
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 IV-23: Introduction to Boopsi . 1

1.2 Attributes . 6

1.3 Imageclass Subclasses . 6

1.4 Gadgetclass Subclasses . 7

1.5 Interconnection . 7

AmigaMail 1 / 8

Chapter 1

AmigaMail

1.1 IV-23: Introduction to Boopsi

By John Orr

Boopsi is an acronym for Basic Object Oriented Programming System for
Intuition. On its simplest level, boopsi allows the application
programmer to create Intuition supported gadgets and images with minimal
overhead. It allows a program to consolidate gadgets into one entity to
make processing and updating easy. On a more sophisticated level,
boopsi provides ways to create a wide variety of system supported,
extensible custom gadgets.

Understanding boopsi requires an understanding of several of the
concepts behind Object Oriented Programming (OOP). This article only
briefly covers those concepts. For a more in depth explanation of those
concepts, see Timothy Budd’s book titled A Little Smalltalk (Addison-
Wesley Publishing ISBN 0-201-10698-1). A port (by Bill Kinnersley) of
Timothy Budd’s Little Smalltalk interpreter is on Fish disk #37.

In the boopsi version of the Object Oriented Programming (OOP) model,
everything is an Object. Each object is a distinct entity. Certain
objects have similar characteristics and can be classified into
different groups called classes. As objects, a dog, a cat, and a mouse
are all distinct objects but they all have something in common; they can
all be classified as animals. A specific object is an instance of a
particular class ("Rover" is an instance of class "dog").

Classes can be subdivided into subclasses. A vegetable object class can
have several subclasses such as peas, corn, and spinach. Inversely, the
superclass of peas, corn, and spinach is "vegetable". In turn, both
the "animal" and "vegetable" classes are subclasses. They are
subclasses of a universal root category. The OOP language Smalltalk
calls this class "Object".

Figure 1 - Classes

object

AmigaMail 2 / 8

|
___________|__________

/ \
/ \

animal vegetables
| |

_____|_____ _____|_____
/ | \ / | \

/ | \ / | \
dog cat mouse peas corn spinach

In boopsi, the universal root category is called rootclass. Intuition
supplies three subclasses of rootclass: gadgetclass, imageclass, and
icclass. All boopsi gadgets in the system are an instance of
gadgetclass. Likewise, all boopsi images are an instance of imageclass.
The remaining subclass, icclass, is a concept new to Intuition that
allow one boopsi object (such as a gadget) to notify another boopsi
object when some specific event occurs. For example, a program can
offer a user two methods of altering one integer value; one by sliding a
proportional gadget, the other by typing in a value at a string gadget.
Without boopsi, the program would have to explicitly update one gadget
when the other was altered by the user. Using a boopsi icclass object,
the gadgets can update each other. The gadgets update each other
automatically, without the calling program’s intervention.

The rootclass’ subclasses each have their own subclasses. These
subclasses are discussed later in this article.

Figure 2 - The Boopsi Classes

rootclass
/

_____________/____________
/ / \
/ / \

icclass / gadgetclass
/ / \
/ / __________________________________

/ imageclass / / \ \
/ / / / \ \

modelclass / propgclass strgclass buttongclass groupgclass
/ \

/ \
_______/___________________________ frbuttongclass

/ \ \ \
/ \ \ \

frameiclass sysiclass fillrectclass itexticlass

It is possible for an application to create its own custom boopsi class.
When an application creates a class, it can make it either public or
private. A public class has a name associated with it (for example
gadgetclass) so arbitrary applications can access it. A private class
has no name associated with it, so unless an application has a pointer

AmigaMail 3 / 8

to the class, it cannot access it.

Each class has a set of methods associated with it Each method of a
class is an operation that applies to objects of that class. A example
of a method for a class of integers is to add or to subtract "integer"
objects. All boopsi actions are carried out via methods.

In OOP terminology, an application requests an object to perform some
method by sending the object a message (which is not related to the Exec
style message). In boopsi, the amiga.lib function DoMethod() accepts a
method ID and some method specific parameters (older versions of
amiga.lib do not have DoMethod(), but the function is available on the
Atlanta DevCon disks in classface.o). DoMethod() creates a message from
these parameters and sends the message to the object:

ULONG DoMethod(Object *myobject, ULONG MethodID, ...);

where myobject is a pointer to the target object, MethodID specifies
which method to perform. Any remaining parameters are passed on to the
method in the form of a boopsi message. Each message contains the
method ID and the parameters for the method. The parameters are method
specific. For example, one way to delete the imageclass object
obj2delete is to call the DoMethod() function like this:

DoMethod(obj2delete, OM_DISPOSE);

The OM_DISPOSE method does not require any arguments, so, in this case,
DoMethod() has only two arguments.

One peculiar thing about the above function call is that the OM_DISPOSE
method is not defined for imageclass. It is instead defined in the
superclass of imageclass, rootclass. The OM_DISPOSE method works
because imageclass inherits the methods of its superclass, rootclass.
If an object is asked to perform a method that its class does not
explicitly define, it passes the request onto its superclass for
processing. This superclass can in turn pass on the request to its
superclass if it does not understand the method requested.

Some of the methods currently defined for Boopsi’s rootclass are:

OM_NEW - Creates a new object. Normally this method is not called
directly by the application programmer (a.k.a. using the DoMethod()
function). Instead, there is an Intuition function called NewObject()
that takes care of creating objects.

APTR NewObject(struct IClass *privateclass, UBYTE *publicclassID,
unsigned long tag1, ...);

The privateclass and publicclassID parameters are used to specify the
new object’s class. NewObject() only pays attention to one of these.
If privateclass is NULL, publicclassID points to a string naming the
class of the new object. If privateclass is not NULL, it contains a
pointer to a private class. The remaining arguments make up a series
of tag ID/data pairs. These are used to set the object’s default
attributes. These attributes are specific to the class in question.

AmigaMail 4 / 8

This function returns a handle to the new object.

Each object (or instance of a class) has instance data associated with
it. The OM_NEW method takes care of allocating memory for the instance
data for each class. Instance data is class specific, but all
subclasses inherit instance data from their superclasses. For example,
part of the instance data for a gadgetclass object is a Gadget
structure. Any objects that are instances of subclasses of gadgetclass
have a Gadget structure embedded in them. Subclasses can have their own
class specific instance data in addition to the instance data inherited
from the superclass.

Boopsi gadgetclass and imageclass objects are organized so that
NewObject() returns a pointer to the corresponding Intuition structure
embedded within them (struct Gadget and struct Image, respectively).
This makes it possible to use non-boopsi Intuition functions on boopsi
objects. Normally, these internal structures should be considered
private, and should be accessed through the corresponding attributes,
but if it is necessary, an application can look at certain fields in the
embedded structure. For both gadgets and images, the Left, Top, Width,
and Height fields are legal to look at. The Images NextImage field is
also OK for viewing. However, this does not mean that it is OK for an
application to go poking around the internals of boopsi objects. All
boopsi objects are strictly private and can change without notice. Use
only the functions Intuition provides for manipulating boopsi objects.

Another function, NewObjectA(), works exactly like NewObject(), but
instead of accepting the tag pairs as arguments, it accepts a single
pointer to a TagList. See the Intuition Autodocs for more details.

OM_DISPOSE - Deletes an object. Like OM_NEW this method is not normally
called directly by the application program. Instead there is an
Intuition function DisposeObject() that takes care of object disposal.

void DisposeObject(APTR object2delete);

OM_SET - Sets object specific attributes. This method is not normally
called by the application program directly. Instead, there are two
Intuition functions that set object attributes:

ULONG SetAttrs(APTR object, unsigned long tag1, ...);

ULONG SetGadgetAttrs(struct Gadget *mygadgetobject, struct Window

*window, struct Requester *requester, unsigned long tag1, ...);

SetAttrs() accepts as arguments a pointer to the object in question and
a series of tag pairs corresponding to the attributes to set.
SetGadgetAttrs() is a special version of SetAttrs() that is required to
change the attributes of gadgetclass objects. SetGadgetAttrs() is
similar to SetAttrs(), except it has some extra parameters that a gadget
needs to redraw itself in response to the attribute changes. This
function can be used on non-gadgetclass objects as the gadget specific
parameters are ignored by the other object classes. If the gadget is
not yet attached to a window or requester, these arguments should be set
to NULL.

AmigaMail 5 / 8

Both of these functions have corresponding TagList based arguments,
SetAttrsA() and SetGadgetAttrs().

OM_GET - Reads an object specific attribute. The Intuition function
GetAttr() provides easy access to this method:

ULONG GetAttr(unsigned long attrID, APTR object, ULONG *storagePtr);

GetAttr() fills in storagePtr with the value of the object’s attribute
attrID. The function returns FALSE if there is an error.

OM_ADDMEMBER - Adds a boopsi object to another object’s list, if it has
one. Certain object classes have an Exec list as part of their instance
data. To add the object object2add to the list of the object mainobject
use DoMethod() like so:

DoMethod(mainobject, OM_ADDMEMBER, object2add);

DoMethod() also has a non-varargs form called DM() (also in amiga.lib).
DM() accepts an object pointer and a pointer to a structure specific to
a method. For example, the DM() form of the above DoMethod() call would
look like this:

DM(mainobject, addmemstruct);

where addmemstruct is a pointer to the following structure (defined in
<intuition/classusr.h>):

struct opMember {
ULONG MethodID; /* in this case MethodID = OM_ADDMEMBER */
Object *opam_Object; /* = addmemstruct */

};

OM_REMMEMBER - Removes a boopsi object previously added with
OM_ADDMEMBER. The parameters are the same for OM_ADDMEMBER.

OM_UPDATE - Updates attributes of an object. For gadgets, this method
is very similar to the OM_SET method. It is normally used only between
objects for notifying each other of attribute changes, so simple boopsi
users should use the SetAttrs() and SetGadgetAttrs() functions.

OM_NOTIFY - Notifies one object when another object’s attribute(s) have
changed. It is normally used only between objects for modifying each
others attributes, so simple boopsi users should use the SetAttrs() and
SetGadgetAttrs() functions.

Attributes

Gadgetclass Subclasses

AmigaMail 6 / 8

Appendix

Imageclass Subclasses

Interconnection

1.2 Attributes

All boopsi objects have attributes associated with them. These
attributes reflect various properties of a specific object. For
example, an image object has attributes such as IA_Left, IA_Top,
IA_Width, and IA_Height, all of which correspond to fields in the Image
structure. Five methods deal with an object’s attributes:

OM_NEW sets attributes at object creation (initialization) time
OM_SET changes attributes after the object has been created
OM_GET reads an object attribute
OM_UPDATE updates an object attribute (for use by objects only)
OM_NOTIFY notifies one object of changes to another object’s attributes

Not all of these methods apply to all attributes. Some attributes are
not "settable" or not "gettable", for example. See the appendix at
the end of this article to find out which of these methods apply to
specific attributes.

1.3 Imageclass Subclasses

An imageclass object contains an Image structure that Intuition uses to
render objects such as gadgets. Boopsi imageclass objects are organized
so that when NewObject() returns a pointer to an imageclass object, it
points to the actual Image structure.

Normally, an application does not create an imageclass object. Instead,
it will use a subclass of imageclass. Currently, there are four
subclasses: frameiclass, sysiclass, fillrectclass, and itexticlass.

frameiclass - An embossed or recessed rectangular frame, rendered in the
proper DrawInfo pens, with enough intelligence to bound or center its
contents.

sysiclass - The class of system images. The class includes all the
images for the system gadgets, and the Gadtools check mark and button
glyphs.

fillrectclass - Rectangle with frame and pattern support.

itexticlass - A specialized image class used for rendering text. Note
that you have to calculate itexticlass object’s width and height
yourself.

AmigaMail 7 / 8

1.4 Gadgetclass Subclasses

A gadgetclass object contains an Intuition Gadget structure. Like
imageclass, applications do not normally create objects of this class,
but instead create objects of subclasses of gadgetclass. Currently,
gadgetclass has four subclasses:

propgclass - An easy to use, one-dimensional proportional gadget.

strgclass - A string gadget.

groupgclass - A special gadget class that creates one composite gadget
out of several others.

buttongclass - A repeating boolean button gadget.

buttongclass has a subclass of its own:

frbuttongclass - A button that outlines its label with a frame.

The example boopsi1.c (at the end of this article) uses sysiclass images
and several boopsi gadgets. The example takes care of processing and
updating the gadgets.

1.5 Interconnection

The boopsi gadgets in boopsi1.c are not very powerful. The gadgets work
independently of each other, forcing the application to unify them. It
is possible to make gadget objects update each other without the
application’s intervention.

Gadgetclass defines two attributes used in this updating process:
ICA_Target and ICA_Map. The ICA_Target attribute specifies a pointer to
a target object. If an object’s attribute changes (and the OM_NOTIFY
method applies to that attribute), the object sends itself an OM_NOTIFY
message. If the object has a target object, the target will receive an
OM_UPDATE message which usually tells the target to set one of its own
attributes. For example, when the user slides the knob of a propgclass
object, its PGA_Top attribute changes. If this object has a second
propgclass object as its target, the second object will receive an
OM_UPDATE message and will set its corresponding PGA_Top attribute to
the PGA_Top value of the first propgclass object.

Because objects of different classes do not always have corresponding
attributes, there is a way to map attributes of one object to the
attributes of another. The ICA_Map accepts a TagItem array of attribute
pairs. The first entry in the pair is the source attribute ID and the
second is the target object’s attribute. For example, an ICA_Map that
maps a prop gadget’s PGA_Top attribute to a string gadget’s
STRINGA_LongVal attribute would look like this:

struct TagItem slidertostring[] = {

AmigaMail 8 / 8

{PGA_Top, STRINGA_LongVal},
{TAG_END, }

};

Note that the OM_UPDATE method has to apply to the target attribute for
the change to take place.

Although the gadget attributes ICA_Target and ICA_Map allow boopsi
gadgets to update each other, by themselves these attributes do not
provide the application with any information on changes to the gadgets.
Instead of using another gadget as a target object, an object targets an
icclass object. Icclass (or InterConnection) objects are simple
information forwarders.

Icclass defines two attributes: ICA_Target and ICA_Map, which are almost
identical to the gadgetclass attributes. The difference is that icclass
objects can send the application an IDCMPUPDATE IntuiMessage when it
receives an OM_UPDATE. If an icclass object receives an OM_UPDATE, it
will send the IntuiMessage only if the icclass object’s ICA_Target is
ICTARGET_IDCMP and the updated attribute is mapped to a special dummy
attribute, ICSPECIAL_CODE. The IntuiMessage’s Code field contains the
lower 16 bits of the updated attribute.

Icclass has a more powerful subclass called modelclass. A modelclass
object sends OM_UPDATE messages to an entire list of objects that the
modelclass object maintains. This makes it possible for gadgets to
update each other and for the application to find out about the changes.
A modelclass object "broadcasts" attribute changes to its list of
boopsi objects and it also lets the application know about attribute
changes because it inherits the ICTARGET_IDCMP mechanism from icclass.
To add objects to a modelclass object’s list, use the OM_ADDMEMBER
method.

The power of icclass and modelclass lies in using them to create a
custom subclass. Consider a group of prop gadgets each of which is used
to control one of a color’s R, G, B, H, S, and V components. When the
user changes one of the color components with a prop gadget, the custom
model will be notified of that change and, because it is customized for
this specific purpose, it will recalculate the values for the remaining
components. The model will then let the rest of the prop gadget
objects (which are attached to icclass objects in the custom model’s
personal list) know about the changes to their component values so they
can move their slider to its new position. All this work is done by the
objects themselves; the application does not have to process any of the
intermediate input.

In general, boopsi’s power lies in its Intuition-supported
extensibility. Using the existing boopsi classes as a foundation, you
can create entirely new subclasses. This makes it possible to create
your own custom gadgetry and have it work perfectly with Intuition, just
like any existing gadget. New subclasses of modelclass can be used to
create gadgets that talk directly to ARexx or the clipboard device. If
new classes are general enough, they can be made public so other
applications can use them.

	AmigaMail
	IV-23: Introduction to Boopsi
	Attributes
	Imageclass Subclasses
	Gadgetclass Subclasses
	Interconnection

