

- Key lookup on keyID (eg 0x12AB) fixed for -ks/-krs.
- Dearmoring of Macintosh type text files (CR only) now also works.

