
XText: An Extensible Text Object

This package defines a subclass of the Appkit's Text object that is designed to allow the easy 
addition of new key bindings, both by application programmers and end users.    It also 
provides a reasonably comprehensive set of initial key bindings, based largely on those of 
emacs.

What it looks like to the end user
Here's a scenario of the functionality XText could provide to the user of a hypothetical mail-
reading program.

First, the user can specify custom key bindings that will be available in all programs based on 
XText.    For example, if you wanted ctrl-shift-K to delete to the beginning of the current line, 
and alt-: to add a `:' and new line after the next word, you could say

dwrite -g KeyBindings "c'K=lineBegin:1; a':={moveWord:1 mode:0;
replaceSel:\":\n\"}"

Of course, if you want key bindings that are specific to a particular application you can replace 
the `-g' with the name of the application.    (Read the man page for dwrite if you're unfamiliar 
with it.)

If    you would rather define all your own key bindings from scratch, rather than starting with 
the emacs base set, you can say

dwrite -g KeyBase none



Second, the mail program might define its own subclasses of XText with methods on them 
specialized to the particular requirements of a mail program, and use XText to assign 
appropriate bindings to each.    For example, it might define one subclass for the message 
display window, and bind `n' and `p' to move to the next and previous messages.    (Since this 
XText object is read-only, it will already have space and delete bound to forward and backward 
page scrolling.)

Finally, the user can specify additional bindings specific to each of these window types, that 
invoke their specialized methods.    For example, to bind ctrl-c to the sendMessage method, you
could just say

dwrite Mail SendWindowBindings "c'c=sendMessage"

What it looks like to the application programmer
There are a few steps required by the application programmer to use XText in this scenario.

First, occurrences of [Text alloc] must be replaced with [XText alloc].    If you're using IB to 
construct your Text objects it currently provides no clean way to make a ScrollView containing 
something other than a Text, so there is a support class XTScroller that provides just that Ð 
simply replace your ScrollViews with XTScroller custom views and the XTexts will be 
constructed automatically.    (This could probably also have been handled by a custom palette, 
but I haven't tried to figure those out yet).    These newly-created XText objects will behave just 
like Text objects; in particular, they will have no key bindings yet.

Second, you need to construct a ªdispatch actionº to store the key bindings in; the code will 
look something like this:

id action = [[XTDispatchAction alloc]



initBase:NXGetDefaultValue("myApp","KeyBase")
estream:nil];

The second argument to initBase:estream: is an object of class ErrorStream; this allows you to 
control the reporting of errors, but the default error stream (which just pops up an alert panel 
with the message) is usually adequate.

Third, you want to add in the user's custom key bindings:
[action addBindings:NXGetDefaultValue("myApp","KeyBindings")

estream:nil];

To have special bindings for some XTexts (like the message window), copy this action and add 
them in:

id msgAction = [[action copy]
addBindings:"'n=changeMsg:1; 'p=changeMsg:-1"
estream:nil];

(This assumes you've defined a subclass of XText with a changeMsg: method.)    Then add in 
any custom user bindings for message windows:

[msgaction addBindings:NXGetDefaultValue("myApp","MsgWindowBindings")
      estream:nil];

Finally, attach these actions to the appropriate XText objects (each action can be shared by 
many XTexts):

[simple_XText setInitialAction:action];
[msg_XText setInitialAction:msgAction];



¼ and you're done.

One more thing: if you've got windows with TextFields, you probably want the key bindings to 
work in them too.    To arrange this you'll have to provide a delegate for your window, with a 
windowWillReturnFieldEditor:toObject: method that looks like this:

- windowWillReturnFieldEditor:sender toObject:client
{

return [XText newFieldEditorFor:sender
            initialAction:action
            estream:nil];

}

The Format of Binding Specifications
The format used to specify bindings is:

A binding spec is a sequence of zero or more bindings, separated by `;'s
A binding is a key spec, followed by an `=', followed by an action
A key spec is a sequence of one or more key combinations, separated by `,'s
A key combination is a sequence of zero or more modifiers, followed by a key
A modifier is `c' (control), `s' (shift), `a' (alt), or `m' (command)
A key is a `'' followed by any character (designates the key that generates that 

character),
or a 2-digit hex key code, as documented in
/NextLibrary/Documentation/NextDev/Summaries/06_KeyInfo

An action is a message, or a sequence of actions separated by `;'s and enclosed in 
`{}'s



A message is something like `moveWord:-1 mode:1' or `replaceSel: "hi there\n"'
(at most two arguments, which must be either integers or strings)

Some examples:
c'w, a'h = moveWord:-1 mode:1
c'b=moveChar:-1 mode:0; c'B=moveChar:-1 mode:3

(c'B could also have been written as cs'b, or as cs35).
csam49={docBegin:0; moveWord:5 mode:2; docEnd:0; paste:0}

(makes ctrl-shift-alt-command-escape move the first five words to the end of the document!)

A Simple Testbed
This distribution also includes a very simple demonstration program, called XTDemo.    XTDemo
puts up a single window with an XText to play with, and an XText-backed text field in which you 
can enter new key bindings.

In addition, XTDemo adds a custom key binding so that ctrl-shift-Q inserts the key code for the 
next key you hit; for example, ctrl-shift-Q ctrl-alt-escape inserts the string `ca49'.

The Emacs base set
The key bindings provided in the default base set are:

Movement
ctrl-f, ctrl-b move one character forward / back
alt-f, alt-b move one word forward / back
ctrl-n, ctrl-p move one line down / up



ctrl-a, ctrl-e move to beginning / end of line
alt-<, alt-> move to beginning / end of document

Deletion
ctrl-d, del (or ctrl-h) delete next / previous character
alt-d, alt-del (or alt-h) delete next / previous word
ctrl-k delete to end of line

Selection
ctrl-shift-F, ctrl-shift-B extend selection one character forward / back
alt-shift-F, alt-shift-B extend selection one word forward / 

back
ctrl-shift-N, ctrl-shift-P extend selection one line down / up
ctrl-shift-A, ctrl-shift-E extend selection to beginning / end of line

Scrolling
ctrl-v, alt-shift-downarrow scroll one page forward
alt-v, alt-shift-uparrow scroll one page back
ctrl-shift-V, alt-shift-V scroll four lines forward / back
ctrl-alt-uparrow scroll to beginning of document
ctrl-alt-downarrow scroll to end of document
ctrl-l scroll to selection

Additional scrolling when editing disabled
space, del scroll one page forward / back
shift-space, shift-del scroll four lines forward / back



Miscellaneous
ctrl-t transpose characters
ctrl-o insert new line after caret
ctrl-space collapse selection
ctrl-q quote next key
ctrl-alt-q really quote next key

(Ctrl-q causes the next character to be handled directly by the underlying Text object, with no 
XText-supplied rebinding; for example,    ctrl-q alt-b inserts a sigma.    Ctrl-alt-q goes one step 
further and avoids any special handling that Text normally supplies for that key; for example, 
ctrl-alt-q downarrow causes a downarrow character to be inserted (you'll probably want to be in
the symbol font), and ctrl-alt-q return allows you to insert a newline in a text field.)

XText Status and Future
This should be thought of as a beta-test version of XText; although it has no known bugs, it has 
not been very heavily exercised.    In particular, I have not yet built it into any non-trivial 
programs.    I plan to maintain & use XText, but I also have a job and this isn't it.

XText is freeware; you are welcome to use it, modify it, and distribute it without restriction 
(although I would appreciate having my name kept on it).    It is copyrighted by my employer 
(Xerox), but only to prevent someone from claiming that it belongs to them.

Please do send me bug reports and suggestions, and let me know if you find it useful.    This is 
my first experience with objective-C and Interface Builder, so there is certainly room for 
improvement.



Anyone want to build a replacement for Edit using XText?

Mike Dixon
Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304
mdixon@parc.xerox.com


