
1

Splot Manual

T.W. Steiner

1994

2

THIS PROGRAM WAS WRITTEN BY THOMAS W. STEINER.

COPYRIGHT 1992 - 1994, ALL RIGHTS RESERVED.

THERE IS NO WARRANTY OF ANY KIND. USE AT YOUR OWN RISK.

THIS IS NOT FREEWARE. TO REGISTER YOUR COPY SEND $50 TO

T.W. Steiner, 312 - 1230 Haro St.

Vancouver, BC, V6E - 4j9, Canada

e-mail steiner@sfu.ca

Contents

1 Introduction 5

2 Using Splot 7

2.1 Splot Basics - Getting Started : 7

2.1.1 Making a Drawing : 9

2.1.2 Making Plots : 10

2.1.3 Using The Mouse : 10

2.1.4 Actions Associated with the Mouse Buttons : 11

2.1.5 Hard Copy : 11

2.2 Miscellaneous notes : 11

2.3 Carrying On : 13

2.3.1 Text : 13

2.3.2 Symbols : 24

2.3.3 Gsave/Grestore : 24

2.3.4 Insets : 26

2.3.5 Tick Marks and Tick Labels : 30

2.3.6 clipping : 31

2.3.7 units : 31

3 Hardware Requirements and Installation 33

4 Splot Library Functions 35

4.1 Drawing Library Reference : 35

4.1.1 Drawing Functions : 35

4.1.2 `set' Functions : 42

4.2 Standard C Function Library Reference : 45

5 Sample Programs 49

5.1 simple.spt : 49

5.2 simple2.spt : 50

5.3 simple3.spt : 50

5.4 inverax.spt : 51

5.5 errorbar.spt : 52

5.6 manyspec.spt : 53

5.7 invisax.spt : 56

5.8 landscap.spt : 61

5.9 intcalc.spt : 63

5.10 linedraw.spt : 66

5.11 multplot.spt : 73

6 Splot De�nitions 77

3

4 CONTENTS

7 Setable Parameters 81

8 Editor 83

8.1 Basics : 83

8.2 Block manipulations : 85

8.3 Macros : 85

8.4 Command Line : 86

8.5 con�guration �le : 88

9 Acknowledgements 89

Chapter 1

Introduction

Scienti�c plotting programs fall into two main categories. The �rst is the non interactive type repre-

sented by most mainframe plotting programs which require that the plot be speci�ed as a �le of plotting

instructions. This �le is edited using a text editor and then the plot is generated by executing this �le.

The second major type of plotting programs are those popularized on PCs which allow a user to specify

the drawing using a mouse and are inherently interactive. This type of program is easier to use and

it is possible to rapidly make changes. It is however not ideal since the drawing is usually stored in a

proprietary, non-text format which is di�cult to interpret. This makes the task of reusing parts of a

previous drawing in a new drawing or simply plotting new data in an old �gure di�cult or impossible.

Furthermore, these programs invariably do not have the
exibility to handle the needs of preparing sci-

enti�c plots. Splot has been developed with the goal of bridging these two disparate approaches in an

attempt to gain the bene�ts of both.

Splot is geared towards generating two dimensional, publication quality scienti�c plots as painlessly as

possible without sacri�cing
exibility and power. Splot contains much of the functionality of Postscript

TM

and can thus be used as a general purpose drawing tool. Furthermore, it has functions speci�cally aimed

at producing plots of x,y data pairs. Splot generates a drawing by interpreting a C program which

speci�es the drawing. Unlike traditional mainframe plotting programs this happens quickly since the

interpreter and editor are integrated into splot. Specifying the plot in a powerful programming language

has several advantages. Since C is currently the most popular programming language in existence many

people will already be familiar with its use. This makes C a much better choice than developing a

specialized language to be interpreted. Having the drawing speci�ed by a programming language also

gives algorithmic capabilities thus allowing repetitive components of a drawing to be generated using a

standard loop construct. Data to be plotted can also be manipulated before drawing using the built in

standard C math library. C also allows parts of a drawing that are to be used more than once to be

speci�ed as a subroutine. This sub component can then be drawn anywhere in the �nal drawing by �rst

specifying a translation, scale and rotation and then calling the subroutine. Lastly, the description of the

drawing is in plain ASCII text allowing it to be easily understood and transferred electronically. Splot

contains a built in drawing and plotting function library whose members are called by the C interpreter

to generate the drawing.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Using Splot

2.1 Splot Basics - Getting Started

When splot is started the user is presented with two windows. The left window is the drawing area where

the image will be drawn. On the right is a text window were the C program specifying the drawing can be

displayed. The text is edited using the built in 'e' editor and the drawing is generated by `executing' the

�le, i.e. by hitting CTRL G or selecting the menu item `exec' at the top. Splot can be used for drawing,

graphing data or both, and since it is basically C programming, has essentially all the C programming

capabilities. To introduce you to the program and demonstrate the basic concept, three simple examples

are given below. To begin, an example of a simple splot program to read in and plot a data �le using

splot default parameters is given. The resultant drawing is shown next to it.

/* demo of simplest possible data */

/* plotting using all the defaults */

#include <splot.h>

double *data;

main()

{

readdata("demo\data1.dat",data);

plotdata(data);

label(LOWER,"Position");

label(LEFT,"Wavelength in !m!m");

text(6.20,22.98,"Mepsicron Calibration");

}

7

8 CHAPTER 2. USING SPLOT

Here is a simple example of a drawing using some of the built-in functions and the corresponding drawing.

/* file basic.spt */

/* Demo of a simple drawing using */

/* some built-in functions */

#include <splot.h>

main()

{

/* draw two boxes */

box(6.0,20.0,11.0,16.0);

box(6.5,19.5,8.5,18.0);

stroke();

/* draw two circles */

/* input coordinates with mouse */

arc(5.95,10.91,2.0,0,360);

stroke();

arc(8.96,10.73,1.0,0,360);

stroke();

/* draw a triangle */

moveto(7.0,5.0);

lineto(9.0,7.0);

lineto(11.0,5.0);

lineto(7.0,5.0);

stroke();

/* add some text */

text(4.45,23.22,"Basic Drawing using defaults");

}

Lastly, here is an example using some C programming capabilities such as loops.

/* This demo file shows the available symbols */

/* which can be used for data points. Symbols names */

/* equating to the numerical constants are defined */

/* in splot.h */

#include "splot.h"

main()

{

int i;

/* make the symbols large. Since they are just a special font */

/* make the font width large. */

set(FONTWIDTH,4);

/* change the symbol orientation just for fun */

set(FONTDIR,30);

moveto(1,1);

/* show all 17 symbols in a diagonal line */

for (i = 0;i < 17;i++)

{

/* use a relative move here */

2.1. SPLOT BASICS - GETTING STARTED 9

rmoveto(1,1);

symbol(i);

}

/* try other form of symbol */

set(SYMMULT,2);

symbol(4,12,OSTAR);

set(SYMMULT,0.5);

/* add some extra arrows to illustrate the */

/* arrowto() function */

moveto(3.82,17.19);

arrowto(7.96,15.68);

arrowto(10.21,19.72);

rarrowto(3,0);

stroke();

}

There are two ways a drawing can be made.

1 . by typing in a C program text �le using the built-in editor.

2 . by using the mouse and pull-down menus to insert commands into the text �le (see section 2.1.3).

Depending on which is more convenient for the task at hand, one can either draw interactively with the

mouse or enter text. The drawing is only generated upon execution of the text �le.

The text editor that is built into Splot is a fully featured editor with some very powerful capabilities.

Ordinary operation should, however, be very intuitive. For a description of the text editor component

of Splot refer to Chapter 8. Only a brief introduction to give you the basics to get going is presented

here. The text cursor represented by an underscore in the text window can be moved using the arrow key

pad or the mouse. Clicking the left mouse button positions the text cursor at the mouse cursor location.

Scrolling is accomplished with the page up/down keys or by clicking on the scroll �elds along the right

side of the text window. A �le is written to disk with the name speci�ed on the highlighted status line

at the bottom of the text window with a CTRL W (write) command (or use the save menu item). To

remove a �le use the CTRL Q (quit) command (or use the quit menu item). Splot itself terminates when

the last �le is removed. To add a new �le to the ring of �les to be edited or executed type '<esc> e

file.nam' where �le.nam is the name of the desired �le or select the open menu item.

2.1.1 Making a Drawing

In order to make a drawing it is useful to understand the underlying philosophy which is based on the

postscript imaging model. A very brief introduction to the postscript imaging model will be presented

here. To make a postscript like drawing it is �rst necessary to generate a current path. A path is built

using functions such as moveto(x1,y1); and lineto(x2,y2);. These functions by themselves do not

cause anything to appear on the page. Once a current path is speci�ed then it can be stroked or �lled. A

path is stroked to the page using the current line width, style, and colour with the stroke(); function.

This function also resets the current path to null. The current values of width etc. are set using the

set(attribute,value); function were it is advisable to use the prede�ned values in splot.h for the

attributes and values to improve readability of the code (The easiest thing is to select them from the

pull down menu). Alternatively a closed current path can be �lled with the current colour using the

10 CHAPTER 2. USING SPLOT

fill(); command. This also resets the current path to null. At this point a virtual page in memory

has been marked but the actual physical page has not yet been a�ected. This allows subsequent drawing

commands to draw over what is already there. The "paint" is in e�ect opaque. This means that it is

possible to draw over something with the colour set to white and in e�ect white it out. This can be put

to good use for �xing blemishes as shown in some of the example �les. The virtual page is transferred to

the physical page using the showpage(); or function or at the end of �le execution by default. However,

only things within the current clip window are transferred to the physical page. The crucial points to

remember are that in order to see anything on the physical page (either on the screen or a printer page) a

path must �rst be stroked or �lled and then �nally transferred using showpage();. This imaging model

is very powerful and allows essentially anything to be drawn given the a suite of path building functions.

More details on these and other postscript issues can be found in a standard postscript reference.

2.1.2 Making Plots

Splot also contains some custom functions specialized for generating scienti�c plots. These, such as

plotdata();, depart from the postscript model in the sense that they are implicitly stroked. Implicitly

stroked functions do not require a stroke(); in order to mark the page. It is possible to override implicit

stroking by starting with a newpath(); command.

There is a function called readdata(); which reads in tabular data from a data �le into an array. The

data �le must be in ASCII format with one line per data point with the x, y and optional error values each

in separate columns. This data can then be drawn inside an axes box using plotdata(); if the default

tick positions, size and labelling are acceptable. Alternatively, custom axes boxes, tick marks and labels

can be generated using the axes box();, tickmarks();, and ticklabel(); commands followed by a

drawdata(); or plotdata(); to draw the data points found in the data array. The di�erence between

drawdata(); and plotdata(); is that plotdata(); will pick default values for the axes box, tickmarks

or ticklabels if not previously explicitly speci�ed. The plotted data uses the current line colour, style and

width to connect the data points if an ordinary plot was selected. Alternatively, the current symbol can

be drawn at each data point. There is a function which automatically draws error bars as well as one

which �ts and draws the best straight line to a set of data points. The data points actually plotted are

easily restricted to those within a range of x or y values. The data can also easily be shifted and scaled

before plotting.

2.1.3 Using The Mouse

Clicking the left mouse button on a window changes the current focus if the window does not already

have the input focus. On the drawing window the left mouse button is also used to draw the rubber

zoom box by holding down the left mouse button. In the editor window double clicking brings up help

for the item under the cursor. Help exists for function names, constants and global data values. Double

clicking the left mouse button with the mouse on the drawing page inserts the current x,y coordinates

into the text �le at the current text cursor location. If the mouse was positioned at the beginning of

a coordinate pair that coordinate pair is replaced with the new one. If the mouse cursor is in the text

region then hitting the left mouse button will move the current text cursor to the mouse cursor location.

The left mouse button is also used to select items in drop down menus.

The right mouse button is used for highlighting elements of a drawing. If the mouse cursor is on top

of a displayed element on the drawing page and the right mouse button is hit then the corresponding

element is highlighted and the text cursor jumps to the corresponding line in the text that generated

that element. Conversely, if the mouse cursor is on the text window hitting the right mouse button will

highlight any graphics elements generated by the line under the mouse cursor. This feature is very useful

for �nding the code associated with a particular element of a drawing or the reverse. For the pull down

selection lists, the right mouse button opens a help window for those items for which help is available.

When the mouse cursor is on the drawing page the current coordinates are printed at the top. The

units and origin used are those in e�ect at the end of the last program execution. The default units are

2.2. MISCELLANEOUS NOTES 11

cm with the origin in the bottom left corner of the page. Pressing the middle mouse button (or both the

left and right mouse buttons together on two button mice) with the mouse pointer on the drawing page

causes the current coordinate reference point to be reset so that the status line subsequently reports the

distance from this point if the relative option has been selected from the misc menu.

2.1.4 Actions Associated with the Mouse Buttons

There are several mouse menu buttons along the top of the plot window. The action of these buttons

is as follows. Starting at the left top there are four buttons labelled 'draw', 'sopt', 'slib' and 'keyw'.

These activate drop down menus which allow a function to be selected and inserted into the text. The

'draw' functions are a suite of drawing routines which cause lines, arcs, text etc. to be drawn to the

page. The 'sopt' menu is a list of textual names for numerical constants which are used in conjunction

with the set(); command to change attributes of the current graphics state such as the current colour,

line width, line style, axes type, etc. Choosing set from the list of drawing functions automatically opens

a menu with only an appropriate subset of these and is the recommended approach. The 'slib' button

allows selection of a standard C library function. Most of these are math functions such as sin() and

will not be required for making ordinary plots. They are however useful for manipulating data before

plotting or generating data mathematically all from within Splot. The last button of this group 'keyw'

opens a list of C keywords for selection. The only one of these that is of interest for ordinary plots is

'main'. Every �le that generates a plot or drawing must start with

#include <splot.h>

main

{

/* list of drawing commands go here between the braces on as many */

/* lines as necessary */

}

This is all automatically inserted in the text by selecting 'main'. The remaining keywords in this list are

only of interest when constructing loops or branches. Note that the actual text inserted for the draw, slib

and keyw menu choices can be customized by editing the corresponding macros in the splot.cfg startup

�le.8.5

The next set of menu buttons along the top are concerned with displaying the drawing. The default

size of the drawing is one which �ts on a standard 8 x 11 inch piece of paper if printed. However, as the

screen resolution is not as good as that of printers it is possible to zoom in on part of a drawing in order

to get a better view.

2.1.5 Hard Copy

In order to send a graph to the printer select the print option in the �le menu of the editor window.

Output can be directed to a �le by opening the printer settings notebook and selecting 'print to �le' Hard

copy is device independent and relies on the OS/2 printer drivers. Splot can also generate encapsulated

postscript (.eps) �les of a �gure for inclusion in a document. It is better to let Splot generate an .eps �le

rather than to rely on a postscript printer driver with the output directed to a �le as the Splot generated

�le is much smaller. Splot also adds the required %%BoundingBox statement to the generated ps �le as

required for encapsulated postscript �les.

2.2 Miscellaneous notes

A drawing can be made in either of two ways. First the drawing can be speci�ed by simply typing in a C

program using the built in editor. Of course with this editor it is easy to import components of previous

12 CHAPTER 2. USING SPLOT

drawings. A drawing can however also be made using the mouse. First the desired drawing function

is selected using the drop down menus on the top row. There are menu buttons for the C keywords,

drawing functions, miscellaneous functions, and the de�ned constants. Selecting an item causes it to

be inserted in the text at the current text cursor position. Many functions require coordinate points as

parameters. These can be entered by moving the mouse to the desired location on the drawing page and

double clicking the left mouse button. if the text cursor is currently located at the start of a coordinate

pair, that coordinate pair is erased and replaced with a new coordinate when the left mouse button is

doubled clicked. In this way it is possible to draw interactively with the mouse or by entering text which

ever is more convenient for the task at hand. Parameter errors are not detected until the �le is executed

using CTRL G or the 'exec' menu button.

2.3. CARRYING ON 13

2.3 Carrying On

2.3.1 Text

Text can be added to a �gure using the text(); command. The �rst two parameters are a coordinate

pair giving the position at which the text should start. For subsequent lines of text the coordinates can

be omitted in which case the line is positioned below the previous line. The third parameter is the actual

text to be printed. There is also an optional fourth parameter which allows the text to be centered on

the coordinates or end at the coordinates. Specialized text labels are also generated using the label();

and ticklabel(); commands and the following discussion applies to them as well.

The appearance of the text is a�ected by several set-able parameters. The size of the letters is deter-

mined by set(FONTWIDTH , size in cm); while the ratio of height to width is set using set(FONTASPECT

, height div width);. Alternatively, the size of the text can be changed from its current value by using

set(FONTMULT , multiplier);. The spacing between letters can be modi�ed using set(FONTSPACE ,

space in cm);. The text is ordinarily printed horizontally but this may be changed by using set(FONTDIR

, angle in deg);. The width of the line used to draw the text is set using set(LINEWIDTH , width);

and the colour is set using set(LINECOLOUR , colour number);. The text is printed using Hershey

stroked fonts. There are two available font families simplex and complex. The complex font is chosen

using set(FONT , COMPLEX);. Greek and Italic text is selected by using special characters in the text

string. Thus Greek may be selected by enclosing a string with ' !' as in ' !abc! while italics are selected

using '#'. Super and sub scripts are handled in the same way by enclosing the super/sub script with '^'

or ' ' respectively. The position and size of the super/sub script relative to ordinary text may be modi�ed

using the set(SCRIPTSCALE , ratio); and set(SCRIPTSHIFT , fraction); commands respectively.

Characters from the symbol font may be included in the text string by enclosing the symbol number with

'$'.

The various text possibilities are explored in the two following demo �les. The third demo �le is a

table of all the available text characters included in the font �les.

/* This file illustrates some of the capabilities of the */

/* text() command to annotate figures */

/* Several fonts are available including full Greek. */

/* Text can be any size, orientation and colour. */

#include <splot.h>

main()

{

text(2.63,23,"The default position for the next line");

/* change to complex font for next line */

set(FONT,COMPLEX);

text("right below the previous line");

set(FONT,SIMPLEX);

text("There is a complete set of Greek characters");

text("!abcdefghijklmnopqrstuvxyz!");

set(FONT,COMPLEX);

text("!ABCDEFGHIJKLMNOPQRSTUVWXYZ!");

set(FONT,SIMPLEX);

set(LINECOLOUR,GREEN);

/* optional change of script scale and position */

set(SCRIPTSCALE,1);

set(SCRIPTSHIFT,1);

text("Here are ^super^ and _sub_ scripts");

set(LINECOLOUR,RED);

text("and #Italics# in different colours");

14 CHAPTER 2. USING SPLOT

set(LINECOLOUR,BLACK);

text("Letters can be large, small, tall, short");

text("fat, thin, vertical and angled.");

set(FONTMULT,2);

text(2.94,9.56,"Large");

set(FONTMULT,0.30);

text(8.90,9.71,"small");

set(FONTWIDTH,1.0);

set(FONTASPECT,3);

text(13.10,9.71,"Tall");

set(FONTASPECT,0.5);

text(17.05,9.71,"Short");

set(FONTASPECT,2);

set(LINEWIDTH,0.01);

text(2.94,7.29,"Thin");

set(LINEWIDTH,0.2);

text(9.02,7.29,"Fat");

set(LINEWIDTH,0.05);

set(FONTDIR,90);

text(3.63,1.26,"Vertical");

set(FONTDIR,130);

text(11.28,1.44,"Angled");

}

2.3. CARRYING ON 15

16 CHAPTER 2. USING SPLOT

/* This file illustrates some of the capabilities of the */

/* text() command to annotate figures */

#include <splot.h>

main()

{

text(2,23,"The spacing between letters can be changed");

set(FONTSPACE,0.5);

text("to be further apart than usual");

set(FONTSPACE,-0.2);

text("or closer together.");

set(FONTSPACE,0);

text("The size and position of super/sub scripts can");

text(2,17.38,"be varied as in");

set(SCRIPTSHIFT,0.7);

set(SCRIPTSCALE,0.5);

text(8.94,17.38,"X_1_\b^2^,");

set(SCRIPTSHIFT,1.0);

set(SCRIPTSCALE,0.7);

text(10.19,17.38,"X_1_\b^2^,");

set(SCRIPTSHIFT,1.5);

set(SCRIPTSCALE,1.0);

text(11.4,17.38,"X_1_\b^2^.");

text(2.10,15.81,"Note how the superscript was placed above");

text("the subscript using the backspace char \\b.");

text("Enter degree sign using '<ALT X> 127'");

text("Use a \\ before special characters: _\^\$\#\!\"");

text("Symbols: $0 1 2 3 4 5 6 7 8 9 : ; < = > $");

text(2,8,"The default text insertion point is LEFT");

text(17,6,"but can be set to RIGHT",RIGHT);

text(10,4,"Or CENTER",CENTER);

}

2.3. CARRYING ON 17

18 CHAPTER 2. USING SPLOT

/* This file displays all the available characters */

#include <splot.h>

#define ROMAN 1

#define GREEK 0

#define ITALIC 0

int i,j;

char c[10];

main()

{

set(PAGEROT,ON);

#if ROMAN

text(13.67,19.14,"Roman",CENTER);

text(7.5,18,"Simplex",CENTER);

text(19,18,"Complex",CENTER);

gsave();

scale(1.2,1.2);

translate(1,-11);

set(FONTWIDTH,0.5);

set(FONTASPECT,1.5);

table(0);

translate(10,0);

set(FONT,COMPLEX);

table(0);

set(FONT,SIMPLEX);

#endif

#if GREEK

text(13.67,19.14,"Greek",CENTER);

text(7.5,18,"Simplex",CENTER);

text(19,18,"Complex",CENTER);

gsave();

scale(1.2,1.2);

translate(1,-11);

set(FONTWIDTH,0.5);

set(FONTASPECT,1.5);

table(1);

translate(10,0);

set(FONT,COMPLEX);

table(1);

set(FONT,SIMPLEX);

#endif

#if ITALIC

text(7.5,18,"Italics Simplex/Complex",CENTER);

text(19,18,"Symbols",CENTER);

gsave();

scale(1.2,1.2);

translate(1,-11);

set(FONTWIDTH,0.5);

set(FONTASPECT,1.5);

table(2);

translate(10,0);

2.3. CARRYING ON 19

table(3);

#endif

grestore();

}

table(int special)

{

/* label rows and columns */

c[1] = '\0';

for (i = 0; i < 10;i++)

{

c[0] = '0' + i;

tputs(2 + i * 0.7,24.5,c,0);

}

c[0] = ' ';

c[2] = '0';

c[3] = '\0';

for (j = 3;j < 10;j++)

{

c[1] = '0' + j;

tputs(0,26 - j,c,0);

}

c[0] = '1';

c[2] = '0';

c[3] = '\0';

for (j = 10;j < 13;j++)

{

c[1] = '0' + j - 10;

tputs(0,26 - j,c,0);

}

/* prepend each char with '\' so that even special chars get printed */

c[0] = '\\';

c[2] = '\0';

box(1.29,23.77,9.07,13.36);

stroke();

/* fill in table */

for (j = 3;j < 13;j++)

{

for (i = 0; i < 10;i++)

{

c[1] = j * 10 + i;

if (c[1] == 'b')

tputs(2 + i * 0.7,26 - j,"b",special);

else

tputs(2 + i * 0.7,26 -j,c,special);

}

}

}

tputs(double x,double y,char *c,int special)

{

char tmp[10];

20 CHAPTER 2. USING SPLOT

switch(special)

{

case 0:

text(x,y,c);

break;

case 1:

/* greek */

strcpy(tmp,"!");

strcat(tmp,c);

strcat(tmp,"!");

text(x,y,tmp);

break;

case 2:

/* italics */

strcpy(tmp,"#");

strcat(tmp,c);

strcat(tmp,"#");

text(x,y,tmp);

break;

case 3:

/* symbols */

strcpy(tmp,"$");

strcat(tmp,c);

strcat(tmp,"$");

text(x,y,tmp);

break;

}

}

2.3. CARRYING ON 21

22 CHAPTER 2. USING SPLOT

2.3. CARRYING ON 23

24 CHAPTER 2. USING SPLOT

2.3.2 Symbols

Symbols can optionally be drawn at every data point by setting set(PLOTTYPE , SYMBOLS); or set(

PLOTTYPE , SYM LINES);. The actual symbol used is set using set(CURSYMBOL , sym number); Sym-

bols are just a special font and much of the above discussion on how to change a letter's appearance

applies also to symbols. There is, however, no complex version of the symbols. Additionally, the size

of the symbols can be adjusted relative to the current font size using set(SYMMULT ,multiplier);.

Symbols can also be drawn independent of drawdata(); at an arbitrary location by using symbol(x ,

y , sym number);. For an example of the symbol capabilities consult the last example of the previous

chapter. Symbols may also be included in text strings drawn with text(); by enclosing the symbol

number with '$' in the text string.

2.3.3 Gsave/Grestore

The pair of functions gsave(); and grestore(); are useful for a variety of purposes. gsave(); stores

the complete graphics state including the currently de�ned path while grestore(); restores the state to

the last saved state. Each grestore(); must have a matching gsave(); preceding it.

The simplest use for this pair is to restore the initial state after translations and scaling. This often

comes up in composite �gures that are constructed from other existing picture. The composite is built by

setting translations and scale factors for each component and then drawing the component. If a gsave();

was done at the beginning then a grestore(); can be done after drawing the components to restore the

initial scale and translation. This can be useful for adding annotations to the �nal composite �gure.

It is also possible to use gsave/grestore to repeatedly draw a given path since the currently de�ned

path is also saved. In the following example a path is de�ned, saved (using gsave();), �lled, restored

(using grestore();) and then �nally stroked. Filling and stroking the same path causes the �lled region

to have a border drawn in the current line colour and style.

#include <splot.h>

/* This is a region filling example */

int i;

main()

{

set(LINEWIDTH,0.1);

translate(10,15);

for (i=0;i < 8;i++)

{

set(LINECOLOUR,i);

leaf();

rotate(45);

}

}

int leaf()

{

arc(3.1,3.38896,0.4,0,360);

moveto(0,0);

curveto(3.38924,0.598051,3.18987,3.85411,5.91456,6.11341);

curveto(2.06013,5.44891,2.52532,1.5948,0,0);

closepath();

gsave();

fill();

