
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 IV-125: Features of V39 GadTools . 1

AmigaMail 1 / 8

Chapter 1

AmigaMail

1.1 IV-125: Features of V39 GadTools

Features of V39 GadTools

by Mark Ricci

The V39 GadTools library has been upgraded with new features and
capabilities that support the enhanced graphic capabilities of the AA
chipset. Other improvements include support for IDCMP_GADGETHELP
events, more support for IDCMP_GADGETUP events, scalable imagery and a
new function, GT_GetGadgetAttrs(), to obtain the values of certain
gadget attributes.

This article assumes you are familiar with the previous version of the
GadTools library. If not, you should refer to the ‘‘GadTools Library’’
chapter of the Amiga ROM Kernel Reference Manual: Libraries for an
in-depth explanation of GadTools. You should also refer to the
GadTools Autodoc for complete explanations of the GadTools functions.
All tags and constants referenced in this article are defined in
<libraries/gadtools.h> and <intuition/intuition.h>.

The NewLook Menus

For V37, Intuition received a facelift. V37 introduced the ‘‘NewLook’’
rendering scheme, which improved the appearance of most of the elements
of the Amiga user interface (windows, system gadgets, standard Boopsi
classes, etc.). One element of the Amiga’s GUI that escaped the
NewLook was the menu system.

For V39, Intuition added the NewLook to its menus. When Intuition
renders NewLook menus, it gets the colors for the menu from the Palette
Preferences set by the user. Before V39, Intuition used the window’s
DetailPen and BlockPen to draw the menu and the colors of the MenuItems
depended on the MenuItem’s IntuiText or Image structure.

GadTools fully supports Intuition’s NewLook menus. To make GadTools
use the NewLook color scheme for a window’s menus, an application needs
to do two things. First, it needs to tell Intuition that it wants

AmigaMail 2 / 8

NewLook menu imagery for the window. It does this when opening the
window by passing the {WA_NewLookMenus, TRUE} tag/value pair to
OpenWindowTags(). Second, the application needs to remind GadTools
that the window uses NewLook imagery for its menus. The application
does this by passing the {GTMN_NewLookMenus, TRUE} tag/value pair to
LayoutMenus():

struct VisualInfo *vi;

LayoutMenus(menusready, vi, GTMN_NewLookMenus, TRUE, TAG_END);

Instead of using the GTMN_NewLookMenus tag, it’s possible to set the
menu colors yourself by using the GTMN_FrontPen tag to set the pen
number for rendering menu text. In addition to this tag, you must set
the screen’s BARDETAILPEN and BARTRIMPEN to match the menu text pen and
set the BARBLOCKPEN to the color you want for the title bar. However,
you cannot control how Intuition complements menu items and you do not
automatically get the user’s menu color preferences, so you will not
get as perfect NewLook menu as you would by leaving it to the system.

Gadgets

Most GadTools gadgets received new attributes in V39. These include
new IDCMP events, the ability to specify rendering pens, and scalable
imagery.

IDCMP Events

Button, integer and string gadgets can send IDCMP_GADGETDOWN events by
setting the GA_Immediate tag to TRUE.

Disabling

MX and listview gadgets join the other GadTools gadgets in having a
disable attribute. Set the GA_Disabled tag to TRUE to disable, and
FALSE to re-enable.

Scalable Imagery

Checkbox and MX gadgets are no longer fixed in size. You can scale
them to any width and height. If you do not specify scaling, GadTools
uses its built-in default dimensions. These dimensions, which are
defined in <libraries/gadtools.h> , are CHECKBOXWIDTH and
CHECKBOXHEIGHT for checkbox gadgets, and MXWIDTH by MXHEIGHT for MX
gadgets.

To scale a checkbox gadget, set the GTCB_Scaled tag to TRUE, and set
the desired width and height in the ng_Width and ng_Height fields of
the NewGadget structure. The default value of GTCB_Scaled is FALSE,
meaning use the default size of 26 by 11, the values of CHECKBOXWIDTH
and CHECKBOXHEIGHT, respectively.

To scale an MX gadget, set the GTMX_Scaled tag to TRUE, and set the
desired width and height in the ng_Width and ng_Height fields of the
NewGadget structure. The default value of GTMX_Scaled is FALSE,
meaning use the default size of 17 by 9, the values of MXWIDTH by

AmigaMail 3 / 8

MXHEIGHT, respectively. If you scale MX gadgets, you must also set the
GTMX_Spacing tag to NewGadget.ng_TextAttr->ta_YSize + 1 to properly
space the buttons with respect to the font.

Rendering Pens, Display Format, Justification, Clipping and Display Size

Application writers use number, text, and to some degree, slider
gadgets, to present information to the user. The new attributes for
these gadgets improve the presentation of the information.

You can specify any pen for rendering the foreground and the background
of number and text gadgets. This allows you to use color for emphasis
or aesthetics. For example, you might use red as the foreground color
in a text gadget for emphasis. You can also use C-language-like
formatting strings for the displays, e.g., %lx would give you
hexadecimal output in a number gadget. The Exec RawDoFmt() function
processes this string, so refer to that function for details.

Text clipping is another new attribute. It clips the display to fit
within the borders of the gadget. This prevents the text or number
from running over the border of a gadget if it’s too large for the
gadget. Along with text clipping, the number, text and slider gadgets
can left, center and right justify their displays.

Finally, you can specify the size of the string buffer that number and
slider gadgets use when formatting their text. This buffer must be
large enough to hold the entire string generated by the gadget, as the
gadget doesn’t do any bounds checking on the buffer. Underestimating
the size of the buffer will cause the gadget to overwrite the buffer,
overwriting whatever happens to follow the buffer in memory.

For number gadgets, the GTNM_FrontPen tag specifies the pen to use for
rendering the number. The default is DrawInfo->dri_Pens[TEXTPEN]).
GTNM_BackPen specifies the pen to use for rendering the background of
the number. The default is to use the background color of the gadget’s
window.

GTNM_Justification specifies the type of justification within the
gadget box. GTJ_LEFT renders the number flush with the left side of
the gadget, GTJ_RIGHT renders the number flush with the right side, and
GTJ_CENTER centers the number. The default is GTJ_LEFT.

GTNM_Format specifies the C-language-like formatting string used to
display the number. You must use the ‘‘l’’ (long) modifier. The
default is ‘‘%ld’’. The gadget passes the formatting string to the
exec.library function RawDoFmt(), which generates the string that
appears in the number gadget. See the Autodoc for RawDoFmt() for more
information on the formatting string.

If an application changes the default formatting string with the
GTNM_Format tag, the string that the number gadget displays may become
significantly longer. For example, if the application uses the format
string ‘‘my number is %ld’’, when the gadget processes the formatting
string with RawDoFmt(), RawDoFmt() generates a string at least 14
characters long. By default, the gadget sets aside a 10 byte buffer
for RawDoFmt() to use, so the formatting string above is too long for

AmigaMail 4 / 8

the default buffer. The tag GTNM_MaxNumberLen sets the size of this
buffer.

GTNM_Clipped controls text clipping. The default behavior differs
between number gadgets with borders and number gadgets without borders.
For bordered number gadgets, the default is TRUE--clip the display to
fit within the gadget borders. For gadgets without borders, the
default is FALSE--no clipping.

Text gadgets also have a new set of attributes that correspond to the
new number gadget attributes. These corresponding tags are:
GTTX_FrontPen, GTTX_BackPen, GTTX_Justification, and GTTX_Clipped.
There is no corresponding text gadget tag for GTMN_MaxNumberLen or
GTMN_Format.

Slider gadgets use the GTSL_Justification tag with the constants listed
above (GTJ_LEFT, GTJ_RIGHT, and GTJ_CENTER) to control justification of
the gadgets numeric display. The GTSL_MaxPixelLen tag specifies the
maximum pixel size of the level display for any value of the slider.
This is primarily useful when dealing with proportional fonts. The
default is the font’s character width (from the font’s
TextFont->tf_XSize field) multiplied by the value in the
GTSL_MaxLevelLen tag.

New Gadget-Specific Attributes

MX gadgets can now have titles. The gadget obtains its title from the
ng_GadgetText field of the NewGadget structure. The GTMX_TitlePlace
tag specifies where to place the title. The possible values are:

PLACETEXT_LEFT Right-align text on left side
PLACETEXT_RIGHT Left-align text on right side
PLACETEXT_ABOVE Center text above
PLACETEXT_BELOW Center text below

For compatibility reasons, GadTools will not put a title on the MX
gadget if the GTMX_TitlePlace tag is not present.

Listviews

Listview gadget improvements include forced display of an item,
highlighting of the selected item in the listview and custom callback
hooks.

The GTLV_MakeVisible tag specifies the number of the item that should
be forced into the viewing area. It overrides the GTLV_Top tag.

In V37, a listview identified its currently selected item by displaying
it in a text gadget beneath the listview. The tag GTLV_ShowSelected
specifies how the listview indicates which item is the currently
selected item. If set to NULL, the listview places a highlight bar
over the currently selected item. If GTLV_ShowSelected points to a
string gadget, the listview displays the selected item in the string
gadget in addition to a highlight bar.

AmigaMail 5 / 8

You can use callback hooks to render a listview’s items. The listview
in the V39 Palette Preferences editor uses a callback hook to display
the standard user interface pens. The callback hook makes it possible
for each item to display the pen color in addition to the pen name.
The pen color appears in a little box at the left edge of each item in
the listview.

Palette

GTPA_NumColors sets the number of colors to display in the palette
gadget. This overrides the GTPA_Depth tag and allows numbers that are
not powers of 2 (which was a limitation of the V37 palette gadget).
The default is 2.

Palette gadgets can now have their own array of pen numbers.
GTPA_ColorTable is a pointer to a array of pen numbers. The array must
contain at least as many entries as there are colors displayed in the
palette gadget. The default is NULL which causes a 1-to-1 mapping of
pen numbers. That means if you don’t specify this tag, your palette
will use pen number 0 through pen n-1, where n is the number of colors
you set in GTPA_NumColors. For example, if you set GTPA_NumColors to 6
and don’t specify GTPA_ColorTable, you will get a pen array of pens 0,
1, 2, 3, 4, and 5.

A pen array you specify looks like this:

UBYTE colors[8]= {1,2,15,6,0,3,8};

Setting GTPA_ColorTable to this array indicates that the palette pens
are 1, 2, 15, 6, 0, 3 and 8, respectively. Note that you have to
allocate pens to be certain you can use them and control them. See the
Amiga OS V39 Developer Release Notes for information on allocating and
sharing pens.

You cannot use the GTPA_ColorTable tag with the GTPA_ColorOffset tag.
The GTPA_ColorOffset tag specifies which pen to use as the first pen of
a palette. For example, if you set it to 4, the first pen used in the
palette will be pen 4. If you use the GTPA_ColorTable tag, the
GTPA_ColorOffset tag is ignored.

However, you can do color offsets with a color table by setting the
value of the GTPA_ColorTable tag to point to the color table plus the
offset you want. In the table above, you could specify pen 6 (the
fourth member of the table) as the first pen to use by setting
GPTA_ColorTable in this manner:

CreateGadget(PALETTE_KIND, gad, &ng,
GTPA_ColorTable, &colors[3],
TAG_END);

Note that the GTPA_NumColors tag is not present in the call above.
This will default the number of colors to two, so the palette gadget
created above will be a two color gadget that uses pens 6 and 0, the
fourth and fifth pens in the array.

AmigaMail 6 / 8

Obtaining Gadget Attributes

Prior to V39, the only way to obtain the attributes of a GadTools
gadget was through the Code field of an IDCMP_GADGETUP IntuiMessage.
In addition to having to wait until the user clicked on a gadget, this
method limited you to obtaining one attribute at a time.

A new GadTools function, GT_GetGadgetAttrs() obtains a gadget’s
attributes. You may call the function at any time after creating a
gadget and for as many attributes as the function supports for that
gadget.

GT_GetGadgetAttrs() accepts a taglist of the attributes to obtain. An
application passes it the address of the gadget, the address of the
window containing the gadget, a NULL field (this field is reserved for
later use and must be NULL for now), and a taglist. Each attribute
value pair in the taglist supplies the ID of the tag to get (in ti_Tag)
and an address where GT_GetGadgetAttrs() can store the tag’s value.
Since all tag values are longwords, expect GT_GetGadgetAttrs() to copy
a longword for each attribute you request. The function returns the
number of attributes it obtained.

LONG how_many, top_item = 0, selected_item = 0;

how_many = GT_GetGadgetAttrs(listview_gad, win, NULL,
GTLV_Top, &top_item,
GTLV_Selected, &selected_item,
TAG_DONE);

How_many contains the number of gadget attributes GT_GetGadgetAttrs()
obtained. GT_GetGadgetAttrs() copies the value of the listview top and
the selected item into top_item and selected_item, respectively. Use
longword targets to hold the returned values.

GT_GetGadgetAttrs() supports GA_Disabled (TRUE if the gadget is
disabled; FALSE if the gadget is active) for all GadTools gadgets
except text and number gadgets. Other attributes are specific to each
gadget as follows:

Checkbox - GTCB_Checked returns TRUE if the checkbox gadget
is checked, or FALSE if the gadget is not checked.

Cycle - GTCY_Active returns the ordinal number, counting up
from zero, of the active choice. GTCY_Labels returns a
pointer to the NULL-terminated array of choices.

Integer - GTIN_Number returns the contents of the gadget.

Listview - GTLV_Top returns the ordinal number, counting up
from zero, of the top item. GTLV_Selected returns the
ordinal number of the selected item. GTLV_Labels returns a
pointer to the List structure associated with the gadget.

MX - GTMX_Active returns the ordinal number, counting up
from zero, of the active selection.

Palette - GTPA_Color returns the ordinal number of the

AmigaMail 7 / 8

selected color. This number corresponds to the selected
color’s position in the palette’s GTPA_ColorTable array.
GTPA_ColorOffset returns the ordinal number of the first
color used in the palette. GTPA_ColorTable returns a
pointer to the table of pen numbers used for the gadget, if
there is one.

Scroller - GTSC_Top returns the number of the top line
visible in the scroller. GTSC_Total returns the total
number of lines in the scroller. GTSC_Visible returns the
number of visible lines in the scroller.

Slider - GTSL_Min returns the minimum value of the slider.
GTSL_Max returns the maximum value of the slider.
GTSL_Level returns the current level of the slider.

String - GTST_String returns a pointer to the gadget’s
buffer.

Text - GTTX_Text returns a pointer to the gadget’s buffer.

Message Handling - ExtIntuiMessage Structure

For V39, the IntuiMessage structure has been extended to allow for
tablet support. The GadTools message handling
functions--GT_FilterIMsg(), GT_GetIMsg(), GT_PostFilterIMsg() and
GT_ReplyIMsg()--work with the extended IntuiMessage structure,
ExtIntuiMessage, but are backwards compatible with IntuiMessage.

Gadget Help

All GadTools gadgets support Intuition’s gadget help feature. You
enable this by calling the intuition.library function HelpControl().
Gadget help is either on or off for all GadTools gadgets in a window;
you cannot selectively enable it for certain gadgets as you can with
Intuition gadgets. For more information, refer to page IV-114 of the
‘‘Boopsi in Release 3’’ article in the January/February 1993 issue of
Amiga Mail.

Bevel Box

Bevel boxes now come in three types that you specify with
GTBB_FrameType. BBFT_BUTTON generates the type of box used around
button gadgets. BBFT_RIDGE generates the type of box used for string
gadgets. BBFT_ICONDROPBOX generates a box suitable for a standard icon
drop box imagery. The default is BBFT_BUTTON. These frame types are
similar to the Boopsi imageclass frame types FRAME_BUTTON, FRAME_RIDGE,
and FRAME_ICONDROPBOX, that are pictured on page IV-120 of the ‘‘Boopsi
in Release 3’’ article in the January/February 1993 issue of Amiga Mail.

Example Code - NewGadgets.c

The example code below is a demonstration of some of the V39 GadTools

AmigaMail 8 / 8

changes and how to specify them in your code. You’ll notice that it
lacks many of the features required to actually use the gadgets. This
is by design. The intent is for you to modify an existing application
using the example as a guide.

NewGadgets.c

NewGadgets.c produced the screen shot below.

Figure 1 - Some New GadTools Features

	AmigaMail
	IV-125: Features of V39 GadTools

