
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 II-87: Cooperative Record Locking with AmigaDOS . 1

AmigaMail 1 / 4

Chapter 1

AmigaMail

1.1 II-87: Cooperative Record Locking with AmigaDOS

Cooperative Record Locking with AmigaDOS

by Ewout Walraven

Cooperative record locking was introduced to the Amiga’s ROM file
system and RAM-handler (RAM:) in Release 2. The Amiga’s cooperative
record locking scheme allows an application to lock regions of a file
rather than locking an entire file. These regions are known as
records.

The Amiga thinks of a record in terms of size and offset. The size
refers to the length of the record in bytes. The offset refers to
the starting position of the record from the beginning of the file.
The size and offset can vary from record to record. The only limit
on a record’s size and offset are the limits the file system has on
the size of the file.

In Release 2, there are two basic types of record lock, exclusive and
shared. An exclusive lock gives an application exclusive access to a
record. While an application holds an exclusive record lock, no
other process can obtain a record lock that overlaps the exclusively
locked region. The file system can only grant an exclusive record
lock on a region that is not part of an existing record lock.

The other type of record lock, the shared lock, gives an application
shared access to a record. While an application holds a shared
record lock, other applications can also obtain a shared record lock
that overlaps the original shared record lock, but no other process
can obtain an exclusive record lock that overlaps the shared record
lock.

To lock (or unlock) a record within a file, an application needs a
valid file handle on the file. Two DOS Library functions handle
individual record locks:

BOOL LockRecord(BPTR myFH, ULONG my_offset, ULONG my_length,

AmigaMail 2 / 4

ULONG my_mode, ULONG my_timeout);

BOOL UnLockRecord(BPTR myFH, ULONG my_offset, ULONG my_length);

In both functions, the myFH field refers to the valid file handle
mentioned above, and the my_offset and my_length fields refer to the
record’s offset and size.

The LockRecord() function has two additional parameters: my_mode and
my_timeout. The my_mode field refers to the type of record. Release
2 supports four record types:

REC_EXCLUSIVE Create an exclusive record lock. If the record
is not immediately available, the file system will make a second
record lock attempt when the timeout expires. The timeout (the
my_timeout field from the RecordLock() prototype above) is in DOS
ticks (1/50 of a second).

REC_EXCLUSIVE_IMMED This record type is like REC_EXCLUSIVE, but the
attempt to lock a record will fail if the record is not immediately
available. In this case the file system ignores the timeout.

REC_SHARED Create a shared record lock. If the record is
not immediately available, the file system will make a second record
lock attempt when the timeout expires. The timeout (the my_timeout
field from the RecordLock() prototype above) is in DOS ticks (1/50th
of a second).

REC_SHARED_IMMED This record type is like REC_SHARED, but the
attempt to lock a record will fail if the record is not immediately
available. In this case the file system ignores the timeout.

The Amiga record locking scheme is cooperative--the file system
does not prevent any process from accessing any part of a data
file. The record locking scheme has nothing to do with other
actions of a file system. The file system will let other
processes read and write a data file regardless of any existing
record locks on the data file.

Also, when an application attempts to create a record lock, the file
system’s record locking mechanism only makes sure the record won’t
conflict with any existing record locks on the same data file. The
file system doesn’t check the validity of the locked region. This
makes it possible to lock records in an empty data file and also to
lock records that are well beyond the end of a data file. This
feature may be useful to an application that needs to lock records
that don’t exist yet.

When releasing a record lock, an application must provide exactly the
same parameters it used when it locked the record. Attempting to
unlock a record using a different offset or length will fail. If the
application does not successfully unlock a record, the record lock
will remain in effect. This means further requests to lock that
record can fail, depending on the type of record lock. The record
lock will remain in effect until the data file is removed or the
system restarted. As with most Amiga resources, an application
should release a record lock as quickly as possible. This helps out

AmigaMail 3 / 4

other applications that might be waiting to access the locked record.

Locking Multiple Records

DOS Library offers a function to lock an array of record locks:

BOOL LockRecords(struct RecordLock *recordarray, ULONG multi_timeout);

LockRecords() locks a group of records using one function call.
LockRecords() accepts a pointer to an array of RecordLock structures
(as defined in <dos/record.h>):

struct RecordLock {
BPTR rec_FH; /* The file handle of the data file */
ULONG rec_Offset; /* The record offset in the data file */
ULONG rec_Length; /* The length of the record */
ULONG rec_Mode; /* The mode of the record lock */

};

The fields in each RecordLock structure correspond to the parameters
from the LockRecord() function. The records do not have to be in the
same file. The array is terminated by a dummy RecordLock with a NULL
file handle (rec_FH).

The RecordLock structure does not include a timeout. Instead,
LockRecords() applies the same timeout (multi_timeout from the
LockRecords() prototype above) to each RecordLock in the array. If
LockRecords() fails to lock any of the records in its array,
LockRecords() releases any successful record locks from the array,
and return DOSFALSE.

To unlock records locked by LockRecords(), use the dos.library
function UnLockRecords():

BOOL UnLockRecords(struct RecordLock *recordarray);

This function accepts the same array used to lock the records with
LockRecords().

Note that it is possible to use UnLockRecord() on a record locked by
LockRecords(). However, if an application uses UnLockRecord() to
unlock one record in the RecordLock array, it should use
UnLockRecord() to unlock all of the records in the array.

Locking Records Using DOS Packets

To lock a record using the DOS packet interface, send an
ACTION_LOCK_RECORD (2008) packet to the file system. This packet
uses the following arguments:

ARG1: BTPR The file handle of the data file in which you wish to lock a record.
ARG2: ULONG The offset (in bytes) in the file of the record.
ARG3: ULONG The length (in bytes) of the record.
ARG4: ULONG The mode with which you wish to lock record.

AmigaMail 4 / 4

ARG5: ULONG Time (in ticks) you are will to wait for the record to become ←↩
available.

RES1: BOOL Upon return RES1 will contain the success/failure status:
DOSTRUE if the record lock was successfully locked.
DOSFALSE if the record lock failed.

RES2: CODE Failure code if the record lock failed for a reason other than denied
access (collision for example).

To unlock a record using the DOS packet interface, send an
ACTION_FREE_RECORD (2009) packet. This packet uses the following
arguments:

ARG1: BPTR The file handle of the data file in which you locked the record.
ARG2: ULONG The offset (in bytes) in the file of the record with which you locked

the record.
ARG3: ULONG The length (in bytes) of the record with which you locked the record.

RES1: BOOL Upon return RES1 will contain the success/failure status:
DOSTRUE if the record lock was successfully unlocked.
DOSFALSE if there was no lock to unlock.

RES2: CODE Possible failure code if the record lock could not be unlocked.

LockRecord.c
ExRecLock1.c
ExRecLock2.c

	AmigaMail
	II-87: Cooperative Record Locking with AmigaDOS

