
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 VIII-9: Keeping Time--Interval Timers in Amiga UNIX . 1

AmigaMail 1 / 7

Chapter 1

AmigaMail

1.1 VIII-9: Keeping Time--Interval Timers in Amiga UNIX

By David Miller

The Sleep() function

When you want your program to pause for a number of seconds then continue,
you will typically use the sleep(3) function (the notation NAME(SECTION#)
refers to the manual page NAME in the SECTION# chapter of the UNIX
Reference Manuals; section 1 is commands, section 2 is system calls, and
section 3 is library functions). There is also a sleep(1) program which
provides the same function to shell scripts. For example:

In C:

main()
{

printf("Hello world!\n");
sleep(5);

}

Shell:

#!/usr/bin/sh

echo "Hello world!"
sleep 5

The following example is an implementation of the sleep(3) function.

Example 1: SLEEP() Using ALARM()

1 # include <signal.h>
2 static void trap ()

AmigaMail 2 / 7

3 {
4 }
5 unsigned sleep (unsigned duration)
6 {
7 void (*oldsig)();
8 unsigned oldtime;
9 oldsig = signal(SIGALRM, trap);
10 oldtime = alarm(0);
11 if (oldtime && oldtime < duration)
12 alarm(oldtime);
13 else
14 alarm(duration);
15 pause();
16 signal(SIGALRM, oldsig);
17 if (oldtime > duration)
18 alarm(oldtime - duration);
19 if (oldtime && oldtime < duration)
20 return(duration - oldtime);
21 else
22 return 0;
23 }

Line Explanation
---- -----------

1 The file signal.h defines the parameters for the signal(2)
function.

2-4 trap() is the simple signal handler that just sets a flag that
another piece of code will examine.

5 Define the sleep() function.

6-8 oldsig is a variable that will be used to save the previous
state of the signal handler; oldtime will be used to save the
state of the alarm clock.

9 Establish trap() as the current signal handler for the alarm
signal. The previous handler is saved in oldsig.

10 Clear the alarm clock, saving the current state.

11-14 If the previous setting of alarm was sooner than duration, use
the old value, otherwise use duration to set the alarm.

15 Pause the process until the alarm goes off.

16 Restore the old signal handler.

17-18 If the old alarm setting was later than duration, reset the
alarm with the difference between duration and oldtime (the
time remaining until the previous alarm).

19-22 If an existing alarm is making sleep return early, return the
time remaining on the requested sleep.

--

AmigaMail 3 / 7

To schedule its ‘‘wake up’’ time, sleep(3) uses the alarm(2) system call.
The alarm(2) system call asks the OS to deliver a signal (basically a
software interrupt) in some number of seconds according to the system
clock. However, setting an alarm for 2 seconds does not mean that you will
receive an alarm signal in exactly two seconds.

The OS processes alarm requests once every second. Each time an alarm
request is processed, the number of seconds remaining for that alarm is
decremented by one. When the number of seconds remaining reaches zero,
the OS delivers a signal to the process. Given this, if a process places
a 1 second alarm request 1 microsecond before the OS does its alarm
processing, the signal will arrive in 1 microsecond, not in 1 second. An
alarm set for N seconds actually means:

deliver a signal after N-1 seconds, but before N seconds.

If you’d like to see for yourself, try running this shell script:

$ for i in 1 2 3 4 5 6 7 8 9 10
> do
> time sleep 2
> done

How many times did the process actually take more than 2 seconds? If you
try it with both the Korn shell, ksh(1), and the System V shell, sh(1),
you’ll find that under ksh(1) it takes about 1.2 seconds and under sh(1)
it takes about 1.8 seconds (There is a difference because sh(1) counts the
time required to start the sleep process whereas ksh(1) only counts the
actual running time). The sleep(1) program rarely, if ever, actually
sleeps for 2 seconds.

If you are writing a daemon that checks for some event every 5 minutes, or
if you want to pause the output to give the user a chance to read it,
alarm’s 1 second granularity is fine. But what about that daemon that
needs to wake up every second? Waking up after 1 microsecond could cause
the process to run almost continuously. For any sort of realtime
processing, one second is a very long time. So how do you sleep for less
than one second reliably?

The answer is do not use an alarm, use an interval timer.

Interval Timers

Each interval timer has a resolution of 1 tick of the system’s clock, or 1
microsecond (whichever is larger). Additionally, you can configure an
interval timer to automatically restart itself. The system provides each
process with three independent interval timers:

ITIMER_REAL

This timer will count down in real time. That is, this timer will
continue to run when your process is waiting for the OS to perform a
system call, or when the OS preempts your process. When the timer
expires, the OS will deliver a SIGALARM signal.

AmigaMail 4 / 7

ITIMER_VIRTUAL

This timer counts down only when your process is running. If your
process makes a system call, or is preempted, this timer will stop
counting. The timer will resume when your process resumes execution.
When this timer reaches zero, the process will receive a SIGVTALRM
signal.

Possible uses for this timer include checkpointing (saving data after
some period of execution) and multithreading. The virtual timer is
more desireable for these applications since it counts only when the
process is running; there is no reason to perform a checkpoint or
switch threads if the process has been idle.

ITIMER_PROF

This timer will stop counting any time your process is preempted by
the OS, but will not stop when the process is waiting for a system
call to return. When it expires the OS generates a SIGPROF signal.

This timer is designed to be used for execution profiling by
interpreters. By having a profiling timer send a signal every second,
or fraction of a second, and examining the current position in the
interpreted code, the process can determine where the most execution
time is being spent.

All three timers operate on the following structure:

struct itimerval
{

struct timeval it_interval;
struct timeval it_value;

}

The timeval structure looks like this:

struct timeval
{

long tv_sec;
long tv_usec;

}

Both of these structures are defined in the <sys/time.h> include file.

Note that System V Release 4.0 does not guarantee that these are the
only members of these structures, nor that they will occur in this
order. You must initialize the members individually. This can be
annoying and tedious, but it allows the structure to be expanded in
future releases.

You set and examine timers using these two functions:

int getitimer(int which, struct itimerval *myvalue)

AmigaMail 5 / 7

places the current timer setting into myvalue

int setitimer(int which, struct itimerval *myvalue, struct itimerval *myovalue ←↩
);

sets the timer. It gets the new time from myvalue and places the previous
setting in myovalue.

Now, let us take a look at the sleep function again. The code in example
2 creates a new version of sleep that will sleep an exact number of
seconds.

Example 2: SLEEP() Using an Interval Timer
--

1 # include <signal.h>
2 # include <sys/time.h>
3 static void trap ()
4 {
5 }
6 unsigned mysleep (unsigned duration)
7 {
8 void (*oldsig)();
9 struct itimerval oldtime;
10 struct itimerval newtime;
11 oldsig = signal(SIGALRM, trap);
12 getitimer(ITIMER_REAL, &oldtime);
13 if (oldtime.it_value.tv_sec == 0

&& oldtime.it_value.tv_usec == 0
|| oldtime.it_value.tv_sec >= duration)

14 {
15 newtime.it_interval.tv_sec = 0;
16 newtime.it_interval.tv_usec = 0;
17 newtime.it_value.tv_sec = duration;
18 newtime.it_value.tv_usec = 0;
19 setitimer(ITIMER_REAL, &newtime, NULL);
20 }
21 pause();
22 signal(SIGALRM, oldsig);
23 if (oldtime.it_value.tv_sec > duration)
24 {
25 oldtime.it_value.tv_sec -= duration;
26 setitimer(ITIMER_REAL, &newtime, NULL);
27 }
28 if (oldtime && oldtime < n)
29 return(n - oldtime);
30 else
31 return 0;
32 }

Line Explanation
---- -----------
1-2 The file signal.h defines the parameters of the signal(2)

function. The file <sys/time.h> defines ITIMER_REAL and the

AmigaMail 6 / 7

structures used by getitimer(3) and setitimer(3).

3-5 trap() is the simple signal handler that just sets a flag that
another piece of code will examine.

6-7 Define the mysleep() function.

8-10 oldsig will hold the previous state of the signal handler;
oldtime will hold the state of the timer; and newtime will be
used to set the new timer parameters.

11 Establish trap() as the current signal handler for the alarm
signal. The previous handler is saved in oldsig.

12 Fetch the current settings of the timer.

13-20 If the timer was idle (both parts of it_value are zero) or it
is set to go off later than duration (it_value.tv_sec is greater
than duration), set the timer to go off in duration seconds.

21 pause(2) the process until the timer expires.

22 Restore the old signal handler.

23-27 If the old timer setting was later than duration, reset the
timer with the difference between duration and
oldtime.it_value.tv_sec (the time remaining until expiration of
the previous setting).

28-32 If an existing timer is making mysleep() return early, return
the time remaining on the requested mysleep().

--

This example uses what is called a ‘‘one-shot’’ timer. The timer goes off
once, and then stops. By supplying an interval setting, the timer becomes
a clock, generating alarm signals on a regular basis.

The code fragment in Example 3 shows how to set the timer to produce a 1.5
second clock that will start ‘‘ticking’’ in 1 minute.

Example 3: Using an Interval Timer as a Clock

1 # include <sys/time.h>
2 ...
3 {
4 struct itimerval newtime;
5 newtime.it_value.tv_sec = 60;
6 newtime.it_value.tv_usec = 0;
7 newtime.it_interval.tv_sec = 5;
8 newtime.it_interval.tv_usec = 500000;
9 setitimer(ITIMER_REAL, &newtime, 0);

10 }
11 ...

AmigaMail 7 / 7

Line Explanation
---- -----------

1 The file <sys/time.h> defines ITIMER_REAL and the structures
used by getitimer(3) and setitimer(3).

2 Other code.

3 Start of block.

4 Structure newtime will hold the setting for the timer.

5-6 Set it_value to expire in 1 minute.

7-8 Set it_interval to reload it_value with 5 seconds and 500,000.
microseconds (one half of a second).

9 Load the new settings into the ITIMER_REAL timer.

10 End of block.

11 Other code.

--

When the time interval specified by it_value expires, the contents of
it_interval is copied into it_value and the timer is restarted. If the
interval specified by it_interval is zero, the timer stops. Timers can be
stopped at anytime by calling setitimer(3) with the members of it_value
set to zero.

So there you have the realtime interval timer. The other timers work
exactly the same way, varying only in when the timer is running. For more
information on interval timers see UNIX System V Release 4 - Programmer’s
Reference Manual, published by Prentice Hall. Next time, we’ll explore
context switching, multithreading, and light weight processes.

	AmigaMail
	VIII-9: Keeping Time--Interval Timers in Amiga UNIX

