
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 Developer Support Package / copybuff.doc . 1

1.2 any_sana2_protocol/CopyFromBuff . 1

1.3 any_sana2_protocol/CopyToBuff . 2

AmigaMail 1 / 3

Chapter 1

AmigaMail

1.1 Developer Support Package / copybuff.doc

TABLE OF CONTENTS

any_sana2_protocol/CopyFromBuff

any_sana2_protocol/CopyToBuff

1.2 any_sana2_protocol/CopyFromBuff

NAME
CopyFromBuff -- Copy n bytes from an abstract data structure.

SYNOPSIS
success = CopyFromBuff(to, from, n)
d0 a0 a1 d0

BOOL CopyToBuff(VOID *, VOID *, ULONG);

FUNCTION
This function copies ’n’ bytes of data in the abstract data structure
pointed to by ’from’ into the contigous memory pointed to by ’to’.
’to’ must contain at least ’n’ bytes of usable memory or innocent
memory will be overwritten.

INPUTS
to - pointer to contiguous memory to copy to.
from - pointer to abstract structure to copy from.
n - number of bytes to copy.

RESULT
success - TRUE if operation was successful, else FALSE.

EXAMPLE

AmigaMail 2 / 3

NOTES
This function must be callable from interupts. In particular, this
means that this function may not directly or indirectly call any
system memory functions (since those functions rely on Forbid() to
protect themselves) and that you must not compile this function
with stack checking enabled. See the RKM:Libraries Exec:Interupts
chapter for more details on what is legal in a routine called from
an interupt handler.

’C’ programmers should not compile with stack checking (option ’-v’
in SAS) and should geta4() or __saveds.

BUGS

SEE ALSO

1.3 any_sana2_protocol/CopyToBuff

NAME
CopyToBuff -- Copy n bytes to an abstract data structure.

SYNOPSIS
success = CopyToBuff(to, from, n)
d0 a0 a1 d0

BOOL CopyToBuff(VOID *, VOID *, ULONG);

FUNCTION
This function first does any initialization and/or allocation
required to prepare the abstract data structure pointed at by ’to’
to be filled with ’n’ bytes of data from ’from’. It then executes
the copy operation.

If, for example, there is not enough memory available to prepare
the abstract data structure, the call is failed and FALSE is returned.

The buffer management scheme should be such that any memory needed
to fulfill CopyToBuff() calls is already allocated from the system
before the call to CopyToBuff() is made.

INPUTS
to - pointer to abstract structure to copy to.
from - pointer to contiguous memory to copy from.
n - number of bytes to copy.

RESULT
success - TRUE if operation was successful, else FALSE.

EXAMPLE

NOTES
This function must be callable from interupts. In particular, this
means that this function may not directly or indirectly call any
system memory functions (since those functions rely on Forbid() to
protect themselves) and that you must not compile this function

AmigaMail 3 / 3

with stack checking enabled. See the RKM:Libraries Exec:Interupts
chapter for more details on what is legal in a routine called from
an interupt handler.

’C’ programmers should not compile with stack checking (option ’-v’
in SAS) and should geta4() or __saveds.

BUGS

SEE ALSO

	AmigaMail
	Developer Support Package / copybuff.doc
	any_sana2_protocol/CopyFromBuff
	any_sana2_protocol/CopyToBuff

