
AMD 53C974/79C974 SCSI Driver Design Notes
        
1. General

This driver is primarily intended to be used with the AMD 79C974 PCnet-SCSI combo chip, which 
combines an Ethernet Controller, a SCSI Host Adapter, and a PCI Bus Interface module on one chip. 
This driver only controls the SCSI logic on the 79C974; a separate driver is used for the Ethernet 
logic. The driver also should work with the AMD 53C974, a subset of the 79C974. (This has not been 
tested as of 25 Jan, 1995.) The 53C974 is, in turn, a superset of the old NCR 53C90A chip, which was
the SCSI controller used on all NeXT ("Black") hardware.

This driver implements the following features:

· Disconnect/Reselect
· 10 MB/s "Fast SCSI" Synchronous Transfers
· SCSI-2 Command Queueing 
· Auto Request Sense



 
Synchronous Mode, Command Queueing, and Fast SCSI can be disabled and enabled for the driver 
as a whole via the driver instance's Instance table. There is a Custom Device Inspector used by the 
Configure App which allows the user to specify these parameters. Per-target disable flags for 
Command Queueing and Synchronous Mode are also kept for both of the features, so that if a target 
rejects an attempt to use the mode (typically via a "Message Reject" message), no further attempts 
will be made to use the feature with that target. Synchronous Transfer offset and period are also 
negotiated and kept on a per-target basis, per the SCSI-2 specification. 

2. Architecture
Unlike most other SCSI Host Adapter drivers for the Intel Platform, this driver is involved in a lot of 
low-level SCSI events, including dealing with phase changes, setting ATN at appropriate times, doing
synchronous transfer negotiation, etc. The driver has to maintain quite a bit of state to keep track of
what is occurring on the bus and typically responds to 3 or 4 interrupts for every SCSI command.

The driver is implemented as a subclass of IOSCSIController called AMD_SCSI. 



IOSCSIController is a subclass of IODirectDevice. The IODirectDevice categories 
IOEISADirectDevice and IOPCIDirectDevice are also used by AMD_SCSI.

Control Flow and the I/O thread
The control flow in the driver is the same as for all other NextStep SCSI drivers - all access to the 
hardware is done by one thread, the I/O thread. This eliminates the need for locks around accesses 
to the hardware and other critical resources. All communication with the I/O thread by exported 
methods is performed by passing a command struct, called a commandBuf, to the I/O thread via 
the instance variable commandQ. CommandQ is protected by commandLock. After enqueueing a 
commandBuf on commandQ, a message with a msg_id of IO_COMMAND_MSG is sent to the 
driver's interrupt port. The I/O thread is the only code which does a msg_receive() on the 
interrupt port. Subsequent to initialization, commandQ and commandLock are the only data shared 
by exported methods and the I/O thread.

I/O complete notification is performed via commandBuf.cmdLock, which is an 



NXConditionLock. Exported methods wait on this lock after passing a commandBuf to the I/O 
thread. 

Subsequent to initialization, the only methods in the driver which do not run solely as part of the 
I/O thread are:

-executeRequest:buffer:client:
-resetSCSIBus
-resetStats
-numQueueSamples
-sumQueueLengths
-maxQueueLength
-executeCmdBuf

 
These are all found in AMD_SCSI.m. (Note: unless otherwise indicated, all files referred to in this 
document reside in the AMD53C974SCSIDriver_reloc.tproj directory of the driver project.) The first 
two methods are exported methods used for normal SCSI I/O and are called by indirect SCSI devices 



like SCSIDisk and SCSITape. The next four are associated with gathering statistics and are called 
from IOSCSIController. The last one, -executeCmdBuf, is the common means by which -
executeRequest:buffer:client: and -resetSCSIBus pass commandBufs to the I/O 
thread and wait for completion.

Processing of commands by the I/O thread
The I/O thread's job is basically to dequeue commands from commandQ, start up SCSI transactions 
on the 79C974, and deal with interrupts. All of the msg_receive()s which fetch command 
requests and interrupt events from the driver's interrupt port are done by IODirectDevice's I/O 
Thread. If a command message is received, IODirectDevice calls -
commandRequestOccurred. If an interrupt message is received, -interruptOccurred is 
called. Both of these methods are implemented by the AMD_SCSI class. 

When an exported method passes a commandBuf to the I/O thread, it is quite possible that the I/O 
thread can not immediately process the command due to the fact that there is already a command 



active on the SCSI bus at that time. If this occurs, the incoming command is enqueued on 
pendingQ. (Note that the decision as to whether a command can be processed, and the act of 
enqueueing a command on pendingQ, are solely the responsibility of the I/O thread. There are no 
races or deadlock conditions here.) Whenever the I/O thread detects a "Bus Free" condition, it will 
look at pendingQ, and if the queue is non-empty, the first commandBuf in the queue is dequeued 
and used to start up a new SCSI transaction. 

The commandBuf associated with the currently active SCSI transaction is always kept in 
activeCmd. If activeCmd is NULL, the SCSI bus is either free, or there is a reselection in progress 
for which we do not have complete target/LUN/queue tag information. 

When an active SCSI target disconnects (as opposed to doing a "Command Complete"), the I/O 
thread places the associated commandBuf on disconnectQ. Whenever a reselection occurs, 
disconnectQ is scanned for a commandBuf which matches the reselecting target, LUN, and 
(possibly) queue tag. If a match is found, the commandBuf is dequeued from disconnectQ and 
becomes activeCmd.



The driver contains logic to prevent sending a command to a target/LUN nexus which currently has 
an active, but disconnected, command - unless command queueing is enabled for the driver, and is 
not disabled for the given target. This allows higher layers in the system (e.g., SCSIDisk) to enqueue 
multiple requests for one target and LUN without worrying about the nexus's current state. This logic
uses the array activeArray[][], which is an array of counters which keep track of how many 
I/Os are active on a per-LUN basis. When command queueing is disabled (either globally, or on a per-
target basis), an activeArray counter has a maximum value of 1. If command queueing is 
enabled, an activeArray counter has a maximum value of the target's queue length (if known). 
See the -cmdBufOk: method, in AMD_SCSI.m, for the implementation of the decision as to whether
a target/lun nexus is ready to accept a new command.

3. Organization
The driver was organized to facilitate porting to other platforms using chips similar to the 79C974, 
and also to other "dumb" host adapter chips on the x86 platform. With some exceptions, all of the 
logic which is independent of either the chip or the host bus is contained in AMD_SCSI.m. All of the 
logic which deals directly with the 79C974 is contained in AMD_Chip.m and 



AMD_ChipPrivate.m. All of the logic which is specific to the x86 architecture and the PCI bus is 
contained in AMD_x86.m. The API to AMD_Chip.m which is public to the other parts of the driver 
consists of six methods:

· -probeChip, performs one-time-only initialization.
· -hwReset, reusable chip reset/init.
· -scsiReset, performs SCSI reset.
· -hwStart:, starts up a new SCSI transaction.
· -hwInterrupt, deals with an interrupt event.
· -logRegs, a debugging function to dump registers to the console.

When porting this driver to a new chip, these six methods are pretty much all that need to be re-
implemented (in addition to any private, implementation-specific methods needed for the new chip).

The design goal of separating out the chip-specific, architecture-specific, and hardware-independent 
functionality into separate modules was not religiously adhered to. Sometimes, for example in the 
routines to handle DMA in AMD_x86.m, there is a mixture of chip- and bus-specific functions in one 



file (or even one method). The tradeoff between design clarity and portability went towards design 
clarity in these cases.

4. File contents
The following files all exist in the AMD53C974SCSIDriver_reloc.tproj directory. 
(AMD53C974SCSIDriver_reloc is the driver's loadable binary.)

AMD_SCSI.h

Exported interface to the driver. Typically used by SCSI indirect drivers like SCSIDisk and 
SCSITape.

AMD_Private.h

Private hardware-independent methods.



AMD_Types.h

Private structs and #defines used by the entire driver. 

AMD_SCSI.m

Implementation of AMD_SCSI.h and AMD_Private.h methods.

AMD_x86.[hm]

Methods specific to Intel platform and PCI bus.

AMD_Chip.[hm]

Chip-specific methods available to the rest of the driver.

AMD_ChipPrivate.m



Chip-specific methods available only to AMD_Chip.m.

AMD_Regs.h

Definitions of AMD 79C974 registers.

bringup.h

Debugging and bringup flags.

AMD_ddm.h

#defines used for DDM calls.

AMD.ddm

Config file used by DDMViewer.

ioPorts.[ch]



A DEBUG version of <driverkit/i386/ioPorts.h>.

pciConf.h

#defines for PCI configuration registers.

configKeys.h

String definition for keys in driver's config table.

Makefile.driver_preamble 
Makefile.preamble
Makefile.postamble

Standard Makefile additions, common to all drivers.

stateMachines.rtf



Document describing the state machines used by the driver. 

Other Files
Here is a brief description of the other files residing in the driver project's root directory. 

SCSIInspector.[mh]

Custom Device Inspector for use in the Configure App.

Default.table 

Template used by Configure App for creating Instance tables.

English.lproj/AMDInspector.nib



Localizable nib file for Custom Device Inspector. 

English.lproj/Localizable.strings

Localizable strings file used by Configure App.

English.lproj/DriverHelp/*
      
      Support for on-line help in the Configure App. 
      
Makefile 
PB.project 

Created by Project Builder.

SGS_ENV

For NeXT internal use.



Makefile.postamble
Makefile.preamble

Standard Makefile additions, common to all drivers.

changes

Revision history of this project.

README.rtf

This file.


