
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 V-15: Amiga Font Scaling and Aspect Ratio . 1

1.2 Where Do the X and Y DPI values Come From? . 3

1.3 Some Things to Look Out For . 5

AmigaMail 1 / 6

Chapter 1

AmigaMail

1.1 V-15: Amiga Font Scaling and Aspect Ratio

by John Orr

[Editor’s Note: This article assumes the reader is familiar with how the
Amiga stores and manages bitmap fonts under pre-2.0 Releases of the
operating system. For more information, see the "Graphics: Text" chapter
of the RKM:Libraries and Devices Manual.]

The Release 2.0 OS offers a significant improvement over the Amiga’s
previous font resources: it now has the ability to scale fonts to new
sizes and dimensions. This means, if the diskfont.library can’t find the
font size an application requests, it can create a new bitmap font by
scaling the bitmap of a different size font in the same font family. The
2.04 release of the OS improved upon the diskfont.library’s font scaling
ability so the Amiga now can utilize AGFA/Compugraphic outline fonts,
yielding scalable fonts that don’t have the exaggerated jagged edges
inherent in bitmap scaling.

The best thing about the Amiga’s font scaling is that its addition to the
system is completely invisible to an application program. Because the
diskfont.library takes care of all the font scaling, any program that uses
OpenDiskFont() to open a font can have scalable fonts available to it.
For simple scaling, the programming interface is the same using Release
2.0 as it was under 1.3.

However, there is one feature of the 2.0 diskfont.library that the 1.3
programming interface cannot handle. When scaling a font (either from an
outline or from another bitmap), the 2.0 diskfont.library can adjust the
width of a font’s glyphs according to an aspect ratio passed to
OpenDiskFont(). A font glyph is the graphical representations associated
with each symbol or character of a font.

The aspect ratio refers to the shape of the pixels that make up the bitmap
that diskfont.library creates when it scales a font. This ratio is the
width of a pixel to the height of the pixel (XWidth/YWidth). The
diskfont.library uses this ratio to figure out how wide to make the font
glyphs so that the look of a font’s glyphs will be the same on display

AmigaMail 2 / 6

modes with very different aspect ratios. For more information on Amiga
aspect ratios, see Carolyn Scheppner’s article, ‘‘Finding the Aspect
Ratio’’, from the September/October 1991 issue of Amiga Mail.

To add this new feature, several changes to the OS were necessary:

1) The OS needed to be able to store an aspect ratio for any font
loaded into the system list,

2) The structures that diskfont.library uses to store bitmap fonts on
disk had to be updated so they can store the aspect ratio a font
was designed for, and,

3) The way in which an application requests fonts from
diskfont.library had to be altered so that an application could
askfor a specific aspect ratio.

For the diskfont.library to be able to scale a font to a new aspect ratio,
it needs to know what the font’s current aspect ratio is. The Amiga gets
the aspect ratio of a font currently in the system list from an extension
to the TextFont structure called (oddly enough) TextFontExtension. Under
2.0, when the system opens a new font (and there is sufficient memory), it
creates this extension.

A font’s TextFont structure contains a pointer to its associated
TextFontExtension. While the font is opened, the TextFont’s
tf_Message.mn_ReplyPort field points to a font’s TextFontExtension. The
<graphics/text.h> include file #defines tf_Message.mn_ReplyPort as
tf_Extension.

The TextFontExtension structure contains only one field of interest: a
pointer to a tag list associated with this font:

struct TagItem *tfe_Tags; /* Text Tags for the font */

If a font has an aspect ratio associated with it, the OS stores the aspect
ratio as a tag/value pair in the tfe_Tags tag list.

The TA_DeviceDPI tag holds a font’s aspect ratio. The data portion of the
TA_DeviceDPI tag contains an X DPI (dots per inch) value in its upper word
and a Y DPI value in its lower word. These values are unsigned words
(UWORD). At present, these values do not necessarily reflect the font’s
true X and Y DPI, so their specific values are not relevant. At present,
only the ratio of the X aspect to the Y aspect is important (more on this
later in the article).

Notice that the X and Y DPI values are not aspect values. The X and Y aspect
values are the reciprocals of the X and Y DPI values, respectively:

XDPI = 1/XAspect
YDPI = 1/YAspect

so, the aspect ratio is YDPI/XDPI, not XDPI/YDPI.

Before accessing the tag list, an application should make sure that this
font has a corresponding TextFontExtension. The ExtendFont() function
will return a value of TRUE if this font already has an extension or

AmigaMail 3 / 6

ExtendFont() was able to create an extension for this font.

Where Do the X and Y DPI values Come From?

Some Things to Look Out For

1.2 Where Do the X and Y DPI values Come From?

The Amiga has a place to store a font’s X and Y DPI values once the font
is loaded into memory, but where do these X and Y values come from? A
font’s X and Y DPI values can come from several sources. The X and YDPI
can come from a font’s disk-based representation, or it can be set by the
programmer.

For the traditional Amiga bitmap fonts, in order to store the X and Y DPI
values in a bitmap font’s .font file, the structures that make up the
.font file had to be expanded slightly. There are two changes from the
structures described in the ‘‘Graphics:Text’’ chapter of the RKM:
Libraries and Devices manual. The first is that the fch_FileID in the
FontContentsHeader structure (essentially, the .font file) contains a
different file ID (TFCH_ID from <libraries/diskfont.h>) from the
traditional .font file. This tells the diskfont.library that this
FontContentsHeader uses a special kind of FontContents structure called a
TFontContents structure. The difference between these structures is that
the TFontContents structure allows the OS to store tag value pairs in the
extra space set aside for the font’s name.

struct TFontContents {
char tfc_FileName[MAXFONTPATH-2];
UWORD tfc_TagCount; /* including the TAG_DONE tag */
/*
* if tfc_TagCount is non-zero, tfc_FileName is overlayed with

* Text Tags starting at: (struct TagItem *)

* &tfc_FileName[MAXFONTPATH-(tfc_TagCount*sizeof(struct TagItem))]

*/
UWORD tfc_YSize;
UBYTE tfc_Style;
UBYTE tfc_Flags;

};

Currently, out of all the system standard bitmap fonts (ones loaded from
bitmaps on disk or ROM, not scaled from a bitmap or outline), only one has
a built in aspect ratio: Topaz-9.

For the Compugraphic outline fonts, the X and Y DPI values are built into
the font outline. Because the format of the Compugraphic outline fonts is
proprietary, information about their layout is available only from
AGFA/Compugraphic. For most people, the format of the outline fonts is
not important, as the diskfont.library handles converting the fonts to an
Amiga-usable form.

The other place where a font can get an aspect ratio is an application.
When an application opens a font with OpenDiskFont(), it can supply the

AmigaMail 4 / 6

TA_DeviceDPI tag that the diskfont.library uses to scale (if necessary)
the font according to the aspect ratio. To do so, an application has to
pass OpenDiskFont() an extended version of the TextAttr structure called
the TTextAttr:

struct TTextAttr {
STRPTR tta_Name; /* name of the font */
UWORD tta_YSize; /* height of the font */
UBYTE tta_Style; /* intrinsic font style */
UBYTE tta_Flags; /* font preferences and flags */
struct TagItem *tta_Tags; /* extended attributes */

};

The TextAttr and the TTextAttr are identical except that the tta_Tags
field points to a tag list where you place your TA_DeviceDPI tag. To tell
OpenDiskFont() that it has a TTextAttr structure rather than a TextAttr
structure, set the FSF_TAGGED bit in the tta_Style field.

For example, to ask for Topaz-9 scaled to an aspect ratio of 75 to 50, the
code might look something like this:

...

#define MYXDPI (75L << 16)
#define MYYDPI (50L)

struct TTextAttr mytta = {
"topaz.font",
9,
FSF_TAGGED,
0L,
NULL

};

struct TagItem tagitem[2];
struct TextFont *myfont;
ULONG dpivalue;
struct Library *UtilityBase, *DiskfontBase, *GfxBase;
void main(void)
{

tagitem[0].ti_Tag = TA_DeviceDPI;
tagitem[0].ti_Data = MYXDPI | MYYDPI;
tagitem[1].ti_Tag = TAG_END;

...
if (myfont = OpenDiskFont(&mytta))
{

dpivalue = GetTagData(TA_DeviceDPI,
0L,
((struct TextFontExtension *)(myfont->tf_Extension))->tfe_Tags);

if (dpivalue) printf("XDPI = %d YDPI = %d\n",
((dpivalue & 0xFFFF0000)>>16),
(dpivalue & 0x0000FFFF));

/* blah, blah, render some text, blah, blah */
...

AmigaMail 5 / 6

CloseFont(myfont);
}

...

}

From FTA.c

1.3 Some Things to Look Out For

One misleading thing about the TA_DeviceDPI tag is that its name implies
that the diskfont.library is going to scale the font glyphs according to
an actual DPI (dots per inch) value. As far as scaling is concerned, this
tag serves only as a way to specify the aspect ratio, so the actual values
of the X and Y elements are not important, just the ratio of one to the
other. A font glyph will look the same if the ratio is 2:1 or 200:100 as
these two ratios are equal.

To makes things a little more complicated, when diskfont.library scales a
bitmap font using an aspect ratio, the X and Y DPI values that the OS
stores in the font’s TextFontExtension are identical to the X and Y DPI
values passed in the TA_DeviceDPI tag. This means the system can
associate an X and Y DPI value to an open font size that is very different
from the font size’s actual X and Y DPI. For this reason, applications
should not use these values as real DPI values. Instead, only use them to
calculate a ratio. For the Compugraphic outline fonts, things are a little
different. The X and Y DPI values are built into the font outline and
reflect a true X and Y DPI. When the diskfont.library creates a font from
an outline, scaling it according to an application-supplied aspect ratio,
diskfont.library does not change the YDPI setting. Instead, it calculates
a new XDPI based on the font’s YDPI value and the aspect ratio passed in
the TA_DeviceDPI tag. It does this because the Amiga thinks of a font
size as being a height in pixels. If an application was able to change
the true Y DPI of a font, the diskfont.library would end up creating font
sizes that were much larger or smaller than the YSize the application
asked for. If an application needs to scale a font according to height as
well as width, the application can adjust the value of the YSize it asks
for in the TTextAttr.

As mentioned earlier, almost all of the system standard bitmap fonts do
not have a built in aspect ratio. This means that if an application loads
one of these bitmap fonts without supplying an aspect ratio, the system
will not put a TA_DeviceDPI tag in the font’s TextFontExtension: the font
will not have an aspect ratio. If a font size that is already in the
system font list does not have an associated X and Y DPI, the
diskfont.library cannot create a new font of the same size with a
different aspect ratio. The reason for this is the diskfont.library
cannot tell the difference between two instances of the same font size
where one has an aspect ratio and the other does not. Because
diskfont.library cannot see this difference, when an application asks, for
example, for Topaz-8 with an aspect ratio of 2:1, OpenDiskFont() first
looks through the system list to see if that font is loaded.
OpenDiskFont() happens to find the ROM font Topaz-8 in the system font
list, which has no X and Y DPI. Because it cannot see the difference,
diskfont.library thinks it has found what it was looking for, so it does

AmigaMail 6 / 6

not create a new Topaz-8 with an aspect ratio of 2:1, and instead opens
the Topaz-8 with no aspect ratio.

This also causes problems for programs that do not ask for a specific
aspect ratio. When an application asks for a font size without specifying
an aspect ratio, OpenDiskFont() will not consider the aspect ratios of
fonts in the system font list when it is looking for a matching font. If
a font of the same font and style is already in the system font list, even
though it may have a wildly distorted aspect ratio, OpenDiskFont() will
return the font already in the system rather than creating a new one.

Due to a bug in the 2.00 through 2.04 versions of the graphics.library
function WeighTAMatch(), the OS ignores the aspect ratio of a font when
trying to determine if the TTextAttr passed to OpenDiskFont() matches a
font already in the system font list. If an application asks for a font
that exactly matches a font already in the font list in all ways except in
aspect ratio, OpenDiskFont() will open the font in the system font list
rather than creating a font with a matching aspect ratio. For example, if
an application requests CGTimes-20 with an aspect ratio of 1:2 and while
scanning through the system font list OpenDiskFont() finds CGtimes-20 with
an aspect ratio of 1:1, OpenDiskFont() will open the font with a 1:1
aspect ratio. A patch that temporarily fixes this bug, SetPatchWTAM, is
on the Denver/Milano DevCon disks.

The following example, cliptext.c, renders the contents of a text file to
a Workbench window. This example gets the new aspect ratio for a font by
asking the display database what the aspect ratio of the current display
mode is.

	AmigaMail
	V-15: Amiga Font Scaling and Aspect Ratio
	Where Do the X and Y DPI values Come From?
	Some Things to Look Out For

