
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 IV-59: AppWindows, AppIcons, and AppMenuItems . 1

1.2 The AppMessage Structure . 2

1.3 Adding AppObjects . 3

1.4 AppWindows . 4

1.5 AppIcons . 4

1.6 AppMenuItems . 6

AmigaMail 1 / 6

Chapter 1

AmigaMail

1.1 IV-59: AppWindows, AppIcons, and AppMenuItems

By Fred Mitchell and John Orr

Since its inception, the Workbenchä has had a limitation. Although it is
a fairly powerful user interface, that power is not accessible to
application programs. The power is limited to an interface that only
launches other programs. After Workbench launches a program, the program
no longer has any ties to the Workbench GUI. If an application needs an
iconic interface, it has to create its own, independent of Workbench.

Workbench 2.0 is different. Through the workbench.library, applications
can utilize the iconic interface of Workbench 2.0. There are three
elements to this interface: AppWindows, AppIcons, and AppMenuItems. In
this article, they are referred to as AppObjects.

When the user drops a Workbench icon onto a special kind of application
window called an AppWindow, Workbench sends a message to the application
that created the AppWindow. This message contains a complete list of the
icons that the user dropped on the window. This is useful for an
application like an editor. The editor can open an Intuition window on
the Workbench screen and make it into an AppWindow so that when the user
drops an icon on the AppWindow, the editor will load the icon’s
corresponding file. The IconEdit utility that comes on the 2.0 release
disks does this.

An application can also create its own icons for the Workbench window.
These icons are called AppIcons. They are similar to AppWindows in that
Workbench will tell an application what icons the user dropped on its
AppIcon. In addition, Workbench will notify the application if the user
double-clicks the AppIcon. This makes AppIcons useful not only as a
"drop box" (like an AppWindow), but they can also be used as some sort
of activator for an application. For example, a word processor that opens
a window on the Workbench can use an AppIcon to "iconify" its window.
When the user wants to get rid of a cumbersome window, he iconifies it,
which gets rid of the window and leaves an AppIcon on the Workbench window
in its place. When the user wants the window back, he double-clicks the
AppIcon and the window reappears.

AmigaMail 2 / 6

The release 2.0 Workbench has a special menu called "Tools". It is
special because unlike the other Workbench menus, any application can add
its own menu items to this menu. These menu items are called
AppMenuItems. Like the AppIcon, the AppMenu can be used both as an
activator and as a "drop box". When the user selects one of these menu
items, Workbench sends a message to the application that created the
AppMenuItem. If there were any icons selected when the user selected the
AppMenuItem, the application will also get a list of those icons.

The AppMessage Structure

AppWindows

AppMenuItems

Adding AppObjects

AppIcons
adc.c

1.2 The AppMessage Structure

When Workbench notifies an application of AppWindow, AppIcon, or
AppMenuItem activity, it sends an AppMessage to the application’s message
port (from <workbench/workbench.h>):

#define AM_VERSION 1

struct AppMessage {
struct Message am_Message; /* standard message structure */
UWORD am_Type; /* message type */
ULONG am_UserData; /* application specific */
ULONG am_ID; /* application definable ID */
LONG am_NumArgs; /* # of elements in arglist */
struct WBArg *am_ArgList; /* the arguments themselves */
UWORD am_Version; /* will be AM_VERSION */
UWORD am_Class; /* message class */
WORD am_MouseX; /* mouse x position of event */
WORD am_MouseY; /* mouse y position of event */
ULONG am_Seconds; /* current system clock time */
ULONG am_Micros; /* current system clock time */
ULONG am_Reserved[8];

};

The AppMessage’s am_Type field tells the application which type of
AppObject the message is about. The field will be:

MTYPE_APPWINDOW if the message is about an AppWindow,
MTYPE_APPICON if the message is about an AppIcon, or
MTYPE_APPMENUITEM if the message is about an AppMenuItem.

When an application creates an AppObject, it can assign the AppObject
application specific data (most likely a pointer) and an ID. Workbench

AmigaMail 3 / 6

will pass an AppObject’s data and ID back to the application when it sends
an AppMessage about the AppObject. The AppMessage’s am_UserData and am_ID
fields hold the user data and the ID.

The am_NumArgs field tells how many icons were involved in the user’s
AppObject action. For an AppWindow or AppIcon, am_NumArgs is the number
of icons the user dropped on the AppWindow or AppIcon. For an
AppMenuItem, am_NumArgs represents the number of icons that were selected
when the user selected this AppMenuItem. If no icons were selected during
an AppMenuItem event or the user double-clicked on an AppIcon, am_NumArgs
will be zero. Workbench does not send AppMessages if the user
double-clicks an AppWindow.

The am_ArgList field is a pointer to a list of WBArgs (from
<workbench/startup.h>) corresponding to each icon dropped (or selected).
If there were no icons dropped or selected, this field will be NULL.

For future expansion possibilities, the AppMessage structure has a version
number. The version number is #defined as AM_VERSION in
<workbench/workbench.h>.

The am_MouseX and am_MouseY fields apply only to AppWindows and contain
the coordinates of the mouse pointer when the user dropped the icon(s).
These coordinates are relative to the AppWindow’s upper left corner.

The am_Seconds and am_Micros fields represent the time that the event took
place.

Any remaining fields are undefined at present and should be set to NULL.

1.3 Adding AppObjects

The V37 workbench.library is made up of functions to add and remove
AppObjects, two for each type of AppObject:

struct AppWindow *AddAppWindow(unsigned long myID,
unsigned long userdata, struct Window *mywindow,
struct MsgPort *mymsgport, Tag tag1, ...);

struct AppIcon *AddAppIcon(unsigned long myID,
unsigned long userdata, UBYTE *mytext,
struct MsgPort *mymsgport, struct FileLock *mylock,
struct DiskObject *diskobj, Tag tag1, ...);

struct AppMenuItem *AddAppMenuItem(unsigned long myid,
unsigned long userdata, UBYTE *menutext,
struct MsgPort *mymsgport, Tag tag1, ...);

BOOL RemoveAppWindow(struct AppWindow *appWindow);

BOOL RemoveAppIcon(struct AppIcon *appIcon);

BOOL RemoveAppMenuItem(struct AppMenuItem *appMenuItem);

The "AddApp" functions have several parameters in common. The myID and

AmigaMail 4 / 6

userdata parameters are values the application assigns to the AppObject.
Workbench puts these values in the AppMessage’s am_ID and am_UserData
fields when it sends an AppMessage about an AppObject. If an application
receives AppMessages about several AppObjects at the same message port,
the application can use the am_ID field to tell which AppObject Workbench
is talking about.

The mymsgport field tells Workbench where to send this AppObject’s
AppMessages. To make it easy to distinguish AppMessages from other types
of messages, an application should devote a message port exclusively to
AppMessages.

In the future, these AddApp functions will be able to process tag pairs in
the parameter list. Currently, there are no tags defined for any of the
AppObject functions.

All of the AddApp functions return a NULL if the function failed otherwise
they return a pointer to a private structure. The pointer serves only as
a handle for the application to pass to the "RemoveApp" functions. Do not
use it for anything else!

Each of the RemoveApp functions removes one type of AppObject using the
handle returned by the corresponding AddApp function. At present, these
functions all return TRUE, but this behavior is not guaranteed to continue
in the future.

1.4 AppWindows

The workbench.library’s AddAppWindow() call makes an application’s
Intuition window into an AppWindow. It has one parameter that is
different from the other AddApp calls, a window pointer. The mywindow
field (from the prototype above) must point to an open Intuition window
that is on the Workbench screen.

The C source code example AppWindow.c at the end of this article is a
simple example of how to create an AppWindow.

There are two interesting things to note about the AppWindow. First,
because an AppWindow is still an Intuition window, an application can use
a Workbench AppWindow for any purpose it would need a normal Workbench
based window for. An application can render graphics and text in it,
process its IntuiMessages, or create menus for it. Also, because
Workbench tells where on an AppWindow icons were dropped, an application
can use a small region of a window as a drop box rather than the entire
AppWindow. A program can even have several drop boxes on the same window.
Using simple rendering routines, an application can draw the boxes so the
user can see where to drop icons.

1.5 AppIcons

The workbench.library function AddAppIcon() adds an AppIcon to the
Workbench window. There are three parameters unique to this AddApp

AmigaMail 5 / 6

function. The mytext parameter (from the prototype above) is the string
that will appear beneath the AppIcon on the Workbench window. The diskobj
parameter points to a DiskObject structure that Workbench will use for the
AppIcon’s imagery. It should be filled in as follows (from the wb.doc
Autodoc):

diskobj - pointer to a DiskObject structure filled in as follows:
do_Magic - NULL
do_Version - NULL
do_Gadget - a gadget structure filled in as follows:

NextGadget - NULL
LeftEdge - NULL
TopEdge - NULL
Width - width of icon hit-box
Height - height of icon hit-box
Flags - NULL or GADGHIMAGE
Activation - NULL
GadgetType - NULL
GadgetRender - pointer to Image structure filled in as follows:

LeftEdge - NULL
TopEdge - NULL
Width - width of image (must be <= Width of hit box)
Height - height of image (must be <= Height of hit box)
Depth - # of bit-planes in image
ImageData - pointer to actual word aligned bits (CHIP MEM)
PlanePick - Plane mask ((1 << depth) - 1)
PlaneOnOff - 0
NextImage - NULL

SelectRender - pointer to alternate Image struct or NULL
GadgetText - NULL
MutualExclude - NULL
SpecialInfo - NULL
GadgetID - NULL
UserData - NULL

do_Type - NULL
do_DefaultTool - NULL
do_ToolTypes - NULL
do_CurrentX - NO_ICON_POSITION (recommended)
do_CurrentY - NO_ICON_POSITION (recommended)
do_DrawerData - NULL
do_ToolWindow - NULL
do_StackSize - NULL

An easy way to create a DiskObject is to make an icon with the V2.0 icon
editor, IconEdit. An application can call GetDiskObject() on the icon and
pass that to AddAppIcon().

AddAppIcon()’s mylock parameter is for future enhancements and should be
set to NULL.

Because AppIcons are Workbench icons, the user can drop them on an
AppWindow or another AppIcon (or select them with an AppMenuItem). As
there is no file, directory, or disk associated with an AppIcon (at least
for the moment), the lock passed for the icon in NULL. Do not try to
process icons with a NULL lock.

The C source code example AppIcon.c at the end of this article is a simple

AmigaMail 6 / 6

example of how to create an AppIcon.

AppIcon.h

1.6 AppMenuItems

Using the workbench.library’s AddAppMenuItem() call, an application can
add an AppMenuItem to the Workbench’s "Tools" menu. This AppAdd function
has one parameter unique to it, menutext (from the prototype above). It
points to the string that appears in the "Tools" menu.

An AppMenuItem performs the same functions as an AppIcon or AppWindow, but
it does not require the overhead of a DiskObject or a window. It also
does not require the user to drop icons on an object. In some cases, the
user might prefer to use an AppMenuItem over an AppIcon or AppWindow
because the user doesn’t have to shuffle around the Workbench windows to
get to the "Tools" menu. Note that in older versions of release 2.0,
Workbench did not supply a list of WBArgs when the user selected an
AppMenuItem.

The C source code example AppMenu.c at the end of this article is a simple
example of how to create an AppMenuItem.

	AmigaMail
	IV-59: AppWindows, AppIcons, and AppMenuItems
	The AppMessage Structure
	Adding AppObjects
	AppWindows
	AppIcons
	AppMenuItems

