
trackdisk

trackdisk ii

COLLABORATORS

TITLE :

trackdisk

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

trackdisk iii

Contents

1 trackdisk 1

1.1 trackdisk.doc . 1

1.2 trackdisk.device/CMD_CLEAR . 2

1.3 trackdisk.device/CMD_READ . 2

1.4 trackdisk.device/CMD_UPDATE . 3

1.5 trackdisk.device/CMD_WRITE . 4

1.6 trackdisk.device/TD_ADDCHANGEINT . 4

1.7 trackdisk.device/TD_CHANGENUM . 5

1.8 trackdisk.device/TD_CHANGESTATE . 6

1.9 trackdisk.device/TD_EJECT . 6

1.10 trackdisk.device/TD_FORMAT . 7

1.11 trackdisk.device/TD_GETDRIVETYPE . 8

1.12 trackdisk.device/TD_GETGEOMETRY . 8

1.13 trackdisk.device/TD_GETNUMTRACKS . 9

1.14 trackdisk.device/TD_MOTOR . 10

1.15 trackdisk.device/TD_PROTSTATUS . 10

1.16 trackdisk.device/TD_RAWREAD . 11

1.17 trackdisk.device/TD_RAWWRITE . 12

1.18 trackdisk.device/TD_REMCHANGEINT . 13

1.19 trackdisk.device/TD_SEEK . 14

trackdisk 1 / 14

Chapter 1

trackdisk

1.1 trackdisk.doc

CMD_CLEAR

CMD_READ

CMD_UPDATE

CMD_WRITE

TD_ADDCHANGEINT

TD_CHANGENUM

TD_CHANGESTATE

TD_EJECT

TD_FORMAT

TD_GETDRIVETYPE

TD_GETGEOMETRY

TD_GETNUMTRACKS

TD_MOTOR

TD_PROTSTATUS

TD_RAWREAD

TD_RAWWRITE

TD_REMCHANGEINT

TD_SEEK

trackdisk 2 / 14

1.2 trackdisk.device/CMD_CLEAR

NAME
CMD_CLEAR/ETD_CLEAR -- mark the track buffer as containing invalid

data.

FUNCTION
These commands mark the track buffer as invalid, forcing a
reread of the disk on the next operation. ETD_UPDATE or

CMD_UPDATE
would be used to force data out to the disk before turning the ←↩

motor
off. ETD_CLEAR or CMD_CLEAR are usually used after having locked out
the trackdisk.device via the use of the disk resource, when you
wish to prevent the track from being updated, or when you wish to
force the track to be re-read. ETD_CLEAR or CMD_CLEAR will not do an
update, nor will an update command do a clear.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CMD_CLEAR or ETD_CLEAR
io_Flags 0 or IOF_QUICK
iotd_Count (ETD_CLEAR only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

SEE ALSO

CMD_WRITE
,
CMD_UPDATE

1.3 trackdisk.device/CMD_READ

NAME
CMD_READ/ETD_READ -- read sectors of data from a disk.

FUNCTION
These commands transfer data from the track buffer to a supplied
buffer. If the desired sector is already in the track buffer, no disk
activity is initiated. If the desired sector is not in the buffer, the
track containing that sector is automatically read in. If the data in
the current track buffer has been modified, it is written out to the
disk before a new track is read. ETD_READ will read the sector label
area if the iotd_SecLabel is non-NULL.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()

trackdisk 3 / 14

io_Command CMD_READ or ETD_READ
io_Flags 0 or IOF_QUICK
io_Data pointer to the buffer where the data should be put
io_Length number of bytes to read, must be a multiple of

TD_SECTOR.
io_Offset byte offset from the start of the disk describing

where to read data from, must be a multiple of
TD_SECTOR.

iotd_Count (ETD_READ only) maximum allowable change counter
value.

iotd_SecLabel (ETD_READ only) NULL or sector label buffer pointer.
If provided, the buffer must be a multiple of
TD_LABELSIZE.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
NOTES

Under versions of Kickstart earlier than V36, the io_Data had to
point to a buffer in chip memory. This restriction is no longer
present as of Kickstart V36 and beyond.

SEE ALSO

CMD_WRITE

1.4 trackdisk.device/CMD_UPDATE

NAME
CMD_UPDATE/ETD_UPDATE -- write out the track buffer if it is dirty.

FUNCTION
The trackdisk device does not write data sectors unless it is
necessary (you request that a different track be used) or until the
user requests that an update be performed. This improves system speed
by caching disk operations. These commands ensure that any
buffered data is flushed out to the disk. If the track buffer has not
been changed since the track was read in, these commands do nothing.
ETD_UPDATE command checks for diskchange.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CMD_UPDATE or ETD_UPDATE
io_Flags 0 or IOF_QUICK
iotd_Count (ETD_UPDATE only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

SEE ALSO

trackdisk 4 / 14

CMD_WRITE

1.5 trackdisk.device/CMD_WRITE

NAME
CMD_WRITE/ETD_WRITE -- write sectors of data to a disk.

FUNCTION
These commands transfer data from a supplied buffer to the track
buffer. If the track that contains this sector is already in the track
buffer, no disk activity is initiated. If the desired sector is not in
the buffer, the track containing that sector is automatically read in.
If the data in the current track buffer has been modified, it is
written out to the disk before the new track is read in for
modification. ETD_WRITE will write the sector label area if
iotd_SecLabel is non-NULL.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command CMD_WRITE or ETD_WRITE
io_Flags 0 or IOF_QUICK
io_Data pointer to the buffer where the data should be put
io_Length number of bytes to write, must be a multiple of

TD_SECTOR.
io_Offset byte offset from the start of the disk describing

where to write data to, must be a multiple of
TD_SECTOR.

iotd_Count (ETD_WRITE only) maximum allowable change counter
value.

iotd_SecLabel (ETD_WRITE only) NULL or sector label buffer pointer.
If provided, the buffer must be a multiple of
TD_LABELSIZE.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

NOTES
Under versions of Kickstart earlier than V36, the io_Data had to
point to a buffer in chip memory. This restriction is no longer
present as of Kickstart V36 and beyond.

SEE ALSO

CMD_READ
,
TD_FORMAT

1.6 trackdisk.device/TD_ADDCHANGEINT

trackdisk 5 / 14

NAME
TD_ADDCHANGEINT -- add a disk change software interrupt handler.

FUNCTION
This command lets you add a software interrupt handler to the
disk device that gets invoked whenever a disk insertion or removal
occurs.

You must pass in a properly initialized Exec Interrupt structure
and be prepared to deal with disk insertions/removals
immediately. From within the interrupt handler, you may only call the
status commands that can use IOF_QUICK.

To set up the handler, an Interrupt structure must be initialized.
This structure is supplied as the io_Data to the TD_ADDCHANGEINT
command. The handler then gets linked into the handler chain and
gets invoked whenever a disk change happens. You must eventually
remove the handler before you exit.

This command only returns when the handler is removed. That is,
the device holds onto the IO request until the

TD_REMCHANGEINT
command

is executed with that same IO request. Hence, you must use SendIO()
with this command.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_ADDCHANGEINT
io_Flags 0
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

SEE ALSO

TD_REMCHANGEINT
, <devices/trackdisk.h>, <exec/interrupts.h>,

exec.library/Cause()

1.7 trackdisk.device/TD_CHANGENUM

NAME
TD_CHANGENUM -- return the current value of the disk-change counter.

FUNCTION
This command returns the current value of the disk-change counter (as
used by the enhanced commands). The disk change counter is incremented
each time a disk is inserted or removed from the trackdisk unit.

trackdisk 6 / 14

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_CHANGENUM
io_Flags 0 or IOF_QUICK

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
io_Actual - if io_Error is 0, this contains the current value of the

disk-change counter.

1.8 trackdisk.device/TD_CHANGESTATE

NAME
TD_CHANGESTATE -- check if a disk is currently in a drive.

FUNCTION
This command checks to see if there is currently a disk in a drive.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_CHANGESTATE
io_Flags 0 or IOF_QUICK

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
io_Actual - if io_Error is 0, this tells you whether a disk is in

the drive. 0 means there is a disk, while anything else
indicates there is no disk.

1.9 trackdisk.device/TD_EJECT

NAME
TD_EJECT -- eject (or load) the disk in the drive, if possible.

FUNCTION
This command causes the drive to attempt to eject the disk in
it, if any. Note that the current trackdisk.device does not
implement this command, but it might in the future, and other
trackdisk-compatible drivers may implement this command. Some
devices may be able to load disks on command also.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_EJECT
io_Flags 0 or IOF_QUICK
io_Length 0 (load, if supported) or 1 (eject)

trackdisk 7 / 14

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

BUGS
The pre-V40 autodoc didn’t mention io_Length. Because of this, for
devices that can never support load, a driver might want to eject if
io_Length is 0.

1.10 trackdisk.device/TD_FORMAT

NAME
TD_FORMAT/ETD_FORMAT -- format a track on a disk.

FUNCTION
These commands are used to write data to a track that either
has not yet been formatted or has had a hard error on a standard write
command. TD_FORMAT completely ignores all data currently on a track and
does not check for disk change before performing the command. The
io_Data field must point to at least one track worth of data. The
io_Offset field must be track aligned, and the io_Length field must be
in units of track length (that is, NUMSEC*TD_SECTOR).

The device will format the requested tracks, filling each sector with
the contents of the buffer pointed to by io_Data. You
should do a read pass to verify the data.

If you have a hard write error during a normal write, you may find it
possible to use the TD_FORMAT command to reformat the track as part of
your error recovery process. ETD_FORMAT will write the sector label
area if iotd_SecLabel is non-NULL.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_FORMAT or ETD_FORMAT
io_Flags 0 or IOF_QUICK
io_Data points to a buffer containing the data to write to the

track, must be at least as large as io_Length.
io_Length number of bytes to format, must be a multiple of

(TD_SECTORS * NUMSEC).
io_Offset byte offset from the start of the disk for the track to

format, must be a multiple of (TD_SECTORS * NUMSEC).
iotd_Count (ETD_FORMAT only) maximum allowable change counter

value.
iotd_SecLabel (ETD_FORMAT only) NULL or sector label buffer pointer.

If provided, the buffer must be a multiple of
(TD_LABELSIZE * NUMSEC).

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

NOTES

trackdisk 8 / 14

Under versions of Kickstart earlier than V36, the io_Data had to
point to a buffer in chip memory. This restriction is no longer
present as of Kickstart V36 and beyond.

SEE ALSO

CMD_WRITE
,
TD_RAWWRITE

1.11 trackdisk.device/TD_GETDRIVETYPE

NAME
TD_GETDRIVETYPE -- return the type of disk drive for the unit that was

opened.

FUNCTION
This command returns the type of the disk drive to the user.
This number will be a small integer and will come from the set of
DRIVEXXX constants defined in <devices/trackdisk.h>.

The only way you can actually use this command is if the trackdisk
device understands the drive type of the hardware that is plugged in.
This is because the OpenDevice() call will fail if the trackdisk device
does not understand the drive type. To find raw drive identifiers see
the disk.resource’s DR_GETUNITID entry point.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_GETDRIVETYPE
io_Flags 0 or IOF_QUICK

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
io_Actual - if io_Error is 0 this contains the drive type connected to

this unit.

SEE ALSO

TD_GETNUMTRACKS
, <devices/trackdisk.h>

1.12 trackdisk.device/TD_GETGEOMETRY

NAME
TD_GETGEOMETRY -- return the geometry of the drive.

FUNCTION

trackdisk 9 / 14

This command returns a full set of information about the
layout of the drive. The information is returned in the
DriveGeometry structure pointed to by io_Data.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_GETGEOMETRY
io_Flags 0 or IOF_QUICK
io_Data Pointer to a DriveGeometry structure
io_Length sizeof(struct DriveGeometry)

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

NOTE
This information may change when a disk in inserted when
certain hardware is present.

SEE ALSO

TD_GETDRIVETYPE
,
TD_GETNUMTRACKS

1.13 trackdisk.device/TD_GETNUMTRACKS

NAME
TD_GETNUMTRACKS -- return the number of tracks for the type of disk

drive for the unit that was opened.

FUNCTION
This command returns the number of tracks that are available
on the disk unit.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_GETNUMTRACKS
io_Flags 0 or IOF_QUICK

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
io_Actual - if io_Error is 0 this contains the drive type connected to

this unit.

SEE ALSO

TD_GETDRIVETYPE

trackdisk 10 / 14

1.14 trackdisk.device/TD_MOTOR

NAME
TD_MOTOR/ETD_MOTOR -- control the on/off state of a drive motor.

FUNCTION
This command gives control over the disk motor. The motor may be
turned on or off. When it is on, the drive light automatically turns
on as well.

If the motor is just being turned on, the device will delay the
proper amount of time to allow the drive to come up to speed. Normally,
turning the drive on is not necessary, the device does this
automatically if it receives a request when the motor is off. However,
turning the motor off is the programmer’s responsibility.

In addition, the standard instructions to the user are that it is safe
to remove a disk from a drive if and only if the motor is off (that is,
if the disk light is off).

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_MOTOR or ETD_MOTOR
io_Flags 0 or IOF_QUICK
io_Length the requested state of the motor, 0 to turn the motor

off, and 1 to turn the motor on.
iotd_Count (ETD_MOTOR only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>
io_Actual - if io_Error is 0 this contains the previous state of the

drive motor.

1.15 trackdisk.device/TD_PROTSTATUS

NAME
TD_PROTSTATUS -- return whether the current disk is write-protected.

FUNCTION
This command is used to determine whether the current disk is
write-protected.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_PROTSTATUS
io_Flags 0 or IOF_QUICK

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

trackdisk 11 / 14

io_Actual - if io_Error is 0, this tells you whether the disk in the
drive is write-protected. 0 means the disk is NOT write-
protected, while any other value indicates it is.

1.16 trackdisk.device/TD_RAWREAD

NAME
TD_RAWREAD/ETD_RAWREAD -- read raw data from the disk.

FUNCTION
These commands read a track of raw data from disk and deposits it in
the provided buffer. The data is taken straight from the disk with
no processing done on it. It will appear exactly as the bits come out
off the disk, hopefully in some legal MFM format.

This interface is intended for sophisticated programmers only.
Commodore-Amiga reserves the right to make enhancements to the disk
format in the future. We will provide compatibility via the

CMD_READ
and ETD_READ commands, anyone using TD_RAWREAD is

bypassing this upwards compatibility, and may thus stop working.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_RAWREAD or ETD_RAWREAD.
io_Flags if the IOTDB_INDEXSYNC bit is set then the driver

will make a best effort attempt to start reading
from the index mark. Note that there will be at
least some delay, and perhaps a great deal of delay
(for example if interrupts have been disabled).

io_Length Length of buffer in bytes, with a maximum of 32768
bytes.

io_Data Pointer to CHIP memory buffer where raw track data is
to be deposited.

io_Offset The number of the track to read in.
iotd_Count (ETD_RAWREAD only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

NOTES
The track buffer provided MUST be in CHIP memory

There is a delay between the index pulse and the start of bits
coming in from the drive (e.g. dma started). This delay
is in the range of 135-200 microseconds. This delay breaks
down as follows: 55 microsecs is software interrupt overhead
(this is the time from interrupt to the write of the DSKLEN
register). 66 microsecs is one horizontal line delay (remember
that disk IO is synchronized with agnus’ display fetches).
The last variable (0-65 microsecs) is an additional scan line

trackdisk 12 / 14

since DSKLEN is poked anywhere in the horizontal line. This leaves
15 microsecs unaccounted for... Sigh.

In short, You will almost never get bits within the first 135
microseconds of the index pulse, and may not get it until 200
microseconds. At 4 microsecs/bit, this works out to be between
4 and 7 bytes of user data of delay.

BUGS
This command does not work reliably under versions of Kickstart
earlier than V36, especially on systems with 1 floppy drive.

SEE ALSO

TD_RAWWRITE

1.17 trackdisk.device/TD_RAWWRITE

NAME
TD_RAWWRITE/ETD_RAWWRITE -- write raw data to the disk.

FUNCTION
This command writes a track of raw data from the provided buffer to
the specified track on disk. The data is copied straight to the disk
with no processing done on it. It will appear exactly on the disk as
it is in the memory buffer, hopefully in a legal MFM format.

This interface is intended for sophisticated programmers only.
Commodore-Amiga reserves the right to make enhancements to the disk
format in the future. We will provide compatibility via the

CMD_WRITE
and ETD_WRITE commands, anyone using TD_RAWWRITE is

bypassing this upwards compatibility, and may thus stop working.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_RAWWRITE or ETD_RAWWRITE.
io_Flags if the IOTDB_INDEXSYNC bit is set then the driver

will make a best effort attempt to start writing
from the index mark. Note that there will be at
least some delay, and perhaps a great deal of delay
(for example if interrupts have been disabled).

io_Length Length of buffer in bytes, with a maximum of 32768
bytes.

io_Data Pointer to CHIP memory buffer where raw track data is
to be taken.

io_Offset The number of the track to write to.
iotd_Count (ETD_RAWWRITE only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

trackdisk 13 / 14

<devices/trackdisk.h>

NOTES
The track buffer provided MUST be in CHIP memory

There is a delay between the index pulse and the start of bits
going out to the driver (e.g. write gate enabled). This delay
is in the range of 135-200 microseconds. This delay breaks
down as follows: 55 microsecs is software interrupt overhead
(this is the time from interrupt to the write of the DSKLEN
register). 66 microsecs is one horizontal line delay (remember
that disk IO is synchronized with agnus’ display fetches).
The last variable (0-65 microsecs) is an additional scan line
since DSKLEN is poked anywhere in the horizontal line. This leaves
15 microsecs unaccounted for... Sigh.

In short, You will almost never get bits within the first 135
microseconds of the index pulse, and may not get it until 200
microseconds. At 4 microsecs/bit, this works out to be between
4 and 7 bytes of user data of delay.

BUGS
This command does not work reliably under versions of Kickstart
earlier than V36, especially on systems with 1 floppy drive.

SEE ALSO

TD_RAWREAD

1.18 trackdisk.device/TD_REMCHANGEINT

NAME
TD_REMCHANGEINT -- remove a disk change software interrupt handler.

FUNCTION
This command removes a disk change software interrupt added
by a previous use of

TD_ADDCHANGEINT
.

IO REQUEST INPUT
The same IO request used for

TD_ADDCHANGEINT
.

io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_REMCHANGEINT
io_Flags 0
io_Length sizeof(struct Interrupt)
io_Data pointer to Interrupt structure

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

trackdisk 14 / 14

<devices/trackdisk.h>

BUGS
This command did not function properly under versions of Kickstart
earlier than V36. A valid workaround under these older versions of
Kickstart is:

Forbid();
Remove(ioRequest);
Permit();

Do not use this workaround in versions of Kickstart >= V36, use
TD_REMCHANGEINT instead (for future compatibility with V38+).

SEE ALSO

TD_ADDCHANGEINT
, <devices/trackdisk.h>

1.19 trackdisk.device/TD_SEEK

NAME
TD_SEEK/ETD_SEEK -- control positioning of the drive heads.

FUNCTION
These commands are currently provided for internal diagnostics,
disk repair, and head cleaning only.

TD_SEEK and ETD_SEEK move the drive heads to the track specified. The
io_Offset field should be set to the (byte) offset to which the seek is
to occur. TD_SEEK and ETD_SEEK do not verify their position until the
next read. That is, they only move the heads; they do not actually read
any data.

IO REQUEST INPUT
io_Device preset by the call to OpenDevice()
io_Unit preset by the call to OpenDevice()
io_Command TD_SEEK or ETD_SEEK
io_Flags 0 or IOF_QUICK
io_Offset byte offset from the start of the disk describing

where to move the head to.
iotd_Count (ETD_SEEK only) maximum allowable change counter

value.

IO REQUEST RESULT
io_Error - 0 for success, or an error code as defined in

<devices/trackdisk.h>

	trackdisk
	trackdisk.doc
	trackdisk.device/CMD_CLEAR
	trackdisk.device/CMD_READ
	trackdisk.device/CMD_UPDATE
	trackdisk.device/CMD_WRITE
	trackdisk.device/TD_ADDCHANGEINT
	trackdisk.device/TD_CHANGENUM
	trackdisk.device/TD_CHANGESTATE
	trackdisk.device/TD_EJECT
	trackdisk.device/TD_FORMAT
	trackdisk.device/TD_GETDRIVETYPE
	trackdisk.device/TD_GETGEOMETRY
	trackdisk.device/TD_GETNUMTRACKS
	trackdisk.device/TD_MOTOR
	trackdisk.device/TD_PROTSTATUS
	trackdisk.device/TD_RAWREAD
	trackdisk.device/TD_RAWWRITE
	trackdisk.device/TD_REMCHANGEINT
	trackdisk.device/TD_SEEK

